Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
ACS Biomater Sci Eng ; 8(5): 2040-2052, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35468288

RESUMEN

Despite the numerous advantages of PDMS-based substrates in various biomedical applications, they are limited by their highly hydrophobic surface that does not optimally interact with cells for attachment and growth. Hence, the lack of lengthy and straightforward procedures for high-density cell production on the PDMS-based substrate is one of the significant challenges in cell production in the cell therapy field. In this study, we found that the PDMS substrate coated with a combination of polydopamine (PDA) and laminin-511 E8 fragments (PDA + LME8-coated PDMS) can support human-induced pluripotent stem cell (hiPSC) attachment and growth for the long term and satisfy their demands of differentiation into cardiomyocytes (iCMs). Compared with prior studies, the density of hiPSCs and their adhesion time on the PDMS surface were increased during iCM production. Although the differentiated iCMs beat and produce mechanical forces, which disturb cellular attachments, the iCMs on the PDA + LME8-coated PDMS substrate showed dramatically better attachment than the control condition. Further, the substrate required less manipulation by enabling one-step seeding throughout the process in iCM formation from hiPSCs under animal-free conditions. In light of the results achieved, the PDA + LME8-coated PDMS substrate will be an up-and-coming tool for cardiomyocyte production for cell therapy and tissue engineering, microfluidics, and organ-on-chip platforms.


Asunto(s)
Células Madre Pluripotentes Inducidas , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Matriz Extracelular , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos
2.
Sci Rep ; 12(1): 2516, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35169157

RESUMEN

Clinical use of human pluripotent stem cells (hPSCs) is hampered by the technical limitations of their expansion. Here, we developed a chemically synthetic culture substrate for human pluripotent stem cell attachment and maintenance. The substrate comprises a hydrophobic polyvinyl butyral-based polymer (PVB) and a short peptide that enables easy and uniform coating of various types of cell culture ware. The coated ware exhibited thermotolerance, underwater stability and could be stored at room temperature. The substrate supported hPSC expansion in combination with most commercial culture media with an efficiency similar to that of commercial substrates. It supported not only the long-term expansion of examined iPS and ES cell lines with normal karyotypes during their undifferentiated state but also directed differentiation of three germ layers. This substrate resolves major concerns associated with currently used recombinant protein substrates and could be applied in large-scale automated manufacturing; it is suitable for affordable and stable production of clinical-grade hPSCs and hPSC-derived products.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/efectos de los fármacos , Autorrenovación de las Células/efectos de los fármacos , Células Madre Embrionarias Humanas/citología , Células Madre Pluripotentes Inducidas/citología , Péptidos/farmacología , Polivinilos/farmacología , Andamios del Tejido/química , Adhesión Celular/efectos de los fármacos , Línea Celular , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Péptidos/metabolismo , Polivinilos/metabolismo
3.
Sci Rep ; 11(1): 21426, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34728657

RESUMEN

Cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) have received increasing attention for their clinical use. Many protocols induce cardiomyocytes at an initial high cell density (confluence) to utilize cell density effects as hidden factors for cardiomyocyte differentiation. Previously, we established a protocol to induce hiPSC differentiation into cardiomyocytes using a defined culture medium and an initial low cell density (1% confluence) to minimize the hidden factors. Here, we investigated the key factors promoting cardiomyocyte differentiation at an initial low cell density to clarify the effects of cell density. Co-culture of hiPSCs at an initial low cell density with those at an initial high cell density showed that signals secreted from cells (auto/paracrine factors) and not cell-cell contact signals, played an important role in cardiomyocyte differentiation. Moreover, although cultures with initial low cell density showed higher expression of anti-cardiac mesoderm genes, earlier treatment with a Wnt production inhibitor efficiently suppressed the anti-cardiac mesoderm gene expression and promoted cardiomyocyte differentiation by up to 80% at an initial low cell density. These results suggest that the main effect of cell density on cardiomyocyte differentiation is inhibition of Wnt signaling at the early stage of induction, through auto/paracrine factors.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Comunicación Paracrina , Proteínas Wnt/antagonistas & inhibidores , Vía de Señalización Wnt/efectos de los fármacos , Recuento de Células , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo
4.
Pharmaceutics ; 13(9)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34575496

RESUMEN

Cholesterol-rich arterial plaques characterize atherosclerosis, a significant cause of heart disease. Nutraceuticals have received attention over the years, demonstrating potential benefits towards treating and preventing cardiovascular diseases (CVD), including atherosclerosis. Curcumin, a potent polyphenol present in Curcuma longa, has shown remarkable anti-atherosclerotic activity via anti-inflammatory and anti-oxidative properties. The bioavailability and low water solubility of curcumin limit its clinical translational purposes. These issues can be circumvented effectively by nano-drug delivery systems that can target atherosclerotic plaque sites. In this work, we chose to use curcumin and a natural bioenhancer called Bioperine (derived from Piper nigrum) inside a polymeric nano-drug delivery system for targeting atherosclerotic plaque sites. We selected two different ratios of curcumin:Bioperine to study its comparative effect on the inhibition of oxidized low-density lipoprotein (Ox-LDL)-induced foam cell formation. Our studies demonstrated that Cur-Bio PLGA NPs (both ratios) maintained the cell viability in THP-1 monocyte-derived macrophages above 80% at all periods. The 1:0.2:10 ratio of Cur-Bio PLGA NPs at a concentration of 250 µg/mL illustrated an enhanced reduction in the relative cholesterol content in the THP-1-derived foam cells compared to the 1:1:10 ratio. Confocal microscopy analysis also revealed a reduction in macrophage-mediated foam cell formation when administered with both the ratios of Cur-Bio PLGA NPs. Relative fold change in the mRNA expression of the genes involved in the inflammatory pathways in the atherosclerotic process downregulated NF-κB, CCL2/MCP-1, CD-36, and STAT-3 activity while upregulating the SCAR-B1 expression when treated with the Cur-Bio PLGA NPs. This study thus highlights the importance of natural-based compounds towards the therapeutic intervention against atherosclerotic activity when administered as preventive medicine.

5.
Bioengineering (Basel) ; 6(2)2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-31137703

RESUMEN

Transplantation of human pluripotent stem cell (hPSCs)-derived cardiomyocytes for the treatment of heart failure is a promising therapy. In order to implement this therapy requiring numerous cardiomyocytes, substantial production of hPSCs followed by cardiac differentiation seems practical. Conventional methods of culturing hPSCs involve using a 2D culture monolayer that hinders the expansion of hPSCs, thereby limiting their productivity. Advanced culture of hPSCs in 3D aggregates in the suspension overcomes the limitations of 2D culture and attracts immense attention. Although the hPSC production needs to be suitable for subsequent cardiac differentiation, many studies have independently focused on either expansion of hPSCs or cardiac differentiation protocols. In this review, we summarize the recent approaches to expand hPSCs in combination with cardiomyocyte differentiation. A comparison of various suspension culture methods and future prospects for dynamic culture of hPSCs are discussed in this study. Understanding hPSC characteristics in different models of dynamic culture helps to produce numerous cells that are useful for further clinical applications.

6.
In Vitro Cell Dev Biol Anim ; 54(7): 513-522, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29967976

RESUMEN

A high density of human-induced pluripotent stem cells (hiPSCs) improves the efficiency of cardiac differentiation, suggesting the existence of indispensable cell-cell interaction signals. The complexity of interactions among cells at high density hinders the understanding of the roles of cell signals. In this study, we determined the minimum cell density that can initiate differentiation to facilitate cell-cell interaction studies. First, we co-induced cardiac differentiation in the presence of the glycogen synthase kinase-3ß inhibitor CHIR99021 and activin A at various cell densities. At an initial low density, cells died within a few days in RPMI-based medium. We then investigated the culture conditions required to maintain cell viability. We used a basal medium excluding important components for the maintenance of hiPSC pluripotency, including activin A, basic fibroblast growth factor, and insulin. Supplementation of the basal medium with Rho-associated protein kinase inhibitor and insulin improved cell viability. Interestingly, addition of basic fibroblast growth factor enabled the expression of cardiac markers at the mRNA level but not the protein level. After further modification of the culture conditions, 10% of the cells expressed the cardiac troponin T protein, which is associated with cell contraction. The novel protocol for cardiac differentiation at an initial low cell density can also be used to evaluate high cell density conditions. The findings will facilitate the identification of cell signals required for cardiomyocyte formation.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Miocardio/citología , Activinas/farmacología , Animales , Recuento de Células , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Medios de Cultivo/farmacología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Piridinas/farmacología , Pirimidinas/farmacología
7.
J Biosci Bioeng ; 126(3): 379-388, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29681444

RESUMEN

Spatial pattern formation is a critical step in embryogenesis. Bone morphogenetic protein 4 (BMP4) and its inhibitors are major factors for the formation of spatial patterns during embryogenesis. However, spatial patterning of the human embryo is unclear because of ethical issues and isotropic culture environments resulting from conventional culture dishes. Here, we utilized human pluripotent stem cells (hiPSCs) and a simple anisotropic (unidirectional perfusion) culture chamber, which creates unidirectional conditions, to measure the cell community effect. The influence of cell density on BMP4-induced differentiation was explored during static culture using a conventional culture dish. Immunostaining of the early differentiation marker SSEA-1 and the mesendoderm marker BRACHYURY revealed that high cell density suppressed differentiation, with small clusters of differentiated and undifferentiated cells formed. Addition of five-fold higher concentration of BMP4 showed similar results, suggesting that suppression was not caused by depletion of BMP4 but rather by high cell density. Quantitative RT-PCR array analysis showed that BMP4 induced multi-lineage differentiation, which was also suppressed under high-density conditions. We fabricated an elongated perfusion culture chamber, in which proteins were transported unidirectionally, and hiPSCs were cultured with BMP4. At low density, the expression was the same throughout the chamber. However, at high density, SSEA-1 and BRACHYURY were expressed only in upstream cells, suggesting that some autocrine/paracrine factors inhibited the action of BMP4 in downstream cells to form the spatial pattern. Human iPSCs cultured in a perfusion culture chamber might be useful for studying in vitro macroscopic pattern formation in human embryogenesis.


Asunto(s)
Proteína Morfogenética Ósea 4/farmacología , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/efectos de los fármacos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Adhesión Celular/efectos de los fármacos , Recuento de Células , Células Cultivadas , Embrión de Mamíferos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Pluripotentes/efectos de los fármacos , Análisis Espacial , Propiedades de Superficie
8.
PLoS One ; 13(9): e0201960, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30199537

RESUMEN

Gastrulation is the initial systematic deformation of the embryo to form germ layers, which is characterized by the placement of appropriate cells in their destined locations. Thus, gastrulation, which occurs at the beginning of the second month of pregnancy, is a critical stage in human body formation. Although histological analyses indicate that human gastrulation is similar to that of other amniotes (birds and mammals), much of human gastrulation dynamics remain unresolved due to ethical and technical limitations. We used human induced pluripotent stem cells (hiPSCs) to study the migration of mesendodermal cells through the primitive streak to form discoidal germ layers during gastrulation. Immunostaining results showed that hiPSCs differentiated into mesendodermal cells and that epithelial-mesenchymal transition occurred through the activation of the Activin/Nodal and Wnt/beta-catenin pathways. Single-cell time-lapse imaging of cells adhered to cover glass showed that mesendodermal differentiation resulted in the dissociation of cells and an increase in their migration speed, thus confirming the occurrence of epithelial-mesenchymal transition. These results suggest that mesendodermal cells derived from hiPSCs may be used as a model system for studying migration during human gastrulation in vitro. Using random walk analysis, we found that random migration occurred for both undifferentiated hiPSCs and differentiated mesendodermal cells. Two-dimensional random walk simulation showed that homogeneous dissociation of particles may form a discoidal layer, suggesting that random migration might be suitable to effectively disperse cells homogeneously from the primitive streak to form discoidal germ layers during human gastrulation.


Asunto(s)
Movimiento Celular , Células Madre Pluripotentes Inducidas/metabolismo , Mesodermo/metabolismo , Gastrulación , Humanos , Células Madre Pluripotentes Inducidas/citología , Mesodermo/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA