Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 597
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 38(11-12): 569-582, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38997156

RESUMEN

Salivary gland homeostasis and regeneration after radiotherapy depend significantly on progenitor cells. However, the lineage of submandibular gland (SMG) progenitor cells remains less defined compared with other normal organs. Here, using a mouse strain expressing regulated CreERT2 recombinase from the endogenous Tert locus, we identify a distinct telomerase-expressing (TertHigh) cell population located in the ductal region of the adult SMG. These TertHigh cells contribute to ductal cell generation during SMG homeostasis and to both ductal and acinar cell renewal 1 year after radiotherapy. TertHigh cells maintain self-renewal capacity during in vitro culture, exhibit resistance to radiation damage, and demonstrate enhanced proliferative activity after radiation exposure. Similarly, primary human SMG cells with high Tert expression display enhanced cell survival after radiotherapy, and CRISPR-activated Tert in human SMG spheres increases proliferation after radiation. RNA sequencing reveals upregulation of "cell cycling" and "oxidative stress response" pathways in TertHigh cells following radiation. Mechanistically, Tert appears to modulate cell survival through ROS levels in SMG spheres following radiation damage. Our findings highlight the significance of TertHigh cells in salivary gland biology, providing insights into their response to radiotherapy and into their use as a potential target for enhancing salivary gland regeneration after radiotherapy.


Asunto(s)
Homeostasis , Regeneración , Telomerasa , Telomerasa/metabolismo , Telomerasa/genética , Animales , Homeostasis/genética , Homeostasis/efectos de la radiación , Ratones , Regeneración/efectos de la radiación , Regeneración/genética , Humanos , Glándulas Salivales/efectos de la radiación , Glándulas Salivales/metabolismo , Glándulas Salivales/citología , Proliferación Celular/efectos de la radiación , Proliferación Celular/genética , Supervivencia Celular/efectos de la radiación , Supervivencia Celular/genética , Glándula Submandibular/efectos de la radiación , Glándula Submandibular/metabolismo , Células Madre/efectos de la radiación , Células Madre/metabolismo , Células Madre/citología , Radioterapia/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Células Cultivadas
2.
Nature ; 579(7799): 456, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32188947

RESUMEN

A Retraction to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nat Methods ; 19(6): 759-769, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35654951

RESUMEN

Advances in multiplexed in situ imaging are revealing important insights in spatial biology. However, cell type identification remains a major challenge in imaging analysis, with most existing methods involving substantial manual assessment and subjective decisions for thousands of cells. We developed an unsupervised machine learning algorithm, CELESTA, which identifies the cell type of each cell, individually, using the cell's marker expression profile and, when needed, its spatial information. We demonstrate the performance of CELESTA on multiplexed immunofluorescence images of colorectal cancer and head and neck squamous cell carcinoma (HNSCC). Using the cell types identified by CELESTA, we identify tissue architecture associated with lymph node metastasis in HNSCC, and validate our findings in an independent cohort. By coupling our spatial analysis with single-cell RNA-sequencing data on proximal sections of the same specimens, we identify cell-cell crosstalk associated with lymph node metastasis, demonstrating the power of CELESTA to facilitate identification of clinically relevant interactions.


Asunto(s)
Neoplasias de Cabeza y Cuello , Estudios de Cohortes , Humanos , Metástasis Linfática , Carcinoma de Células Escamosas de Cabeza y Cuello
4.
Mol Cell Proteomics ; 22(11): 100647, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37716475

RESUMEN

The NFE2L2 (NRF2) oncogene and transcription factor drives a gene expression program that promotes cancer progression, metabolic reprogramming, immune evasion, and chemoradiation resistance. Patient stratification by NRF2 activity may guide treatment decisions to improve outcome. Here, we developed a mass spectrometry-based targeted proteomics assay based on internal standard-triggered parallel reaction monitoring to quantify 69 NRF2 pathway components and targets, as well as 21 proteins of broad clinical significance in head and neck squamous cell carcinoma (HNSCC). We improved an existing internal standard-triggered parallel reaction monitoring acquisition algorithm, called SureQuant, to increase throughput, sensitivity, and precision. Testing the optimized platform on 27 lung and upper aerodigestive cancer cell models revealed 35 NRF2 responsive proteins. In formalin-fixed paraffin-embedded HNSCCs, NRF2 signaling intensity positively correlated with NRF2-activating mutations and with SOX2 protein expression. Protein markers of T-cell infiltration correlated positively with one another and with human papilloma virus infection status. CDKN2A (p16) protein expression positively correlated with the human papilloma virus oncogenic E7 protein and confirmed the presence of translationally active virus. This work establishes a clinically actionable HNSCC protein biomarker assay capable of quantifying over 600 peptides from frozen or formalin-fixed paraffin-embedded archived tissues in under 90 min.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Infecciones por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Carcinoma de Células Escamosas/metabolismo , Factor 2 Relacionado con NF-E2 , Proteómica , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/metabolismo , Biomarcadores de Tumor/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/uso terapéutico , Formaldehído
5.
Lancet Oncol ; 25(3): 366-375, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38423050

RESUMEN

BACKGROUND: The increased incidence of human papillomavirus (HPV)-related cancers has motivated efforts to optimise treatment for these patients with excellent prognosis. Validation of surrogates for overall survival could expedite the investigation of new therapies. We sought to evaluate candidate intermediate clinical endpoints in trials assessing definitive treatment of p16-positive oropharyngeal cancer with chemotherapy or radiotherapy. METHODS: We did a retrospective review of five multicentre, randomised trials (NRG/RTOG 9003, 0129, 0234, 0522, and 1016) that tested radiotherapy with or without chemotherapy in patients (aged ≥18 years) with p16-positive localised head or neck squamous-cell carcinomas. Eight intermediate clinical endpoints were considered as potential surrogates for overall survival: freedom from local progression, freedom from regional progression, freedom from distant metastasis, freedom from locoregional progression, freedom from any progression, locoregional progression-free survival, progression-free survival, and distant metastasis-free survival. We used a two-stage meta-analytical framework, which requires high correlation between the intermediate clinical endpoint and overall survival at the patient level (condition 1), and high correlation between the treatment effect on the intermediate clinical endpoint and the treatment effect on overall survival (condition 2). For both, an r2 greater than 0·7 was used as criteria for clinically relevant surrogacy. FINDINGS: We analysed 1373 patients with oropharyngeal cancer from May 9, 2020, to Nov 22, 2023. 1231 (90%) of patients were men, 142 (10%) were women, and 1207 (88%) were White, with a median age of 57 years (IQR 51-62). Median follow-up was 4·2 years (3·1-5·1). For the first condition, correlating the intermediate clinical endpoints with overall survival at the individual and trial level, the three composite endpoints of locoregional progression-free survival (Kendall's τ 0·91 and r2 0·72), distant metastasis-free survival (Kendall's τ 0·93 and r2 0·83), and progression-free survival (Kendall's τ 0·88 and r2 0·70) were highly correlated with overall survival at the patient level and at the trial-group level. For the second condition, correlating treatment effects of the intermediate clinical endpoints and overall survival, the composite endpoints of locoregional progression-free survival (r2 0·88), distant metastasis-free survival (r2 0·96), and progression-free survival (r2 0·92) remained strong surrogates. Treatment effects on the remaining intermediate clinical endpoints were less strongly correlated with overall survival. INTERPRETATION: We identified locoregional progression-free survival, distant metastasis-free survival, and progression-free survival as surrogates for overall survival in p16-positive oropharyngeal cancers treated with chemotherapy or radiotherapy, which could serve as clinical trial endpoints. FUNDING: NRG Oncology Operations, NRG Oncology SDMC, the National Cancer Institute, Eli Lilly, Aventis, and the University of Michigan.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Orofaríngeas , Masculino , Humanos , Femenino , Adolescente , Adulto , Persona de Mediana Edad , Neoplasias Orofaríngeas/terapia , Carcinoma de Células Escamosas/terapia , Motivación , Biomarcadores
6.
Exp Eye Res ; 244: 109940, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782178

RESUMEN

Posterior Capsule Opacification (PCO), the most frequent complication of cataract surgery, is caused by the infiltration and proliferation of lens epithelial cells (LECs) at the interface between the intraocular lens (IOL) and posterior lens capsule (PLC). According to the "no space, no cells, no PCO" theory, high affinity (or adhesion force) between the IOL and PLC would decrease the IOL: PLC interface space, hinder LEC migration, and thus reduce PCO formation. To test this hypothesis, an in vitro hemisphere-shaped simulated PLC (sPLC) was made to mimic the human IOL: PLC physical interactions and to assess their influence on LEC responses. Three commercially available IOLs with different affinities/adhesion forces toward the sPLC, including Acrylic foldable IOL, Silicone IOL, and PMMA IOL, were used in this investigation. Using the system, the physical interactions between IOLs and sPLC were quantified by measuring the adhesion force and interface space using an adhesion force apparatus and Optical Coherence Tomography, respectively. Our data shows that high adhesion force and tight binding between IOL and sPLC contribute to a small interface space (or "no space"). By introducing LECs into the in vitro system, we found that, with small interface space, among all IOLs, acrylic foldable IOLs permitted the least extent of LEC infiltration, proliferation, and differentiation (or "no cells"). Further statistical analyses using clinical data revealed that weak LEC responses are associated with low clinical PCO incidence rates (or "no PCO"). The findings support that the in vitro system could simulate IOL: PLC interplays and predict IOLs' PCO potential in support of the "no space, no cells, no PCO" hypothesis.


Asunto(s)
Opacificación Capsular , Células Epiteliales , Lentes Intraoculares , Cápsula Posterior del Cristalino , Células Epiteliales/metabolismo , Humanos , Opacificación Capsular/patología , Cápsula Posterior del Cristalino/patología , Cápsula Posterior del Cristalino/metabolismo , Proliferación Celular/fisiología , Movimiento Celular/fisiología , Células Cultivadas
7.
Urol Int ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38447555

RESUMEN

PURPOSE: Despite the prospective randomized controlled JAVELIN Bladder 100 trial, no real-world evidence exists regarding tumor characteristics, adverse events (AE) and survival of avelumab maintenance (AVM) treated patients with partial/complete response or stable disease after previous platinum-based chemotherapy for advanced/metastatic urothelial carcinoma (mUC). METHODS: We relied on our institutional database to identify mUC patients who received AVM between 01/2021-12/2023. The main outcomes consisted of overall (OS) and progression-free survival (PFS) and were computed by Kaplan-Meier estimates. Stratification was performed according to PD-L1 status. RESULTS: Overall, 24 AVM patients were identified at a median age of 71 (interquartile range [IQR]: 67-76) years of which 67% were males. Of these, 63%, 21% and 17% received AVM therapy for bladder cancer and upper tract urothelial carcinoma or both, respectively. PD-L1 status was positive in 45% of patients. During AVM treatment, AEs were observed in 33% of patients, however, were limited to ≤2 grade AEs. At a median follow-up of eight (IQR 4-20) months, 71% of patients had progressed under AVM with median PFS of 6.2 months (CI: 3.2-18.2). Median OS was 13.4 (CI: 6.9-not reached [NR]) months. One-year OS after AVM was 52%. In PD-L1 positive patients, median PFS and OS were 6.4 (CI: 2.7 - NR) months and 13.4 (CI: 7.7 months - NR), respectively. CONCLUSION: AVM is associated with moderate AE rates. Despite similarities in baseline characteristics compared to trial-selected JAVELIN Bladder 100 mUC patients, AVM resulted in longer/similar PFS but significantly shorter OS in in real-world setting.

8.
Lancet Oncol ; 24(2): 175-186, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36681089

RESUMEN

BACKGROUND: Anaplastic thyroid cancer is a rare and aggressive cancer with no standard radiotherapy-based local treatment. Based on data suggesting synergy between pazopanib and paclitaxel in anaplastic thyroid cancer, NRG Oncology did a double-blind, placebo-controlled, randomised phase 2 clinical trial comparing concurrent paclitaxel and intensity-modulated radiotherapy (IMRT) with the addition of pazopanib or placebo with the aim of improving overall survival in this patient population. METHODS: Eligible patients were aged 18 years or older with a pathological diagnosis of anaplastic thyroid cancer, any TNM stage, Zubrod performance status of 0-2, no recent haemoptysis or bleeding, and no brain metastases. Patients were enrolled from 34 centres in the USA. Initially, a run-in was done to establish safety. In the randomised phase 2 trial, patients in the experimental group (pazopanib) received 2-3 weeks of weekly paclitaxel (80 mg/m2) intravenously and daily pazopanib suspension 400 mg orally followed by concurrent weekly paclitaxel (50 mg/m2), daily pazopanib (300 mg), and IMRT 66 Gy given in 33 daily fractions (2 Gy fractions). In the control group (placebo), pazopanib was replaced by matching placebo. Patients were randomly assigned (1:1) to the two treatment groups by permuted block randomisation by NRG Oncology with stratification by metastatic disease. All investigators, patients, and funders of the study were masked to group allocation. The primary endpoint was overall survival in the intention-to-treat population. Safety was assessed in all patients who received at least one dose of study treatment. This trial is registered with Clinicaltrials.gov, NCT01236547, and is complete. FINDINGS: The safety run-showed the final dosing regimen to be safe based on two out of nine participants having adverse events of predefined concern. Between June 23, 2014, and Dec 30, 2016, 89 patients were enrolled to the phase 2 trial, of whom 71 were eligible (36 in the pazopanib group and 35 in the placebo group; 34 [48%] males and 37 [52%] females). At the final analysis (data cutoff March 9, 2020), with a median follow-up of 2·9 years (IQR 0·002-4·0), 61 patients had died. Overall survival was not significantly improved with pazopanib versus placebo, with a median overall survival of 5·7 months (95% CI 4·0-12·8) in the pazopanib group versus 7·3 months (4·3-10·6) in the placebo group (hazard ratio 0·86, 95% CI 0·52-1·43; one-sided log-rank p=0·28). 1-year overall survival was 37·1% (95% CI 21·1-53·2) in the pazopanib group and 29·0% (13·2-44·8) in the placebo group. The incidence of grade 3-5 adverse events did not differ significantly between the treatment groups (pazopanib 88·9% [32 of 36 patients] and placebo 85·3% [29 of 34 patients]; p=0·73). The most common clinically significant grade 3-4 adverse events in the 70 eligible treated patients (36 in the pazopanib group and 34 in the placebo group) were dysphagia (13 [36%] vs 10 [29%]), radiation dermatitis (8 [22%] vs 13 [38%]), increased alanine aminotransferase (12 [33%] vs none), increased aspartate aminotransferase (eight [22%] vs none), and oral mucositis (five [14%] vs eight [24%]). Treatment-related serious adverse events were reported for 16 (44%) patients on pazopanib and 12 (35%) patients on placebo. The most common serious adverse events were dehydration and thromboembolic event (three [8%] each) in patients on pazopanib and oral mucositis (three [8%]) in those on placebo. There was one treatment-related death in each group (sepsis in the pazopanib group and pneumonitis in the placebo group). INTERPRETATION: To our knowledge, this study is the largest randomised anaplastic thyroid cancer study that has completed accrual showing feasibility in a multicenter NCI National Clinical Trials Network setting. Although no significant improvement in overall survival was recorded in the pazopanib group, the treatment combination was shown to be feasible and safe, and hypothesis-generating data that might warrant further investigation were generated. FUNDING: National Cancer Institute and Novartis.


Asunto(s)
Quimioradioterapia , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Femenino , Humanos , Masculino , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Método Doble Ciego , Paclitaxel/efectos adversos , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Carcinoma Anaplásico de Tiroides/terapia , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/radioterapia
9.
J Biochem Mol Toxicol ; 37(10): e23447, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37368822

RESUMEN

Triclosan has been widely used as an antimicrobial agent. However, triclosan was found to cause toxicity, including muscle contraction disturbances, carcinogenesis, and endocrine disorders. In addition, it was found to affect central nervous system function adversely and even have ototoxic effects. Conventional methods for detecting such triclosan can be performed easily. However, the conventional detection methods are inadequate in precisely reflecting the impact of toxic substances on stressed organisms. Therefore, a test model for the toxic environment at the molecular level through the organism is needed. From that point of view, Daphnia magna is being used as a ubiquitous model. D. magna has the advantages of easy cultivation, a short lifespan and high reproductive capacity, and high sensitivity to chemicals. Therefore, the protein expression pattern of D. magna that appear in response to chemicals can be utilized as biomarkers for detecting specific chemicals. In this study, we characterized the proteomic response of D. magna following triclosan exposure via two-dimensional (2D) gel electrophoresis. As a result, we confirmed that triclosan exposure completely suppressed D. magna 2-domain hemoglobin protein and evaluated this protein as a biomarker for triclosan detection. We constructed the HeLa cells in which the GFP gene was controlled by D. magna 2-domain hemoglobin promoter, which under normal conditions, expressed GFP, but upon triclosan exposure, suppressed GFP expression. Consequently, we consider that the HeLa cells containing the pBABE-HBF3-GFP plasmid developed in this study can be used as novel biomarkers for triclosan detection.


Asunto(s)
Triclosán , Contaminantes Químicos del Agua , Animales , Humanos , Triclosán/toxicidad , Daphnia/genética , Daphnia/metabolismo , Células HeLa , Proteómica , Contaminantes Químicos del Agua/farmacología , Hemoglobinas/metabolismo , Biomarcadores/metabolismo
10.
Environ Res ; 236(Pt 2): 116825, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37544467

RESUMEN

Endocrine Disrupting Chemicals (EDCs) are harmful compounds that enter the environment naturally or through anthropogenic activities and disrupt normal endocrine functions in humans, adversely affecting reproductive health. Among the most significant sources of EDC contaminants are the pharmaceutical, cosmetic, and packaging industries. EDCs have been identified to have a deteriorating effect on male reproductive system, as evidenced by the increasing number of male infertility cases. A large number of case studies have been published in which men exposed to EDCs experienced testicular cancer, undescended testicles, a decrease in serum testosterone levels, and poor semen quality. Furthermore, epidemiological evidence suggested a link between prenatal EDC exposure and cryptorchidism or undescended testicles, hypospadias, and decreased anogenital distance in infants. The majority of these findings, however, are incongruent due to the lack of long-term follow-up studies that would demonstrate EDCs to be associated with male reproductive disorders. This review aims to provide an overview on recent scientific progress on the association of EDCs to male reproductive health with special emphasis on its toxicity and possible mechanism of EDCs that disrupt male reproductive system.


Asunto(s)
Criptorquidismo , Disruptores Endocrinos , Neoplasias Testiculares , Embarazo , Lactante , Femenino , Humanos , Masculino , Disruptores Endocrinos/toxicidad , Análisis de Semen , Salud Reproductiva , Criptorquidismo/inducido químicamente , Criptorquidismo/epidemiología
11.
Environ Res ; 238(Pt 1): 117118, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37704075

RESUMEN

A biofilm consists of Gram positive and Gram-negative bacteria enclosed in a matrix. Industrial biofouling is caused by biofilms, which can exhibit antimicrobial resistance during infections. Many biofilm studies find that nearly all biofilm communities consist of Gram positive and Gram-negative bacteria. It is therefore necessary to better understand the conserved themes in biofilm formation to develop therapeutics based on biofilm formation. Plant extracts can effectively combat pathogenic bacterial biofilms. This study evaluated the antibacterial and antibiofilm activity of Aerva lanata flower extract against Staphylococcus aureus and Pseudomonas aeruginosa. Methanol extract of dried A. lanata flower was tested against S. aureus and P. aeruginosa to determine the antibacterial activity (10, 25, 50, 75, 100 µg/mL) resulted in a maximum of 0.5-1 log reduction and 2 log reduction in comparison to the control or untreated bacterial cells respectively. A. lanata showed maximum biofilm inhibition up to 1.5-fold and 1-fold against P. aeruginosa and S. aureus. Light microscopic analysis of biofilm treated with A. lanata extract showed efficient distortion of the biofilm matrix. Further, the in vivo analysis of A. lanata in the Artemia salina brine shrimp model showed >50% survival and thus proving the efficacy of A. lanata extract in rescuing the brine shrimps against P. aeruginosa and S. aureus infection.


Asunto(s)
Artemia , Staphylococcus aureus , Animales , Antibacterianos/farmacología , Bacterias Grampositivas , Bacterias , Bacterias Gramnegativas , Extractos Vegetales/farmacología , Flores , Biopelículas , Pruebas de Sensibilidad Microbiana
12.
Environ Res ; 236(Pt 2): 116849, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37558116

RESUMEN

The foremost challenge in farming is the storage of seeds after harvest and maintaining seed quality during storage. In agriculture, studies showed positive impacts of nanotechnology on plant development, seed storage, endurance under various types of stress, detection of seed damages, and seed quality. Seed's response varies with different types of nanoparticles depending on its physical and biochemical properties and plant species. Herein, we aim to cover the impact of nanoparticles on seed coating, dormancy, germination, seedling, nutrition, plant growth, stress conditions protection, and storage. Although the seed treatment by nanopriming has been shown to improve seed germination, seedling development, stress tolerance, and seedling growth, their full potential was not realized at the field level. Sustainable nano-agrochemicals and technology could provide good seed quality with less environmental toxicity. The present review critically discusses eco-friendly strategies that can be employed for the nanomaterial seed treatment and seed enhancement process to increase seedling vigor under different conditions. Also, an integrated approach involving four innovative concepts, namely green co-priming, nano-recycling of agricultural wastes, nano-pairing, and customized nanocontainer storage, has been proposed to acclimatize nanotechnology in farming.

13.
Environ Res ; 237(Pt 2): 117005, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37669733

RESUMEN

Water pollution is the major problem seen in today's scenario and even pollutants at low concentration harms our environment. In industrial sector usage of phenol is seen even at low concentrations. The interaction of phenol in the environment provides adverse effects to living beings. This review focuses on the toxicity of phenol and its impact towards environment and human health. The treatment techniques such as distillation, extraction, wet air oxidation, membrane process, electrochemical oxidation, biological treatment and finally adsorption techniques were discussed. Among many treatment techniques so far utilized in the treatment of phenol, adsorption was considered as one of the best technique due to its advantages such as reusability, ease in operation, large availability etc., This review also highlights the adsorption technique for the cleaner removal of phenol from aqueous solution with novel as well as low-cost adsorbents in the removal of phenolic compounds. This review also discusses about the drawbacks and issues related with adsorption of phenolic compounds.

14.
Environ Res ; 236(Pt 1): 116718, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37481060

RESUMEN

In ancient times, herbal plants were considered one of the greatest gifts from nature that human beings could receive, and about 80% of these plants have medicinal uses. In traditional medicine, Mentha arvensis, commonly known as mint, has many applications, and in the present study, the mint leaf extract has been used to synthesis nanoparticles using the mint leaf extract as a biosource for the extraction of nanoparticles. In addition to having a wide range of applications in various fields, calcium oxide (CaO) nanoparticles are also considered to be safe for human use. In order to assess the characteristics of the abstracted CaO nanoparticles, UV-visible absorption spectrophotometers, Fourier Transform Infrared spectrophotometers (FTIR), Scanning Electron Microscopes (SEMs), Dynamic Light Scattering (DLS), and X-ray Diffraction Spectrophotometers (XRDs) were used. By conducting a protein denaturation assay and nitric oxide scavenging assay, mint leaf mediated CaO nanoparticles were evaluated for their therapeutic applications. MTT assays were used to prove that the CaO nanoparticles mediated by mint leaf had anti-cancer properties. By examining the ability of mint leaf mediated CaO nanoparticles to degrade various dyes such as methyl red, methyl orange, and methylene blue, which are the most used azo dyes in textile industries resulting in water contamination, the ability of these nanoparticles to act as a photocatalytic agent was examined.


Asunto(s)
Mentha , Nanopartículas del Metal , Nanopartículas , Humanos , Extractos Vegetales/farmacología , Colorantes , Difracción de Rayos X , Antiinflamatorios , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos
15.
Environ Res ; 236(Pt 1): 116747, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37500035

RESUMEN

In the present study, cobalt oxide nanoparticles have been synthesized using the root extract of Curcuma longa in a manner that is both environmentally friendly and economical. Initially, the synthesized nanoparticles were characterized using a UV-Vis spectroscopy analysis, in which plasma resonance at 345 nm was observed, which confirmed that CL-Cobalt oxide nanoparticles were synthesized. While FTIR analysis showed a peak at 597.37 cm-1 indicating Co-O stretching vibration. In addition, DLS, SEM and XRD analyses confirmed the synthesis of polydispersed (average size distribution of 97.5 ± 35.1 nm), cubic phase structure, and spherical-shaped CL-Cobalt oxide nanoparticles. CL-Cobalt oxide nanoparticles synthesized from green materials showed antioxidant and antimicrobial properties. CL-Cobalt oxide nanoparticles exhibited antibacterial activity against Gram negative (Klebsiella pneumoniae and Escherichia coli) and Gram positive bacteria (Bacillus subtilis, Staphylococcus aureus), while CL-Cobalt oxide nanoparticles additionally displayed significant antifungal activity against Aspergillus niger. CL-Cobalt oxide also showed application in a bioremediation perspective by showing strong photocatalytic degradation of methyl red, methyl orange and methyl blue dye. In addition, CL-Cobalt oxide also demonstrated anticancer activity against MDA-MB-468 cancer cell lines with an IC50 value of 150.8 µg/ml. Therefore, this is the first and foremost report on CL-Cobalt oxide nanoparticles synthesized using Curcuma longa showing antioxidant, antibacterial, antifungal, dye degradation and anticancer applications.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Antioxidantes/farmacología , Antifúngicos , Curcuma , Nanopartículas del Metal/química , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier
16.
Environ Res ; 237(Pt 1): 116944, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37611785

RESUMEN

Complexity of wastewater is the most challenging phenomenon on successful degradation of pollutant via any wastewater treatment regime. Upon availability of numerous techniques, Advanced Oxidation Processes (AOP) is the most promising technique for treating industrial wastewater. Higher operating cost is the most promising factor that possess challenge for the industrial scale usage of the AOP process. Combination of biological process with AOP helps in achieving sustainable degradation of toxic pollutant in the wastewater. AOP result in complete or partial degradation of toxic emerging pollutants with the help of free radicals like hydroxyl, superoxide, hydroperoxyl and sulphate radicals. In addition to this the presence of bio-enzymes and microorganisms helps in sustainable degradation of pollutant in an economical and environmentally friendly strategy. In this review, a detailed discussion was conducted on various AOP, focusing on catalytic ozonation, electrochemical oxidation, Sono chemical and photocatalytic processes. With the need for sustainable solutions for wastewater treatment, the use of AOP in conjunction with biological process has innumerous opportunities for not only wastewater treatment but also the production of high value by-products. Further, the effect of AOP combined biological processes needs to be analyzed in real time for the different concentration of industrial wastewater and their benefits needs to be explored in future towards achieving SDGs.

17.
Environ Res ; 232: 116263, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37247655

RESUMEN

This study explores the challenges facing microalgae biofuel production, specifically low lipid content and difficulties with algal cell harvesting. The purpose of the research is to investigate the effect of seawater content and nanoparticle concentration on freshwater microalgae growth and biofuel production. The principal results of the study show that increasing the proportion of seawater and nanoparticles enhances the lipid content and cell diameter of microalgae, while excessive concentrations of nanoparticles and low seawater content lead to reduced microalgae growth. Furthermore, an optimal cell diameter was identified at a nanoparticle concentration of 150 mg/L. The study also reveals that increasing seawater content can decrease zeta potential and increase chlorophyll a content due to the concentration of dissolved organic matter. Increasing the seawater content from 0% to 25% decreased zeta potential by 1% owing to the instability and aggregation of the cells. Chlorophyll a for the 0% seawater was 0.55 which is increased to 1.32 only due to the increase in the seawater content. This significant increase is due to the concentration of dissolved organic matter in seawater. Additionally, the presence of seawater positively affects microalgae metabolic activity and biochar yield. The findings of this study offer valuable insights into the potential for optimizing microalgae biofuel production. The use of seawater and nanoparticles has shown promise in enhancing microalgae growth and biofuel yield, and the results of this study underscore the scientific value of exploring the role of seawater and nanoparticles in microalgae biofuel production. Further research in this area has the potential to significantly contribute to the development of sustainable energy solutions.


Asunto(s)
Chlorella , Microalgas , Nanopartículas , Chlorella/metabolismo , Clorofila A/metabolismo , Biocombustibles , Materia Orgánica Disuelta , Agua de Mar , Lípidos , Biomasa
18.
J Nanobiotechnology ; 21(1): 405, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919778

RESUMEN

Chronic Kidney Disease (CKD) which involves gradual loss of kidney function is characterized by low levels of a glycoprotein called Erythropoietin (EPO) that leads to red blood cell  deficiency and anemia. Recombinant human EPO (rhEPO) injections that are administered intravenously or subcutaneously is the current gold standard for treating CKD. The rhEPO injections have very short half-lives and thus demands frequent administration with a risk of high endogenous EPO levels leading to severe side effects that could prove fatal. To this effect, this work provides a novel approach of using lamellar inorganic solids with a brucite-like structure for controlling the release of protein therapeutics such as rhEPO in injectable hydrogels. The nanoengineered injectable system was formulated by incorporating two-dimensional layered double hydroxide (LDH) clay materials with a high surface area into alginate hydrogels for sustained delivery. The inclusion of LDH in the hydrogel network not only improved the mechanical properties of the hydrogels (5-30 times that of alginate hydrogel) but also exhibited a high binding affinity to proteins without altering their bioactivity and conformation. Furthermore, the nanoengineered injectable hydrogels (INHs) demonstrated quick gelation, injectability, and excellent adhesion properties on human skin. The in vitro release test of EPO from conventional alginate hydrogels (Alg-Gel) showed 86% EPO release within 108 h while INHs showed greater control over the initial burst and released only 24% of EPO in the same incubation time. INH-based ink was successfully used for 3D printing, resulting in scaffolds with good shape fidelity and stability in cell culture media. Controlled release of EPO from INHs facilitated superior angiogenic potential in ovo (chick chorioallantoic membrane) compared to Alg-Gel. When subcutaneously implanted in albino mice, the INHs formed a stable gel in vivo without inducing any adverse effects. The results suggest that the proposed INHs in this study can be utilized as a minimally invasive injectable platform or as 3D printed patches for the delivery of protein therapeutics to facilitate tissue regeneration.


Asunto(s)
Hidrogeles , Insuficiencia Renal Crónica , Ratones , Animales , Humanos , Hidrogeles/química , Ingeniería de Tejidos/métodos , Preparaciones de Acción Retardada/farmacología , Alginatos/química , Hidróxidos
19.
Ecotoxicol Environ Saf ; 254: 114735, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36907088

RESUMEN

Salmonella is a well-known bacterium that causes waterborne diseases in humans and primates. The need for test models to detect such pathogens and study the responses of such organisms to induced toxic environments is vital. Daphnia magna has been ubiquitously used in aquatic life monitoring for decades because of outstanding properties, such as facile cultivation, short lifespan, and high reproductive capacity. In this study, the proteomic response of D. magna exposed to four Salmonella strains (Salmonella dublin, Salmonella enteritidis, Salmonella enterica, and Salmonella typhimurium) was characterized. As indicated by two-dimensional gel electrophoresis, vitellogenin fused with superoxide dismutase was completely suppressed under exposure to S. dublin. Thus, we evaluated the feasibility of using the vitellogenin 2 gene as a biomarker for S. dublin detection, particularly in providing rapid, visual detection through fluorescent signals. Accordingly, the applicability of the HeLa cells transfected with pBABE-Vtg2B-H2B-GFP as a biomarker for the detection of S. dublin was evaluated, and it was confirmed that the fluorescence signal decreased only when S. dublin was treated. Therefore, such HeLa cells can be utilized as a novel biomarker for detecting S. dublin.


Asunto(s)
Daphnia , Vitelogeninas , Animales , Humanos , Daphnia/genética , Vitelogeninas/genética , Células HeLa , Proteómica , Salmonella typhimurium/genética
20.
J Asian Nat Prod Res ; : 1-11, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37889019

RESUMEN

Alkaloids are among the most important and best-known secondary metabolites as sources of new drugs from medicinal plants and marine organisms. A phytochemical investigation of the whole plant of Crinum asiaticum var. sinicum resulted in the isolation of seven alkaloids (1-7), including one new dimeric compound, bis-(-)-8-demethylmaritidine (1). Their structures were elucidated using NMR and HR-ESI-MS. The absolute configuration of new compound 1 was established by circular dichroism spectroscopy. All isolated compounds were evaluated for their inhibitory effects on acetylcholinesterase (AChE) activity in vitro. Among them, compound 1 exhibited the most potent AChE inhibition. Moreover, molecular docking and molecular dynamics simulations were carried out for the most active compound to investigate their binding interactions and dynamics behavior of the AChE protein-ligand complex. Therefore, compound 1 may be a potential candidate for effectively treating Alzheimer's disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA