RESUMEN
Current adeno-associated virus (AAV) gene therapy using nature-derived AAVs is limited by non-optimal tissue targeting. In the treatment of muscular diseases (MD), high doses are often required but can lead to severe adverse effects. Here, we rationally design an AAV capsid that specifically targets skeletal muscle to lower treatment doses. We computationally integrate binding motifs of human integrin alphaV beta6, a skeletal muscle receptor, into a liver-detargeting capsid. Designed AAVs show higher productivity and superior muscle transduction compared to their parent. One variant, LICA1, demonstrates comparable muscle transduction to other myotropic AAVs with reduced liver targeting. LICA1's myotropic properties are observed across species, including non-human primate. Consequently, LICA1, but not AAV9, effectively delivers therapeutic transgenes and improved muscle functionality in two mouse MD models (male mice) at a low dose (5E12 vg/kg). These results underline the potential of our design method for AAV engineering and LICA1 variant for MD gene therapy.
Asunto(s)
Dependovirus , Terapia Genética , Músculo Esquelético , Dependovirus/genética , Animales , Humanos , Músculo Esquelético/metabolismo , Ratones , Terapia Genética/métodos , Masculino , Vectores Genéticos/genética , Integrinas/metabolismo , Integrinas/genética , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Enfermedades Musculares/terapia , Enfermedades Musculares/genética , Transducción Genética , Hígado/metabolismo , Cápside/metabolismo , Receptores de Vitronectina/metabolismo , Receptores de Vitronectina/genética , Modelos Animales de Enfermedad , Células HEK293 , Transgenes , Ratones Endogámicos C57BL , Antígenos de NeoplasiasRESUMEN
Glycogen storage disease type III (GSDIII) is a rare metabolic disorder due to glycogen debranching enzyme (GDE) deficiency. Reduced GDE activity leads to pathological glycogen accumulation responsible for impaired hepatic metabolism and muscle weakness. To date, there is no curative treatment for GSDIII. We previously reported that 2 distinct dual AAV vectors encoding for GDE were needed to correct liver and muscle in a GSDIII mouse model. Here, we evaluated the efficacy of rapamycin in combination with AAV gene therapy. Simultaneous treatment with rapamycin and a potentially novel dual AAV vector expressing GDE in the liver and muscle resulted in a synergic effect demonstrated at biochemical and functional levels. Transcriptomic analysis confirmed synergy and suggested a putative mechanism based on the correction of lysosomal impairment. In GSDIII mice livers, dual AAV gene therapy combined with rapamycin reduced the effect of the immune response to AAV observed in this disease model. These data provide proof of concept of an approach exploiting the combination of gene therapy and rapamycin to improve efficacy and safety and to support clinical translation.
Asunto(s)
Dependovirus , Modelos Animales de Enfermedad , Terapia Genética , Vectores Genéticos , Hígado , Sirolimus , Animales , Sirolimus/farmacología , Sirolimus/uso terapéutico , Dependovirus/genética , Terapia Genética/métodos , Ratones , Hígado/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Músculo Esquelético/metabolismo , Fenotipo , Sistema de la Enzima Desramificadora del Glucógeno/genética , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Humanos , MasculinoRESUMEN
Gene therapy of Usher syndrome type 1B (USH1B) due to mutations in the large Myosin VIIA (MYO7A) gene is limited by the packaging capacity of adeno-associated viral (AAV) vectors. To overcome this, we have previously developed dual AAV8 vectors which encode human MYO7A (dual AAV8.MYO7A). Here we show that subretinal administration of 1.37E+9 to 1.37E+10 genome copies of a good-manufacturing-practice-like lot of dual AAV8.MYO7A improves the retinal defects of a mouse model of USH1B. The same lot was used in non-human primates at doses 1.6× and 4.3× the highest dose proposed for the clinical trial which was based on mouse efficacy data. Long-lasting alterations in retinal function and morphology were observed following subretinal administration of dual AAV8.MYO7A at the high dose. These findings were modest and improved over time in the low-dose group, as also observed in other studies involving the use of AAV8 in non-human primates and humans. Biodistribution and shedding studies confirmed the presence of vector DNA mainly in the visual pathway. Accordingly, we detected human MYO7A mRNA expression predominantly in the retina. Overall, these studies pave the way for the clinical translation of subretinal administration of dual AAV vectors in USH1B subjects.
RESUMEN
BACKGROUND: Mucopolysaccharidosis type VI (MPS VI) is an inherited multisystem lysosomal disorder due to arylsulfatase B (ARSB) deficiency that leads to widespread accumulation of glycosaminoglycans (GAG), which are excreted in increased amounts in urine. MPS VI is characterized by progressive dysostosis multiplex, connective tissue and cardiac involvement, and hepatosplenomegaly. Enzyme replacement therapy (ERT) is available but requires life-long and costly intravenous infusions; moreover, it has limited efficacy on diseased skeleton and cardiac valves, compromised pulmonary function, and corneal opacities. METHODS: We enrolled nine patients with MPS VI 4 years of age or older in a phase 1/2 open-label gene therapy study. After ERT was interrupted, patients each received a single intravenous infusion of an adeno-associated viral vector serotype 8 expressing ARSB. Participants were sequentially enrolled in one of three dose cohorts: low (three patients), intermediate (two patients), or high (four patients). The primary outcome was safety; biochemical and clinical end points were secondary outcomes. RESULTS: The infusions occurred without severe adverse events attributable to the vector, meeting the prespecified end point. Participants in the low and intermediate dose cohorts displayed stable serum ARSB of approximately 20% of the mean healthy value but returned to ERT by 14 months after gene therapy because of increased urinary GAG. Participants in the high-dose cohort had sustained serum ARSB of 30% to 100% of the mean healthy value and a modest urinary GAG increase that did not reach a concentration at which ERT reintroduction was needed. In the high-dose group, there was no clinical deterioration for up to 2 years after gene therapy. CONCLUSIONS: Liver-directed gene therapy for participants with MPS VI did not have a dose-limiting side-effect and adverse event profile; high-dose treatment resulted in ARSB expression over at least 24 months with preliminary evidence of disease stabilization. (Funded by the Telethon Foundation ETS, the European Commission Seventh Framework Programme, and the Isaac Foundation; ClinicalTrials.gov number, NCT03173521; EudraCT number, 2016-002328-10.)