Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Chembiochem ; 23(24): e202200573, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36250803

RESUMEN

Heterologous expression of nrps33, a nonribosomal peptide synthetase gene, from Paecilomyces cinnamomeus BCC 9616 in Saccharomyces cerevisiae unexpectedly resulted in the accumulation of anthranilic acid, an intermediate in tryptophan biosynthesis. Based on transcriptomic and real-time quantitative polymerase chain reaction (RT-qPCR) results, expression of nrps33 affected the transcription of tryptophan biosynthesis genes especially TRP1 which is also the selectable auxotrophic marker for the expression vector used in this work. The product of nrps33 could inhibit the activity of Trp4 involved in the conversion of anthranilate to N-(5'-phosphoribosyl)anthranilate and therefore caused the accumulation of anthranilic acid. This accumulation could in turn result in down-regulation of downstream tryptophan biosynthesis genes. Anthranilic acid is typically produced by chemical synthesis and has been used as a substrate for synthesising bioactive compounds including commercial drugs; our results could provide a new biological platform for production of this compound.


Asunto(s)
Saccharomyces cerevisiae , Triptófano , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triptófano/metabolismo , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , ortoaminobenzoatos/farmacología , ortoaminobenzoatos/metabolismo
2.
Org Biomol Chem ; 20(25): 5050-5054, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35695066

RESUMEN

Alternapyrone is a highly methylated polyene α-pyrone biosynthesised by a highly reducing polyketide synthase. Mutations of the catalytic dyad residues, H1578A/Q and E1604A, of the C-methyltransferase domain resulted in either significantly reduced or no production of alternapyrone, indicating the importance of C-methylation for alternapyrone biosynthesis.


Asunto(s)
Sintasas Poliquetidas , Triterpenos , Metilación , Polienos/química , Sintasas Poliquetidas/metabolismo
3.
Org Biomol Chem ; 19(1): 182-187, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33107888

RESUMEN

Fusarochromene isolated from the plant pathogenic fungus, Fusarium sacchari is closely related to a group of mycotoxins including fusarochromanone previously isolated from various Fusaria spp. Despite their assumed polyketide biogenesis, incorporation studies with 13C-labelled acetate, glycerol and tryptophans show that fusarochromene is unexpectedly derived via oxidative cleavage of the aromatic amino acid tryptophan. A putative biosynthetic gene cluster has been identified.


Asunto(s)
Fusarium/metabolismo , Triptófano/metabolismo , Fusarium/genética , Familia de Multigenes/genética , Oxidación-Reducción
4.
Org Biomol Chem ; 17(2): 374-379, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30556556

RESUMEN

Menisporopsin A is a bioactive macrocyclic polylactone produced by the fungus Menisporopsis theobromae BCC 4162. A scheme for the biosynthesis of this compound has been proposed, in which reducing (R) and non-reducing (NR) polyketide synthases (PKSs) would catalyze the formation of each menisporopsin A subunit, while an additional non-ribosomal peptide synthetase (NRPS)-like enzyme would be required to perform multiple esterification and cyclolactonization reactions. Transcriptome analysis of M. theobromae identified an R-PKS gene, men1, and an NR-PKS gene, men2, which both exhibited highest expression levels during the menisporopsin A production phase. These were cloned into separate vectors for heterologous expression in Aspergillus oryzae NSAR1. Unexpectedly, coexpression of the two PKSs alone was sufficient to catalyze the formation of the macrocyclic polylactone, ascotrichalactone A, a structural derivative of menisporopsin A. The unanticipated esterification and cyclolactonization activities could reside in the unusual thioesterase domain of the NR-PKS, which is similar to that of the NRPS catalyzing elongation and cyclization of trilactone in enterobactin biosynthesis and that of modular PKSs catalyzing macrodiolide formation in elaiophylin and conglobatin biosyntheses.


Asunto(s)
Ascomicetos/metabolismo , Aspergillus oryzae/metabolismo , Vías Biosintéticas , Proteínas Fúngicas/metabolismo , Macrólidos/metabolismo , Sintasas Poliquetidas/metabolismo , Ascomicetos/genética , Aspergillus oryzae/genética , Clonación Molecular , Proteínas Fúngicas/genética , Expresión Génica , Genes Fúngicos , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Sintasas Poliquetidas/genética , Transcriptoma
5.
Proc Natl Acad Sci U S A ; 109(20): 7642-7, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22508998

RESUMEN

A gene cluster encoding the biosynthesis of the fungal tropolone stipitatic acid was discovered in Talaromyces stipitatus (Penicillium stipitatum) and investigated by targeted gene knockout. A minimum of three genes are required to form the tropolone nucleus: tropA encodes a nonreducing polyketide synthase which releases 3-methylorcinaldehyde; tropB encodes a FAD-dependent monooxygenase which dearomatizes 3-methylorcinaldehyde via hydroxylation at C-3; and tropC encodes a non-heme Fe(II)-dependent dioxygenase which catalyzes the oxidative ring expansion to the tropolone nucleus via hydroxylation of the 3-methyl group. The tropA gene was characterized by heterologous expression in Aspergillus oryzae, whereas tropB and tropC were successfully expressed in Escherichia coli and the purified TropB and TropC proteins converted 3-methylorcinaldehyde to a tropolone in vitro. Finally, knockout of the tropD gene, encoding a cytochrome P450 monooxygenase, indicated its place as the next gene in the pathway, probably responsible for hydroxylation of the 6-methyl group. Comparison of the T. stipitatus tropolone biosynthetic cluster with other known gene clusters allows clarification of important steps during the biosynthesis of other fungal compounds including the xenovulenes, citrinin, sepedonin, sclerotiorin, and asperfuranone.


Asunto(s)
Ascomicetos/genética , Ascomicetos/metabolismo , Vías Biosintéticas/fisiología , Familia de Multigenes/genética , Tropolona/metabolismo , Aspergillus oryzae , Vías Biosintéticas/genética , Cromatografía Liquida , Biología Computacional , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Escherichia coli , Técnicas de Inactivación de Genes , Espectrometría de Masas , Familia de Multigenes/fisiología , Oxigenasas/genética , Oxigenasas/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Transformación Genética
6.
Chembiochem ; 14(3): 388-94, 2013 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-23307607

RESUMEN

FSN1, a gene isolated from the sugar-cane pathogen Fusarium sacchari, encodes a 4707-residue nonribosomal peptide synthetase consisting of three complete adenylation, thiolation and condensation modules followed by two additional thiolation and condensation domain repeats. This structure is similar to that of ferricrocin synthetase, which makes a siderophore that is involved in intracellular iron storage in other filamentous fungi. Heterologous expression of FSN1 in Aspergillus oryzae resulted in the accumulation of a secreted metabolite that was identified as ferrirhodin. This siderophore was found to be present in both mycelium and culture filtrates of F. sacchari, whereas ferricrocin is found only in the mycelium, thus suggesting that ferricrocin is an intracellular storage siderophore in F. sacchari, whereas ferrirhodin is used for iron acquisition. To our knowledge, this is the first report to characterise a ferrirhodin synthetase gene functionally.


Asunto(s)
Proteínas Fúngicas/metabolismo , Fusarium/enzimología , Péptido Sintasas/metabolismo , Saccharum/microbiología , Aspergillus oryzae/metabolismo , Biocatálisis , Clonación Molecular , Ferricromo/análogos & derivados , Ferricromo/química , Ferricromo/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Péptido Sintasas/química , Péptido Sintasas/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Sideróforos/biosíntesis , Sideróforos/química
7.
Plant Cell ; 22(10): 3193-205, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20935246

RESUMEN

Fatty acid structure affects cellular activities through changes in membrane lipid composition and the generation of a diversity of bioactive derivatives. Eicosapolyenoic acids are released into plants upon infection by oomycete pathogens, suggesting they may elicit plant defenses. We exploited transgenic Arabidopsis thaliana plants (designated EP) producing eicosadienoic, eicosatrienoic, and arachidonic acid (AA), aimed at mimicking pathogen release of these compounds. We also examined their effect on biotic stress resistance by challenging EP plants with fungal, oomycete, and bacterial pathogens and an insect pest. EP plants exhibited enhanced resistance to all biotic challenges, except they were more susceptible to bacteria than the wild type. Levels of jasmonic acid (JA) were elevated and levels of salicylic acid (SA) were reduced in EP plants. Altered expression of JA and SA pathway genes in EP plants shows that eicosapolyenoic acids effectively modulate stress-responsive transcriptional networks. Exogenous application of various fatty acids to wild-type and JA-deficient mutants confirmed AA as the signaling molecule. Moreover, AA treatment elicited heightened expression of general stress-responsive genes. Importantly, tomato (Solanum lycopersicum) leaves treated with AA exhibited reduced susceptibility to Botrytis cinerea infection, confirming AA signaling in other plants. These studies support the role of AA, an ancient metazoan signaling molecule, in eliciting plant stress and defense signaling networks.


Asunto(s)
Arabidopsis/metabolismo , Ácido Araquidónico/metabolismo , Transducción de Señal , Arabidopsis/genética , Arabidopsis/microbiología , Ciclopentanos/análisis , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Oxilipinas/análisis , Reguladores del Crecimiento de las Plantas/análisis , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/microbiología , ARN de Planta/genética , Ácido Salicílico/análisis , Estrés Fisiológico
8.
Methods Mol Biol ; 2489: 23-39, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35524043

RESUMEN

A suite of molecular techniques have been developed in recent decades, which allow gene clusters coding for the biosynthesis of fungal natural products to be investigated and characterized in great detail. Many of these involve the manipulation of the native producer, for example, to increase yields of natural products or investigate the biosynthetic pathway through gene disruptions. However, an alternative and powerful means of investigating biosynthetic pathways, which does not rely on a cooperative native host, is the refactoring and heterologous expression of pathways in a suitable host strain. This protocol aims to walk the reader through the various steps required for the heterologous expression of a fungal biosynthetic gene cluster, specifically using Aspergillus oryzae strain NSAR1 and the pTYGS series of expression vectors. Briefly, this process involves the design and construction of up to four multigene expression vectors using yeast recombination, PEG-mediation transformation of A. oryzae protoplasts, and chemical extraction of the resulting transformants to screen for the presence of metabolites.


Asunto(s)
Aspergillus oryzae , Productos Biológicos , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Productos Biológicos/metabolismo , Vías Biosintéticas/genética , Expresión Génica , Genes Fúngicos , Familia de Multigenes , Saccharomyces cerevisiae/genética
9.
J Am Chem Soc ; 133(28): 10990-8, 2011 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-21675761

RESUMEN

The biosynthesis of the fungal metabolite tenellin from Beauveria bassiana CBS110.25 was investigated in the presence of the epigenetic modifiers 5-azacytidine and suberoyl bis-hydroxamic acid and under conditions where individual genes from the tenellin biosynthetic gene cluster were silenced. Numerous new compounds were synthesized, indicating that the normal predominant biosynthesis of tenellin is just one outcome out of a diverse array of possible products. The structures of the products reveal key clues about the programming selectivities of the tenellin polyketide synthase.


Asunto(s)
Beauveria/enzimología , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Beauveria/genética , Beauveria/metabolismo , Silenciador del Gen , Modelos Moleculares , Conformación Molecular , Oxidación-Reducción , Sintasas Poliquetidas/deficiencia , Piridonas/química , Piridonas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
J Am Chem Soc ; 133(41): 16635-41, 2011 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-21899331

RESUMEN

The mechanism of programming of iterative highly reducing polyketide synthases remains one of the key unsolved problems of secondary metabolism. We conducted rational domain swaps between the polyketide synthases encoding the biosynthesis of the closely related compounds tenellin and desmethylbassianin. Expression of the hybrid synthetases in Aspergillus oryzae led to the production of reprogrammed compounds in which the changes to the methylation pattern and chain length could be mapped to the domain swaps. These experiments reveal for the first time the origin of programming in these systems. Domain swaps combined with coexpression of two cytochrome P450 encoding genes from the tenellin biosynthetic gene cluster led to the resurrection of the extinct metabolite bassianin.


Asunto(s)
Aspergillus oryzae/enzimología , Sintasas Poliquetidas/metabolismo , Modelos Moleculares , Oxidación-Reducción , Sintasas Poliquetidas/química , Piridonas/química , Piridonas/metabolismo
11.
FEBS Lett ; 595(1): 133-144, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33043457

RESUMEN

Menisporopsin A is a fungal bioactive macrocyclic polylactone, the biosynthesis of which requires only reducing (R) and nonreducing (NR) polyketide synthases (PKSs) to guide a series of esterification and cyclolactonization reactions. There is no structural information pertaining to these PKSs. Here, we report the solution characterization of singlet and doublet acyl carrier protein (ACP2 and ACP1 -ACP2 )-thioesterase (TE) domains from NR-PKS involved in menisporopsin A biosynthesis. Small-angle X-ray scattering (SAXS) studies in combination with homology modelling reveal that these polypeptides adopt a distinctive beads-on-a-string configuration, characterized by the presence of highly flexible interdomain linkers. These models provide a platform for studying domain organization and interdomain interactions in fungal NR-PKSs, which may be of value in directing the design of functionally optimized polyketide scaffolds.


Asunto(s)
Proteína Transportadora de Acilo/química , Hongos/enzimología , Sintasas Poliquetidas/química , Tioléster Hidrolasas/química , Dicroismo Circular , Macrólidos/química , Simulación de Dinámica Molecular , Dominios Proteicos , Estructura Secundaria de Proteína , Dispersión del Ángulo Pequeño , Difracción de Rayos X
12.
Front Fungal Biol ; 2: 632542, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37744117

RESUMEN

The use of filamentous fungi as cellular factories, where natural product pathways can be refactored and expressed in a host strain, continues to aid the field of natural product discovery. Much work has been done to develop host strains which are genetically tractable, and for which there are multiple selectable markers and controllable expression systems. To fully exploit these strains, it is beneficial to understand their natural metabolic capabilities, as such knowledge can rule out host metabolites from analysis of transgenic lines and highlight any potential interplay between endogenous and exogenous pathways. Additionally, once identified, the deletion of secondary metabolite pathways from host strains can simplify the detection and purification of heterologous compounds. To this end, secondary metabolite production in Aspergillus oryzae strain NSAR1 has been investigated via the deletion of the newly discovered negative regulator of secondary metabolism, mcrA (multicluster regulator A). In all ascomycetes previously studied mcrA deletion led to an increase in secondary metabolite production. Surprisingly, the only detectable phenotypic change in NSAR1 was a doubling in the yields of kojic acid, with no novel secondary metabolites produced. This supports the previous claim that secondary metabolite production has been repressed in A. oryzae and demonstrates that such repression is not McrA-mediated. Strain NSAR1 was then modified by employing CRISPR-Cas9 technology to disrupt the production of kojic acid, generating the novel strain NSARΔK, which combines the various beneficial traits of NSAR1 with a uniquely clean secondary metabolite background.

13.
FEMS Yeast Res ; 9(3): 420-7, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19207291

RESUMEN

Prostanoids are a large family of lipid mediators originating from prostaglandin H synthase (PGHS) activity on the 20-carbon polyunsaturated fatty acids dihomo-gamma-linolenic acid (DGLA), arachidonic acid (AA) and eicosapentaenoic acid. The two mouse PGHS isoforms, PGHS-1 and PGHS-2, were expressed in Saccharomyces cerevisiae (yeast), as was a signal-peptide-deleted version of PGHS-1 (PGHS-1MA). PGHS-1 showed high activity with both AA and DGLA as substrate, whereas PGHS-2 activity was high with DGLA but low with AA. Signal peptide removal reduced the activity of PGHS-1MA by >50% relative to PGHS-1, but the residual activity indicated that correct targeting to the lumen of the endoplasmic reticulum may not be necessary for enzyme function. Coexpression of PGHS-1 with cDNAs encoding mouse prostaglandin I synthase and thromboxane A synthase, and with Trypanosoma brucei genomic DNA encoding prostaglandin F synthase in AA-supplemented yeast cultures resulted in production of the corresponding prostanoids, prostaglandin I(2), thromboxane A(2) and prostaglandin F(2alpha). The inhibitory effects of nonsteroidal anti-inflammatory drugs (NSAIDs) on prostanoid production were tested on yeast cells expressing PGHS-1 in AA-supplemented culture. Dose-dependent inhibition of prostaglandin H(2) production by aspirin, ibuprofen and indomethacin demonstrated the potential utility of this simple expression system in screening for novel NSAIDs.


Asunto(s)
Antiinflamatorios/farmacología , Dinoprost/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos/métodos , Epoprostenol/antagonistas & inhibidores , Saccharomyces cerevisiae/metabolismo , Tromboxano A2/antagonistas & inhibidores , Animales , Vías Biosintéticas , Ciclooxigenasa 1/biosíntesis , Ciclooxigenasa 1/genética , Ciclooxigenasa 2/biosíntesis , Ciclooxigenasa 2/genética , Sistema Enzimático del Citocromo P-450/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Dinoprost/biosíntesis , Epoprostenol/biosíntesis , Oxidorreductasas Intramoleculares/biosíntesis , Oxidorreductasas Intramoleculares/genética , Ratones , Modelos Biológicos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Tromboxano A2/biosíntesis , Tromboxano-A Sintasa/biosíntesis , Tromboxano-A Sintasa/genética , Trypanosoma brucei brucei/genética
14.
J Am Chem Soc ; 130(52): 17988-96, 2008 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-19067514

RESUMEN

Late stage oxidations during the biosynthesis of the 2-pyridone tenellin in the insect pathogenic fungus Beauveria bassiana were investigated by a combination of gene knockout, antisense RNA, and gene coexpression studies. Open reading frames (ORF) 3 and 4 of the tenellin biosynthetic gene cluster were previously shown to encode a trans-acting enoyl reductase and a hybrid polyketide synthase nonribosomal peptide synthetase (PKS-NRPS), respectively, which together synthesize the acyltetramic acid pretenellin-A. In this work, we have shown that ORF1 encodes a cytochrome P450 oxidase, which catalyzes an unprecedented oxidative ring expansion of pretenellin-A to form the 2-pyridone core of tenellin and related metabolites, and that this enzyme does not catalyze the formation of a hydroxylated precursor. Similar genes appear to be associated with PKS-NRPS genes in other fungi. ORF2 encodes an unusual cytochrome P450 monooxygenase required for the selective N-hydroxylation of the 2-pyridone which is incapable of N-hydroxylation of acyltetramic acids.


Asunto(s)
Beauveria/metabolismo , Piridonas/metabolismo , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Beauveria/enzimología , Beauveria/genética , Hidroxilación , NADPH-Ferrihemoproteína Reductasa/genética , NADPH-Ferrihemoproteína Reductasa/metabolismo , Sistemas de Lectura Abierta , Oxidación-Reducción , ARN sin Sentido/genética
15.
Chembiochem ; 9(4): 585-94, 2008 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-18266306

RESUMEN

The tenS gene encoding tenellin synthetase (TENS), a 4239-residue polyketide synthase nonribosomal-peptide synthetase (PKS-NRPS) from Beauveria bassiana, was expressed in Aspergillus oryzae M-2-3. This led to the production of three new compounds, identified as acyl tetramic acids, and numerous minor metabolites. Consideration of the structures of these compounds indicates that the putative C-terminal thiolester reductase (R) domain does not act as a reductase, but appears to act as a Dieckmann cyclase (DKC). Expression of tenS in the absence of a trans-acting ER component encoded by orf3 led to errors in assembly of the polyketide component, giving clues to the mode of programming of highly reducing fungal PKS. Coexpression of tenS with orf3 from the linked gene cluster led to the production of a correctly elaborated polyketide. The NRPS adenylation domain possibly shows the first identified fungal signature sequences for tyrosine selectivity.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Oxigenasas de Función Mixta/metabolismo , Péptido Sintasas/metabolismo , Sintasas Poliquetidas/metabolismo , Piridonas/química , Piridonas/metabolismo , Aspergillus/enzimología , Beauveria/enzimología , Estructura Molecular , Ribosomas/enzimología
16.
PLoS One ; 13(12): e0209600, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30596695

RESUMEN

Pigments and phytotoxins are crucial for the survival and spread of plant pathogenic fungi. The genome of the tomato biotrophic fungal pathogen Cladosporium fulvum contains a predicted gene cluster (CfPKS1, CfPRF1, CfRDT1 and CfTSF1) that is syntenic with the characterized elsinochrome toxin gene cluster in the citrus pathogen Elsinoë fawcettii. However, a previous phylogenetic analysis suggested that CfPks1 might instead be involved in pigment production. Here, we report the characterization of the CfPKS1 gene cluster to resolve this ambiguity. Activation of the regulator CfTSF1 specifically induced the expression of CfPKS1 and CfRDT1, but not of CfPRF1. These co-regulated genes that define the CfPKS1 gene cluster are orthologous to genes involved in 1,3-dihydroxynaphthalene (DHN) melanin biosynthesis in other fungi. Heterologous expression of CfPKS1 in Aspergillus oryzae yielded 1,3,6,8-tetrahydroxynaphthalene, a typical precursor of DHN melanin. Δcfpks1 deletion mutants showed similar altered pigmentation to wild type treated with DHN melanin inhibitors. These mutants remained virulent on tomato, showing this gene cluster is not involved in pathogenicity. Altogether, our results showed that the CfPKS1 gene cluster is involved in the production of DHN melanin and suggests that elsinochrome production in E. fawcettii likely involves another gene cluster.


Asunto(s)
Cladosporium/fisiología , Regulación Fúngica de la Expresión Génica , Melaninas/biosíntesis , Familia de Multigenes , Solanum lycopersicum/microbiología , Orden Génico , Genes Fúngicos , Interacciones Huésped-Patógeno/genética , Fenotipo , Filogenia , Pigmentación
17.
Chem Commun (Camb) ; (39): 4053-5, 2007 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-17912413

RESUMEN

Isolation and sequencing of a PKS gene isolated from xenovulene-producing cultures of Acremonium strictum indicated the presence of NT-, KS-, AT-, PT-, C-MeT- and R-domains; heterologous expression in Aspergillus oryzae resulted in the production of 3-methylorcinaldehyde, demonstrating the role of the terminal reductase domain in product release.


Asunto(s)
Acremonium/química , Acremonium/metabolismo , Aldehídos/química , Aldehídos/metabolismo , Macrólidos/química , Macrólidos/metabolismo , Acremonium/genética , Metilación , Estructura Molecular , Oxidación-Reducción , Filogenia
18.
Nat Biotechnol ; 22(6): 739-45, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15146198

RESUMEN

We report the production of two very long chain polyunsaturated fatty acids, arachidonic acid (AA) and eicosapentaenoic acid (EPA), in substantial quantities in a higher plant. This was achieved using genes encoding enzymes participating in the omega3/6 Delta8 -desaturation biosynthetic pathways for the formation of C20 polyunsaturated fatty acids. Arabidopsis thaliana was transformed sequentially with genes encoding a Delta9 -specific elongating activity from Isochrysis galbana, a Delta8 -desaturase from Euglena gracilis and a Delta5 -desaturase from Mortierella alpina. Instrumental in the successful reconstitution of these C20 polyunsaturated fatty acid biosynthetic pathways was the I. galbana C18-Delta9 -elongating activity, which may bypass rate-limiting steps present in the conventional Delta6 -desaturase/elongase pathways. The accumulation of EPA and AA in transgenic plants is a breakthrough in the search for alternative sustainable sources of fish oils.


Asunto(s)
Ácidos Grasos Omega-3/biosíntesis , Ácidos Grasos Omega-6/biosíntesis , Plantas Modificadas Genéticamente/metabolismo , Ácido 8,11,14-Eicosatrienoico/análisis , Ácido 8,11,14-Eicosatrienoico/metabolismo , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ácido Araquidónico/análisis , Ácido Araquidónico/biosíntesis , Ácidos Araquidónicos/análisis , Ácidos Araquidónicos/biosíntesis , Biotecnología/métodos , Caulimovirus/genética , Cromatografía de Gases , delta-5 Desaturasa de Ácido Graso , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Elongasas de Ácidos Grasos , Ácidos Grasos/análisis , Ácidos Grasos/biosíntesis , Ácidos Grasos Esenciales/biosíntesis , Ácidos Grasos Insaturados/biosíntesis , Cromatografía de Gases y Espectrometría de Masas , Hojas de la Planta/química , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plásmidos/genética
19.
FEBS Lett ; 580(8): 1946-52, 2006 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-16530193

RESUMEN

A cDNA encoding a C20 Delta8-desaturase was isolated from the free-living soil amoeba, Acanthamoeba castellanii and functionally characterised by heterologous expression. The open reading frame of the A. castellanii C20 Delta8-desaturase showed similarity to other microsomal front-end desaturases, but the N-terminal domain contained a variant form of the conserved heme-binding motif in which H-P-G-G is replaced by H-P-A-G. Co-expression of the A. castellani Delta8-desaturase with the Isochrysis galbana Delta9-elongase in transgenic Arabidopsis plants confirmed the activity observed in yeast and its role in the alternative pathway for C20 polyunsaturated fatty acid synthesis. Acyl-CoA profiles of these transgenic plants revealed an unexpected accumulation of C20 fatty acids in the acyl-CoA pool. This is the first report of an alternative pathway C20 Delta8-desaturase from a non-photosynthetic organism, and also the first report of a front-end desaturase lacking the canonical cytochrome b5 domain.


Asunto(s)
Acanthamoeba castellanii/enzimología , Citocromos b5/metabolismo , Ácido Graso Desaturasas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Acilcoenzima A/metabolismo , Secuencia de Aminoácidos , Animales , Arabidopsis/enzimología , Ácido Graso Desaturasas/química , Expresión Génica , Datos de Secuencia Molecular , Fotosíntesis , Filogenia , Plantas Modificadas Genéticamente , Saccharomyces cerevisiae/enzimología
20.
Mol Biotechnol ; 58(3): 172-8, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26718544

RESUMEN

Pyrethrins are natural insecticides, which accumulate to high concentrations in pyrethrum (Chrysanthemum cinerariaefolium) flowers. Synthetic pyrethroids are more stable, more efficacious and cheaper, but contemporary requirements for safe and environmentally friendly pesticides encourage a return to the use of natural pyrethrins, and this would be favoured by development of an efficient route to their production by microbial fermentation. The biosynthesis of pyrethrins involves ester linkage between an acid moiety (chrysanthemoyl or pyrethroyl, synthesised via the mevalonic acid pathway from glucose), and an alcohol (pyrethrolone). Pyrethrolone is generated from 3-oxo-2-(2'-pentenyl)-cyclopentane-1-octanoic acid, which originates from α-linolenic acid via the jasmonic acid biosynthetic cascade. The first four genes in this cascade, encoding lipoxygenase 2, allene-oxide synthase, allene-oxide cyclase 2 and 12-oxophytodienoic acid reductase 3, were amplified from an Arabidopsis thaliana cDNA library, cloned in a purpose-built fungal multigene expression vector and expressed in Aspergillus oryzae. HPLC-MS analysis of the transgenic fungus homogenate gave good evidence for the presence of 3-oxo-2-(2'-pentenyl)-cyclopentane-1-octanoic acid.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Aspergillus oryzae/genética , Caprilatos/metabolismo , Piretrinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Aspergillus oryzae/metabolismo , Bioingeniería , Vías Biosintéticas , Fermentación , Biblioteca de Genes , Insecticidas/metabolismo , Piretrinas/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA