Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microbiol Spectr ; : e0320522, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36943047

RESUMEN

The increasing prevalence of antibiotic resistance causes an urgent need for alternative agents to combat drug-resistant bacterial pathogens. Plant-derived compounds are promising candidates for the treatment of infections caused by antibiotic-resistant bacteria. Hinokitiol (ß-thujaplicin), a natural tropolone derivative found in the heartwood of cupressaceous plants, has been widely used in oral and skin care products as an antimicrobial agent. The aim of this work was to study the synergy potential of hinokitiol with antibiotics against Staphylococcus aureus, which is an extremely successful opportunistic pathogen capable of causing nosocomial and community-acquired infections worldwide. The MIC was determined by the broth microdilution method, and the effect of combinations was evaluated through fractional inhibitory concentration indices (FICI). The mechanism behind this synergy was also investigated by using fluorescence spectroscopy and high-performance liquid chromatography (HPLC). The MICs of hinokitiol alone against most S. aureus strains were 32 µg/mL. Selectively synergistic activities (FICIs of ≤0.5) were observed for combinations of this phytochemical with tetracyclines against all tested strains of S. aureus. Importantly, hinokitiol at 1 µg/mL completely or partially reversed tetracycline resistance in staphylococcal isolates. The increased accumulation of tetracycline inside S. aureus in the presence of hinokitiol was observed. In addition, hinokitiol promoted the uptake of ethidium bromide (EB) in bacterial cells without membrane depolarization, suggesting that it may be an efflux pump inhibitor. IMPORTANCE The disease caused by S. aureus is a public health issue due to the continuing emergence of drug-resistant strains, particularly methicillin-resistant S. aureus (MRSA). Tetracyclines, one of the old classes of antimicrobials, have been used for the treatment of infections caused by S. aureus. However, the increased resistance to tetracyclines together with their toxicity have limited their use in the clinic. Here, we demonstrated that the combination of hinokitiol and tetracyclines displayed synergistic antibacterial activity against S. aureus, including tetracycline-resistant strains and MRSA, offering a potential alternative approach for the treatment of infections caused by this bacterium.

2.
Front Nutr ; 9: 1071284, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36698477

RESUMEN

This present study was designed to explore the protective role of Lactobacillus plantarum ZJUIDS14 against Non-alcoholic Fatty Liver Disease (NAFLD) in a high-fat-diet (HFD)-induced C57BL/6 mice model. The probiotic (109 CFU/every other day) was administered by oral gavage for 12 weeks. We found that L. plantarum ZJUIDS14 intervention significantly alleviated HFD related hepatic steatosis, liver damage, insulin resistance, and increased hepatic expression of peroxisome proliferator activated receptor α (PPAR-α) while stimulating the activation of AMP-activated protein kinase (AMPK). Furthermore, L. plantarum ZJUIDS14 improved mitochondrial function as reflected by an increase in dynamin related protein 1 (DRP1) and a decrease of proteins associated with oxidative phosphorylation (OXPHOS) after the treatment. Additionally, mice from the L. plantarum ZJUIDS14 group had a restored intestinal flora and homeostasis involving Coprostanoligenes group, Ruminococcaceae UCG-014, Allobaculum, Ruminiclostridium 1, and Roseburia. Meanwhile, these five genera exhibited a significant (negative or positive) association with ileum inflammation mRNA levels and SCFA contents, by Spearman's correlation analysis. In general, our data demonstrated that L. plantarum ZJUIDS14 mitigates hepatic steatosis and liver damage induced by HFD. Specifically, they strengthened the integrity of the intestinal barrier, regulated gut microbiota, and improved mitochondrial function. Our data provide an experimental basis for L. plantarum ZJUIDS14 as a promising candidate to prevent NAFLD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA