RESUMEN
Mammalian SWI/SNF (mSWI/SNF or BAF) ATP-dependent chromatin remodeling complexes play critical roles in governing genomic architecture and gene expression and are frequently perturbed in human cancers. Transcription factors (TFs), including fusion oncoproteins, can bind to BAF complex surfaces to direct chromatin targeting and accessibility, often activating oncogenic gene loci. Here, we demonstrate that the FUS::DDIT3 fusion oncoprotein hallmark to myxoid liposarcoma (MLPS) inhibits BAF complex-mediated remodeling of adipogenic enhancer sites via sequestration of the adipogenic TF, CEBPB, from the genome. In mesenchymal stem cells, small-molecule inhibition of BAF complex ATPase activity attenuates adipogenesis via failure of BAF-mediated DNA accessibility and gene activation at CEBPB target sites. BAF chromatin occupancy and gene expression profiles of FUS::DDIT3-expressing cell lines and primary tumors exhibit similarity to SMARCB1-deficient tumor types. These data present a mechanism by which a fusion oncoprotein generates a BAF complex loss-of-function phenotype, independent of deleterious subunit mutations.
Asunto(s)
Liposarcoma Mixoide , Animales , Línea Celular Tumoral , Cromatina/genética , Liposarcoma Mixoide/genética , Liposarcoma Mixoide/metabolismo , Liposarcoma Mixoide/patología , Mamíferos/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Even among genetically identical cancer cells, resistance to therapy frequently emerges from a small subset of those cells1-7. Molecular differences in rare individual cells in the initial population enable certain cells to become resistant to therapy7-9; however, comparatively little is known about the variability in the resistance outcomes. Here we develop and apply FateMap, a framework that combines DNA barcoding with single-cell RNA sequencing, to reveal the fates of hundreds of thousands of clones exposed to anti-cancer therapies. We show that resistant clones emerging from single-cell-derived cancer cells adopt molecularly, morphologically and functionally distinct resistant types. These resistant types are largely predetermined by molecular differences between cells before drug addition and not by extrinsic factors. Changes in the dose and type of drug can switch the resistant type of an initial cell, resulting in the generation and elimination of certain resistant types. Samples from patients show evidence for the existence of these resistant types in a clinical context. We observed diversity in resistant types across several single-cell-derived cancer cell lines and cell types treated with a variety of drugs. The diversity of resistant types as a result of the variability in intrinsic cell states may be a generic feature of responses to external cues.
Asunto(s)
Antineoplásicos , Células Clonales , Resistencia a Antineoplásicos , Neoplasias , Humanos , Células Clonales/efectos de los fármacos , Células Clonales/metabolismo , Células Clonales/patología , Código de Barras del ADN Taxonómico , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , RNA-Seq , Análisis de Expresión Génica de una Sola Célula , Células Tumorales Cultivadas , Antineoplásicos/farmacologíaRESUMEN
The mechanics of the cellular microenvironment continuously modulates cell functions such as growth, survival, apoptosis, differentiation and morphogenesis via cytoskeletal remodelling and actomyosin contractility1-3. Although all of these processes consume energy4,5, it is unknown whether and how cells adapt their metabolic activity to variable mechanical cues. Here we report that the transfer of human bronchial epithelial cells from stiff to soft substrates causes a downregulation of glycolysis via proteasomal degradation of the rate-limiting metabolic enzyme phosphofructokinase (PFK). PFK degradation is triggered by the disassembly of stress fibres, which releases the PFK-targeting E3 ubiquitin ligase tripartite motif (TRIM)-containing protein 21 (TRIM21). Transformed non-small-cell lung cancer cells, which maintain high glycolytic rates regardless of changing environmental mechanics, retain PFK expression by downregulating TRIM21, and by sequestering residual TRIM21 on a stress-fibre subset that is insensitive to substrate stiffness. Our data reveal a mechanism by which glycolysis responds to architectural features of the actomyosin cytoskeleton, thus coupling cell metabolism to the mechanical properties of the surrounding tissue. These processes enable normal cells to tune energy production in variable microenvironments, whereas the resistance of the cytoskeleton in response to mechanical cues enables the persistence of high glycolytic rates in cancer cells despite constant alterations of the tumour tissue.
Asunto(s)
Microambiente Celular , Citoesqueleto/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Glucosa/metabolismo , Glucólisis , Dureza , Actinas/metabolismo , Actomiosina/metabolismo , Animales , Bronquios/citología , Bovinos , Diferenciación Celular , Línea Celular , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Fosfofructoquinasas/química , Fosfofructoquinasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ribonucleoproteínas/metabolismo , Fibras de Estrés/metabolismo , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
BACKGROUND: Uveal melanoma (UM) is a highly aggressive disease with very few treatment options. We previously demonstrated that mUM is characterized by high oxidative phosphorylation (OXPHOS). Here we tested the anti-tumor, signaling and metabolic effects of imipridones, which are CLPP activators, which inhibit OXPHOS indirectly and have demonstrated safety in patients. METHODS: We assessed CLPP expression in UM patient samples. We tested the effects of imipridones (ONC201 and ONC212) on the growth, survival, signaling and metabolism of UM cell lines in vitro, and for therapeutic efficacy in vivo in UM liver metastasis models. RESULTS: CLPP expression was detected in primary and mUM patient samples. ONC201 and 212 decreased OXPHOS effectors, inhibited cell growth and migration, and induced apoptosis in human UM cell lines in vitro. ONC212 inhibited OXPHOS, increased metabolic stress and apoptotic pathways, inhibited amino acid metabolism, and induced cell death-related lipids. ONC212 also decreased tumor burden and increased survival in vivo in two UM liver metastasis models. CONCLUSIONS: Imipridones are a promising strategy for further testing and development in mUM.
RESUMEN
ABSTRACT: Acral lentiginous melanoma (ALM) is an aggressive type of cutaneous melanoma (CM) that arises on palms, soles, and nail units. ALM is rare in White population, but it is relatively more frequent in dark-skinned populations. There is an unmet need to develop new personalized and more effective treatments strategies for ALM. Increased expression of antiapoptotic proteins (ie, BCL2, MCL1) has been shown to contribute to tumorigenesis and therapeutic resistance in multiple tumor types and has been observed in a subset of ALM and mucosal melanoma cell lines in vivo and in vitro. However, little is known about their expression and clinical significance in patients with ALM. Thus, we assessed protein expression of BCL2, MCL1, BIM, and BRAF V600E by immunohistochemistry in 32 melanoma samples from White and Hispanic populations, including ALM and non-ALM (NALM). BCL2, MCL1, and BIM were expressed in both ALM and NALM tumors, and no significant differences in expression of any of these proteins were detected between the groups, in our relatively small cohort. There were no significant associations between protein expression and BRAF V600E status, overall survival, or ethnicity. In summary, ALM and NALM demonstrate frequent expressions of apoptosis-related proteins BCL2, MCL1, and BIM. Our findings suggest that patients with melanoma, including ALM, may be potential candidates for apoptosis-directed therapies.
Asunto(s)
Apoptosis , Proteína 11 Similar a Bcl2 , Biomarcadores de Tumor , Melanoma , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Proteínas Proto-Oncogénicas c-bcl-2 , Neoplasias Cutáneas , Humanos , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Masculino , Melanoma/patología , Melanoma/genética , Melanoma/metabolismo , Femenino , Persona de Mediana Edad , Anciano , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína 11 Similar a Bcl2/metabolismo , Proteína 11 Similar a Bcl2/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/análisis , Proteínas Proto-Oncogénicas B-raf/genética , Adulto , Inmunohistoquímica , Anciano de 80 o más AñosRESUMEN
Our understanding of the molecular mechanisms underlying postsurgical recurrence of non-small cell lung cancer (NSCLC) is rudimentary. Molecular and T cell repertoire intratumor heterogeneity (ITH) have been reported to be associated with postsurgical relapse; however, how ITH at the cellular level impacts survival is largely unknown. Here we report the analysis of 2880 multispectral images representing 14.2% to 27% of tumor areas from 33 patients with stage I NSCLC, including 17 cases (relapsed within 3 years after surgery) and 16 controls (without recurrence ≥5 years after surgery) using multiplex immunofluorescence. Spatial analysis was conducted to quantify the minimum distance between different cell types and immune cell infiltration around malignant cells. Immune ITH was defined as the variance of immune cells from 3 intratumor regions. We found that tumors from patients having relapsed display different immune biology compared with nonrecurrent tumors, with a higher percentage of tumor cells and macrophages expressing PD-L1 (P =.031 and P =.024, respectively), along with an increase in regulatory T cells (Treg) (P =.018), antigen-experienced T cells (P =.025), and effector-memory T cells (P =.041). Spatial analysis revealed that a higher level of infiltration of PD-L1+ macrophages (CD68+PD-L1+) or antigen-experienced cytotoxic T cells (CD3+CD8+PD-1+) in the tumor was associated with poor overall survival (P =.021 and P =.006, respectively). A higher degree of Treg ITH was associated with inferior recurrence-free survival regardless of tumor mutational burden (P =.022), neoantigen burden (P =.021), genomic ITH (P =.012) and T cell repertoire ITH (P =.001). Using multiregion multiplex immunofluorescence, we characterized ITH at the immune cell level along with whole exome and T cell repertoire sequencing from the same tumor regions. This approach highlights the role of immunoregulatory and coinhibitory signals as well as their spatial distribution and ITH that define the hallmarks of tumor relapse of stage I NSCLC.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Antígeno B7-H1 , Recurrencia Local de Neoplasia/genética , Linfocitos T Citotóxicos/patología , Linfocitos T CD8-positivosRESUMEN
Malignant peripheral nerve sheath tumors (MPNSTs) are soft tissue sarcomas that frequently harbor genetic alterations in polycomb repressor complex 2 (PRC2) components-SUZ12 and EED. Here, we show that PRC2 loss confers a dedifferentiated early neural-crest phenotype which is exclusive to PRC2-mutant MPNSTs and not a feature of neurofibromas. Neural crest phenotype in PRC2 mutant MPNSTs was validated via cross-species comparative analysis using spontaneous and transgenic MPNST models. Systematic chromatin state profiling of the MPNST cells showed extensive epigenomic reprogramming or chromatin states associated with PRC2 loss and identified gains of active enhancer states/super-enhancers on early neural crest regulators in PRC2-mutant conditions around genomic loci that harbored repressed/poised states in PRC2-WT MPNST cells. Consistently, inverse correlation between H3K27me3 loss and H3K27Ac gain was noted in MPNSTs. Epigenetic editing experiments established functional roles for enhancer gains on DLX5-a key regulator of neural crest phenotype. Consistently, blockade of enhancer activity by bromodomain inhibitors specifically suppressed this neural crest phenotype and tumor burden in PRC2-mutant PDXs. Together, these findings reveal accumulation of dedifferentiated neural crest like state in PRC2-mutant MPNSTs that can be targeted by enhancer blockade.
Asunto(s)
Neoplasias de la Vaina del Nervio/tratamiento farmacológico , Neoplasias de la Vaina del Nervio/genética , Neoplasias del Sistema Nervioso Periférico/tratamiento farmacológico , Neoplasias del Sistema Nervioso Periférico/genética , Complejo Represivo Polycomb 2/genética , Animales , Biomarcadores de Tumor , Proteínas de Ciclo Celular/antagonistas & inhibidores , Diferenciación Celular/genética , Línea Celular Tumoral , Perros , Elementos de Facilitación Genéticos/genética , Epigénesis Genética/genética , Proteínas de Homeodominio/genética , Humanos , Ratones , Ratones Transgénicos , Mutación , Neoplasias de la Vaina del Nervio/patología , Cresta Neural/patología , Neoplasias del Sistema Nervioso Periférico/patología , Especificidad de la Especie , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Pez CebraRESUMEN
Resistance to cancer therapy is driven by both cell-intrinsic and microenvironmental factors. Previous work has revealed that multiple resistant cell fates emerge in melanoma following treatment with targeted therapy and that, in vitro, these resistant fates are determined by the transcriptional state of individual cells prior to exposure to treatment. What remains unclear is whether these resistant fates are shared across different genetic backgrounds and how, if at all, these resistant fates interact with the tumor microenvironment. Through spatial transcriptomics and single-cell RNA sequencing, we uncovered distinct resistance programs in melanoma cells shaped by both intrinsic cellular states and the tumor microenvironment. Consensus non-negative matrix factorization revealed shared intrinsic resistance programs across different cell lines, highlighting the presence of universal and unique resistance pathways. In patient samples, we demonstrated that these resistance programs coexist within individual tumors and associate with diverse immune signatures, suggesting that the tumor microenvironment and distribution of resistant fates are closely connected. Single-cell resolution spatial transcriptomics in xenograft models revealed both intrinsically determined and extrinsically influenced resistant fates. Overall, this work demonstrates that each therapy resistant fate coexists with a distinct immune microenvironment in tumors and that, in vivo, tissue features, such as regions of necrosis, can influence which resistant fate is adopted.
RESUMEN
Initially described as a highly specific immunohistochemical marker for carcinomas of mammary origin, trichorhinophalangeal syndrome type 1 (TRPS1) has subsequently been detected in a variety of other non-mammary tumors. In this study, we examined the immunohistochemical expression of TRPS1 in 114 peripheral nerve sheath tumors, including 43 malignant peripheral nerve sheath tumors (MPNSTs), 58 schwannomas, including 9 cellular neurofibromas, and 13 neurofibromas, including 1 atypical neurofibroma. Notably, TRPS1 was expressed in 49% of MPNSTs and was absent in all schwannomas and neurofibromas. All MPNSTs showed TRPS1 labeling in >50% of nuclei, with 95% of cases demonstrating diffuse labeling. Most cases (67%) showed weak TRPS1 immunoreactivity, while a smaller subset showed moderate (24%) or strong (9%) intensity staining. Analysis of publicly available gene expression datasets revealed higher levels of TRPS1 mRNA in MPNSTs with PRC2 inactivation. In keeping with this finding, TRPS1 expression was more commonly observed in MPNSTs with loss of H3K27me3, suggesting a potential relationship between TRPS1 and the PRC2 complex. This study further broadens the spectrum of TRPS1-expressing tumors to include MPNST.
Asunto(s)
Biomarcadores de Tumor , Proteínas de Unión al ADN , Proteínas Represoras , Factores de Transcripción , Humanos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Inmunohistoquímica , Complejo Represivo Polycomb 2 , Histonas/metabolismo , Neurofibroma/patología , Neurofibroma/metabolismo , Femenino , Neurilemoma/patología , Neurilemoma/genética , Neurilemoma/metabolismo , MasculinoRESUMEN
Purpose: Uveal melanoma (UM) is a highly aggressive disease with very few treatment options. We previously demonstrated that mUM is characterized by high oxidative phosphorylation (OXPHOS). Here we tested the anti-tumor, signaling and metabolic effects of imipridones, CLPP activators which reduce OXPHOS indirectly and have demonstrated safety in patients. Experimental Design: We assessed CLPP expression in UM patient samples. We tested the effects of imipridones (ONC201, ONC212) on the growth, survival, signaling and metabolism of UM cell lines in vitro, and for therapeutic effects in vivo in UM liver metastasis models. Results: CLPP expression was confirmed in primary and mUM patient samples. ONC201/212 treatment of UM cell lines in vitro decreased OXPHOS effectors, inhibited cell growth and migration, and induced apoptosis. ONC212 increased metabolic stress and apoptotic pathways, inhibited amino acid metabolism, and induced cell death-related lipids. ONC212 also decreased tumor burden and increased survival in vivo in two UM liver metastasis models. Conclusion: Imipridones are a promising strategy for further testing and development in mUM.
RESUMEN
Granulomatous Mycosis Fungoides (GMF) is a rare form of mycosis fungoides (MF) characterized by a granulomatous infiltrate associated with the neoplastic lymphoid population and is considered to have a worse prognosis compared with regular MF. The upregulation of the T helper (Th) axis, especially Th17, plays an important role in the pathogenesis of several inflammatory/infectious granulomatous cutaneous diseases, but its role in GMF is still not elucidated to date. In this study, we evaluated the immunohistochemical expression of Th1 (Tbet), Th2 (GATA-3), Th17 (RORγT), T regulatory (Foxp3), and immune checkpoint (IC) (PD-1 and PD-L1) markers in a cohort of patients with GMF and MF with large cell transformation (MFLCT). Skin biopsies from 49 patients (28 GMF and 21 MFLCT) were studied. Patients with GMF were associated with early clinical stage (p = 0.036) and lower levels of lactate dehydrogenase (p = 0.042). An increased percentage of cells positive for Tbet (p = 0.017), RORγT (p = 0.001), and PD-L1 (p = 0.011) was also observed among the GMF specimens, while a stronger PD-1 intensity was detected in cases of MFLCT. In this cohort, LCT, RORγT < 10%, Foxp3 < 10%, age, and advanced stage were associated with worse overall survival (OS) in univariate analysis. GMF demonstrated Th1 (cellular response) and Th17 (autoimmunity) phenotype, seen in early MF and granulomatous processes, respectively, which may be related to the histopathological appearance and biological behavior of GMF. Further studies involving larger series of cases and more sensitive techniques are warranted.
Asunto(s)
Micosis Fungoide , Neoplasias Cutáneas , Humanos , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Neoplasias Cutáneas/patología , Antígeno B7-H1/metabolismo , Regulación hacia Arriba , Receptor de Muerte Celular Programada 1/metabolismo , Factor de Maduración de la Glia/metabolismo , Micosis Fungoide/patología , Factores de Transcripción Forkhead/metabolismoRESUMEN
The Wnt receptor ROR1 has generated increased interest as a cancer therapeutic target. Research on several therapeutic approaches involving this receptor is ongoing; however, ROR1 tissue expression remains understudied. We performed an immunohistochemistry analysis of ROR1 protein expression in a large cohort of multiple tumor and histologic types. We analyzed 12 anonymized multi-tumor tissue microarrays (TMAs), including mesothelioma, esophageal and upper gastrointestinal carcinomas, and uterine endometrioid carcinoma, among other tumor types. Additionally, we studied 5 different sarcoma types of TMAs and 6 patient-derived xenografts (PDX) TMAs developed from 19 different anatomic sites and tumor histologic types. A total of 1142 patient cases from different histologic types and 140 PDXs placed in TMAs were evaluated. Pathologists assessed the percentage of tumor cells in each case that were positive for ROR1 and the intensity of staining. For determining the prevalence of staining for each tumor type, a case was considered positive if >1% of its tumor cells showed ROR1 staining. Our immunohistochemistry assays revealed a heterogeneous ROR1 expression profile. A high prevalence of ROR1 expression was found in mesothelioma (84.6%), liposarcoma (36.1%), gastrointestinal stromal tumors (33.3%), and uterine endometrioid carcinoma (28.9%). Other histologic types such as breast, lung, renal cell, hepatocellular, urothelial carcinoma, and colon carcinomas; glioblastoma; cholangiocarcinoma; and leiomyosarcoma showed less ROR1 overall expression, ranging between 0.9 and 13%. No ROR1 expression was seen in mesenchymal chondrosarcoma, rhabdomyosarcoma, or gastric adenocarcinoma cases. Overall, ROR1 expression was relatively infrequent and low in most tumor types investigated; however, ROR1 expression was infrequent but high in selected tumor types, such as gastroesophageal GIST, suggesting that ROR1 prescreening may be preferable for those indications. Further, mesothelioma exhibited frequent and high levels of ROR1 expression, which represents a previously unrecognized therapeutic opportunity. These findings can contribute to the development of ROR1-targeted therapies.
RESUMEN
BACKGROUND: Undifferentiated pleomorphic sarcomas (UPSs) are amongst the most common subtypes of soft-tissue sarcomas. Few real-world data on the use of immune checkpoint blockade (ICB) in UPS patients and other high-grade pleomorphic STS patients are available. PURPOSE: The purpose of our study is to describe the efficacy and toxicity of ICB in patients with advanced UPSs and other high-grade pleomorphic sarcomas treated at our institution. METHODS: This is a retrospective, observational study of all patients with metastatic high-grade pleomorphic sarcomas treated with FDA-approved ICB at MD Anderson Cancer Center between 1 January 2015 and 1 January 2023. Patients included in trials for which results are not yet published were excluded. RESULTS: Thirty-six patients with advanced/metastatic pleomorphic sarcomas were included. The median age was 52 years. A total of 26 patients (72%) had UPSs and 10 patients (28%) had other high-grade pleomorphic sarcomas. The median follow-up time was 8.8 months. The median PFS was 2.9 months. The 3-month PFS and 6-month PFS were 46% and 32%, respectively. The median OS was 12.9 months. The 12-month OS and 24-month OS were 53% and 29%, respectively. The best response, previous RT, and type of ICB treatment were significantly and independently associated with shorter PFS (p = 0.0012, p = 0.0019 and p = 0.036, respectively). No new safety signal was identified, and the toxicity was overall manageable with no toxic deaths and only four patients (11%) stopping treatment due to toxicity. CONCLUSIONS: Real-world retrospective data are consistent with the published literature, with a promising 6-month PFS of 32%. Partial or stable responders to ICB treatment have significantly improved PFS compared to progressors.
RESUMEN
Targeting the DNA damage response (DDR) pathway is an emerging therapeutic approach for leiomyosarcoma (LMS), and loss of RNase H2, a DDR pathway member, is a potentially actionable alteration for DDR-targeted treatments. Therefore, we designed a protein- and genomic-based RNase H2 screening assay to determine its prevalence and prognostic significance. Using a selective RNase H2 antibody on a pan-tumor microarray (TMA), RNase H2 loss was more common in LMS (11.5%, 9/78) than across all tumors (3.8%, 32/843). In a separate LMS cohort, RNase H2 deficiency was confirmed in uterine LMS (U-LMS, 21%, 23/108) and soft-tissue LMS (ST-LMS; 30%, 39/102). In the TCGA database, RNASEH2B homozygous deletions (HomDels) were found in 6% (5/80) of LMS cases, with a higher proportion in U-LMS (15%; 4/27) compared with ST-LMS (2%; 1/53). Using the SNiPDx targeted-NGS sequencing assay to detect biallelic loss of function in select DDR-related genes, we found RNASEH2B HomDels in 54% (19/35) of U-LMS cases with RNase H2 loss by IHC, and 7% (3/43) HomDels in RNase H2 intact cases. No RNASEH2B HomDels were detected in ST-LMS. In U-LMS patient cohort (n = 109), no significant overall survival difference was seen in patients with RNase H2 loss versus intact, or RNASEH2B HomDel (n = 12) versus Non-HomDel (n = 37). The overall diagnostic accuracy, sensitivity, and specificity of RNase H2 IHC for detecting RNA-SEH2B HomDels in U-LMS was 76%, 93%, and 71%, respectively, and it is being developed for future predictive biomarker driven clinical trials targeting DDR in U-LMS.
Asunto(s)
Reparación del ADN , Leiomiosarcoma , Ribonucleasa H , Humanos , Ribonucleasa H/genética , Leiomiosarcoma/genética , Leiomiosarcoma/patología , Leiomiosarcoma/mortalidad , Femenino , Biomarcadores de Tumor/genética , Masculino , Pronóstico , Persona de Mediana Edad , Anciano , Daño del ADNRESUMEN
Recent advances in spatial transcriptomics (ST) techniques provide valuable insights into cellular interactions within the tumor microenvironment (TME). However, most analytical tools lack consideration of histological features and rely on matched single-cell RNA sequencing data, limiting their effectiveness in TME studies. To address this, we introduce the Morphology-Enhanced Spatial Transcriptome Analysis Integrator (METI), an end-to-end framework that maps cancer cells and TME components, stratifies cell types and states, and analyzes cell co-localization. By integrating spatial transcriptomics, cell morphology, and curated gene signatures, METI enhances our understanding of the molecular landscape and cellular interactions within the tissue. We evaluate the performance of METI on ST data generated from various tumor tissues, including gastric, lung, and bladder cancers, as well as premalignant tissues. We also conduct a quantitative comparison of METI with existing clustering and cell deconvolution tools, demonstrating METI's robust and consistent performance.
Asunto(s)
Perfilación de la Expresión Génica , Neoplasias , Transcriptoma , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Perfilación de la Expresión Génica/métodos , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Análisis de la Célula Individual/métodos , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Análisis por ConglomeradosRESUMEN
Based on the demonstrated clinical activity of immune-checkpoint blockade (ICB) in advanced dedifferentiated liposarcoma (DDLPS) and undifferentiated pleomorphic sarcoma (UPS), we conducted a randomized, non-comparative phase 2 trial ( NCT03307616 ) of neoadjuvant nivolumab or nivolumab/ipilimumab in patients with resectable retroperitoneal DDLPS (n = 17) and extremity/truncal UPS (+ concurrent nivolumab/radiation therapy; n = 10). The primary end point of pathologic response (percent hyalinization) was a median of 8.8% in DDLPS and 89% in UPS. Secondary end points were the changes in immune infiltrate, radiographic response, 12- and 24-month relapse-free survival and overall survival. Lower densities of regulatory T cells before treatment were associated with a major pathologic response (hyalinization > 30%). Tumor infiltration by B cells was increased following neoadjuvant treatment and was associated with overall survival in DDLPS. B cell infiltration was associated with higher densities of regulatory T cells before treatment, which was lost upon ICB treatment. Our data demonstrate that neoadjuvant ICB is associated with complex immune changes within the tumor microenvironment in DDLPS and UPS and that neoadjuvant ICB with concurrent radiotherapy has significant efficacy in UPS.
Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Liposarcoma , Terapia Neoadyuvante , Neoplasias Retroperitoneales , Humanos , Liposarcoma/tratamiento farmacológico , Liposarcoma/inmunología , Terapia Neoadyuvante/métodos , Neoplasias Retroperitoneales/tratamiento farmacológico , Neoplasias Retroperitoneales/inmunología , Masculino , Femenino , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Persona de Mediana Edad , Anciano , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Adulto , Sarcoma/terapia , Sarcoma/inmunología , Sarcoma/tratamiento farmacológico , Nivolumab/uso terapéutico , Linfocitos B/inmunología , Linfocitos B/efectos de los fármacosRESUMEN
PURPOSE: Identifying molecular and immune features to guide immune checkpoint inhibitor (ICI)-based regimens remains an unmet clinical need. EXPERIMENTAL DESIGN: Tissue and longitudinal blood specimens from phase III trial S1400I in patients with metastatic squamous non-small cell carcinoma (SqNSCLC) treated with nivolumab monotherapy (nivo) or nivolumab plus ipilimumab (nivo+ipi) were subjected to multi-omics analyses including multiplex immunofluorescence (mIF), nCounter PanCancer Immune Profiling Panel, whole-exome sequencing, and Olink. RESULTS: Higher immune scores from immune gene expression profiling or immune cell infiltration by mIF were associated with response to ICIs and improved survival, except regulatory T cells, which were associated with worse overall survival (OS) for patients receiving nivo+ipi. Immune cell density and closer proximity of CD8+GZB+ T cells to malignant cells were associated with superior progression-free survival and OS. The cold immune landscape of NSCLC was associated with a higher level of chromosomal copy-number variation (CNV) burden. Patients with LRP1B-mutant tumors had a shorter survival than patients with LRP1B-wild-type tumors. Olink assays revealed soluble proteins such as LAMP3 increased in responders while IL6 and CXCL13 increased in nonresponders. Upregulation of serum CXCL13, MMP12, CSF-1, and IL8 were associated with worse survival before radiologic progression. CONCLUSIONS: The frequency, distribution, and clustering of immune cells relative to malignant ones can impact ICI efficacy in patients with SqNSCLC. High CNV burden may contribute to the cold immune microenvironment. Soluble inflammation/immune-related proteins in the blood have the potential to monitor therapeutic benefit from ICI treatment in patients with SqNSCLC.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Nivolumab , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Multiómica , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Inmunoterapia , Pulmón/patología , Células Epiteliales/patología , Ipilimumab/uso terapéutico , Microambiente TumoralRESUMEN
TSC-mutated sarcomas are rare molecular and histologic types of sarcoma. Due to the presence of their specific oncogenic driver mutation, these sarcomas are particularly sensitive to mTOR inhibitors. Recently, nab-sirolimus, an albumin-bound mTOR inhibitor, was approved by the Food and Drug Administration (FDA) for PEComas, which harbor a TSC mutation, and this drug remains the only FDA-approved systemic treatment for these tumors. We report on two cases of patients with TSC-mutated sarcomas who experienced significant responses to the combination of gemcitabine and sirolimus, after progression on prior gemcitabine-based chemotherapy and single agent mTOR inhibition with nab-sirolimus. Preclinical and clinical data support rationale for a synergistic effect of the combination. This combination may represent a valid therapeutic option after failure of nab-sirolimus in these patients, with no standard-of-care treatment options.
RESUMEN
Leiomyosarcoma (LMS) is a rare, aggressive mesenchymal tumor with smooth muscle differentiation. LMS is one of the most common histologic subtypes of soft tissue sarcoma; it most frequently occurs in the extremities, retroperitoneum, or uterus. LMS often demonstrates aggressive tumor biology, with a higher risk of developing distant metastatic disease than most sarcoma histologic types. The prognosis is poor, particularly in patients with uterine disease, and there is a need for the development of more effective therapies. Genetically, LMS is karyotypically complex and characterized by a low tumor mutational burden, with frequent alterations in TP53, RB1, PTEN, and DNA damage response pathways that may contribute to resistance against immune-checkpoint blockade monotherapy. The LMS immune microenvironment is highly infiltrated with tumor-associated macrophages and tumor-infiltrating lymphocytes, which may represent promising biomarkers. This review provides an overview of the clinical and pathologic behavior of both soft tissue and uterine LMS and summarizes the genomic and immune characteristics of these tumors and how they may provide opportunities for the development of biomarker-based immune therapies.
RESUMEN
Treatment strategies with a strong scientific rationale based on specific biomarkers are needed to improve outcomes in patients with advanced sarcomas. Suppression of cell-cycle progression through reactivation of the tumor suppressor retinoblastoma (Rb) using CDK4/6 inhibitors is a potential avenue for novel targeted therapies in sarcomas that harbor intact Rb signaling. Here, we evaluated combination treatment strategies (sequential and concomitant) with the CDK4/6 inhibitor abemacicib to identify optimal combination strategies. Expression of Rb was examined in 1,043 sarcoma tumor specimens, and 50% were found to be Rb-positive. Using in vitro and in vivo models, an effective two-step sequential combination strategy was developed. Abemaciclib was used first to prime Rb-positive sarcoma cells to reversibly arrest in G1 phase. Upon drug removal, cells synchronously traversed to S phase, where a second treatment with S-phase targeted agents (gemcitabine or Wee1 kinase inhibitor) mediated a synergistic response by inducing DNA damage. The response to treatment could be noninvasively monitored using real-time positron emission tomography imaging and serum thymidine kinase activity. Collectively, these results show that a novel, sequential treatment strategy with a CDK4/6 inhibitor followed by a DNA-damaging agent was effective, resulting in synergistic tumor cell killing. This approach can be readily translated into a clinical trial with noninvasive functional imaging and serum biomarkers as indicators of response and cell cycling. SIGNIFICANCE: An innovative sequential therapeutic strategy targeting Rb, followed by treatment with agents that perturb DNA synthesis pathways, results in synergistic killing of Rb-positive sarcomas that can be noninvasively monitored.