Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 155(3): 594-605, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24243017

RESUMEN

Nuclear export of unspliced and singly spliced viral mRNA is a critical step in the HIV life cycle. The structural basis by which the virus selects its own mRNA among more abundant host cellular RNAs for export has been a mystery for more than 25 years. Here, we describe an unusual topological structure that the virus uses to recognize its own mRNA. The viral Rev response element (RRE) adopts an "A"-like structure in which the two legs constitute two tracks of binding sites for the viral Rev protein and position the two primary known Rev-binding sites ~55 Å apart, matching the distance between the two RNA-binding motifs in the Rev dimer. Both the legs of the "A" and the separation between them are required for optimal RRE function. This structure accounts for the specificity of Rev for the RRE and thus the specific recognition of the viral RNA.


Asunto(s)
Transporte Activo de Núcleo Celular , VIH-1/química , ARN Mensajero/química , ARN Viral/química , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/química , Secuencia de Bases , Sitios de Unión , Núcleo Celular/metabolismo , Células HEK293 , VIH-1/genética , Humanos , Datos de Secuencia Molecular , Poro Nuclear/metabolismo , Conformación de Ácido Nucleico , Pliegue del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/metabolismo
2.
Nucleic Acids Res ; 49(6): e35, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33406226

RESUMEN

Just as eukaryotic circular RNA (circRNA) is a product of intracellular backsplicing, custom circRNA can be synthesized in vitro using a transcription template in which transposed halves of a split group I intron flank the sequence of the RNA to be circularized. Such permuted intron-exon (PIE) constructs have been used to produce circRNA versions of ribozymes, mimics of viral RNA motifs, a streptavidin aptamer, and protein expression vectors for genetic engineering and vaccine development. One limitation of this approach is the obligatory incorporation of small RNA segments (E1 and E2) into nascent circRNA at the site of end-joining. This restriction may preclude synthesis of small circRNA therapeutics and RNA nanoparticles that are sensitive to extraneous sequence, as well as larger circRNA mimics whose sequences must precisely match those of the native species on which they are modelled. In this work, we used serial mutagenesis and in vitro selection to determine how varying E1 and E2 sequences in a thymidylate synthase (td) group I intron PIE transcription template construct affects circRNA synthesis yield. Based on our collective findings, we present guidelines for the design of custom-tailored PIE transcription templates from which synthetic circRNAs of almost any sequence may be efficiently synthesized.


Asunto(s)
ARN Circular/síntesis química , Secuencia de Bases , Exones , Humanos , Intrones , Mutagénesis , Mutación , Conformación de Ácido Nucleico , ARN Circular/química
3.
Nucleic Acids Res ; 49(22): 13179-13193, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34871450

RESUMEN

Cellular and virus-coded long non-coding (lnc) RNAs support multiple roles related to biological and pathological processes. Several lncRNAs sequester their 3' termini to evade cellular degradation machinery, thereby supporting disease progression. An intramolecular triplex involving the lncRNA 3' terminus, the element for nuclear expression (ENE), stabilizes RNA transcripts and promotes persistent function. Therefore, such ENE triplexes, as presented here in Kaposi's sarcoma-associated herpesvirus (KSHV) polyadenylated nuclear (PAN) lncRNA, represent targets for therapeutic development. Towards identifying novel ligands targeting the PAN ENE triplex, we screened a library of immobilized small molecules and identified several triplex-binding chemotypes, the tightest of which exhibits micromolar binding affinity. Combined biophysical, biochemical, and computational strategies localized ligand binding to a platform created near a dinucleotide bulge at the base of the triplex. Crystal structures of apo (3.3 Å) and ligand-soaked (2.5 Å) ENE triplexes, which include a stabilizing basal duplex, indicate significant local structural rearrangements within this dinucleotide bulge. MD simulations and a modified nucleoside analog interference technique corroborate the role of the bulge and the base of the triplex in ligand binding. Together with recently discovered small molecules that reduce nuclear MALAT1 lncRNA levels by engaging its ENE triplex, our data supports the potential of targeting RNA triplexes with small molecules.


Asunto(s)
Herpesvirus Humano 8/metabolismo , Nucleótidos/metabolismo , Poli A/metabolismo , ARN Largo no Codificante/metabolismo , ARN Viral/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Secuencia de Bases , Cristalografía por Rayos X , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiología , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Conformación de Ácido Nucleico , Nucleótidos/genética , Poli A/química , Poli A/genética , Estabilidad del ARN/genética , ARN Largo no Codificante/química , ARN Largo no Codificante/genética , ARN Viral/química , ARN Viral/genética , Sarcoma de Kaposi/virología , Bibliotecas de Moléculas Pequeñas/química
4.
Molecules ; 28(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37764476

RESUMEN

The spread of Human Immunodeficiency Virus (HIV) still represents a global public health issue of major concern, and would benefit from unveiling unique viral features as targets for drug design. In this respect, HIV-1 integrase (IN), due to the absence of homologs in human cells, is a popular target for the synthesis of novel selective compounds. Moreover, as drug-resistant viral strains are rapidly evolving, the development of novel allosteric inhibitors is acutely required. Recently, we have observed that Kuwanon-L, quinazolinones and thienopyrimidinones containing at least one polyphenol unit, effectively inhibited HIV-1 IN activity. Thus, in the present research, novel dihydroxyphenyl-based thienopyrimidinone derivatives were investigated for their LEDGF/p75-dependent IN inhibitory activity. Our findings indicated a close correlation between the position of the OH group on the phenyl moiety and IN inhibitory activity of these compounds. As catechol may be involved in cytotoxicity, its replacement by other aromatic scaffolds was also exploited. As a result, compounds 21-23, 25 and 26 with enhanced IN inhibitory activity provided good lead candidates, with 25 being the most selective for IN. Lastly, UV spectrometric experiments suggested a plausible allosteric mode of action, as none of the thienopirimidinones showed Mg2+ chelation properties otherwise typical of IN strand transfer inhibitors (INSTIs).

5.
Nucleic Acids Res ; 47(11): 5922-5935, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31006814

RESUMEN

Aberrant splicing in exon 11 of the LMNA gene causes the premature aging disorder Hutchinson-Gilford Progeria Syndrome. A de novo C1824T mutation activates an internal alternative 5' splice site, resulting in formation of the disease-causing progerin protein. The underlying mechanism for this 5' splice site selection is unknown. Here, we have applied a combination of targeted mutational analysis in a cell-based system and structural mapping by SHAPE-MaP to comprehensively probe the contributions of primary sequence, secondary RNA structure and linear splice site position in determining in vivo mechanisms of splice site choice in LMNA. While splice site choice is in part defined by sequence complementarity to U1 snRNA, we identify RNA secondary structural elements near the alternative 5' splice sites and show that splice site choice is significantly influenced by the structural context of the available splice sites. Furthermore, relative positioning of the competing sites within the primary sequence of the pre-mRNA is a predictor of 5' splice site usage, with the distal position favored over the proximal, regardless of sequence composition. Together, these results demonstrate that 5' splice site selection in LMNA is determined by an intricate interplay among RNA sequence, secondary structure and splice site position.


Asunto(s)
Empalme Alternativo , Lamina Tipo A/genética , ARN/química , Análisis Mutacional de ADN , Exones , Fibroblastos/metabolismo , Células HEK293 , Humanos , Lamina Tipo A/metabolismo , Mutación , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Mutación Puntual , Progeria/genética , Estructura Secundaria de Proteína , Sitios de Empalme de ARN , Empalme del ARN , ARN Nuclear Pequeño , Síndrome
6.
J Virol ; 93(11)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30867301

RESUMEN

The HIV-1 Rev response element (RRE) is a cis-acting RNA element characterized by multiple stem-loops. Binding and multimerization of the HIV Rev protein on the RRE promote the nucleocytoplasmic export of incompletely spliced mRNAs, an essential step in HIV replication. Most of our understanding of the Rev-RRE regulatory axis comes from studies of lab-adapted HIV clones. However, in human infection, HIV evolves rapidly, and mechanistic studies of naturally occurring Rev and RRE sequences are essential to understanding this system. We previously described the functional activity of two RREs found in circulating viruses in a patient followed during the course of HIV infection. The early RRE was less functionally active than the late RRE, despite differing in sequence by only 4 nucleotides. In this study, we describe the sequence, function, and structural evolution of circulating RREs in this patient using plasma samples collected over 6 years of untreated infection. RRE sequence diversity varied over the course of infection, with evidence of selection pressure that led to sequence convergence as disease progressed being found. An increase in RRE functional activity was observed over time, and a key mutation was identified that correlates with a major conformational change in the RRE and increased functional activity. Additional mutations were found that may have contributed to increased activity as a result of greater Shannon entropy in RRE stem-loop II, which is key to primary Rev binding.IMPORTANCE HIV-1 replication requires interaction of the viral Rev protein with a cis-acting regulatory RNA, the Rev response element (RRE), whose sequence changes over time during infection within a single host. In this study, we show that the RRE is subject to selection pressure and that RREs from later time points in infection tend to have higher functional activity. Differences in RRE functional activity are attributable to specific changes in RNA structure. Our results suggest that RRE evolution during infection may be important for HIV pathogenesis and that efforts to develop therapies acting on this viral pathway should take this into account.


Asunto(s)
Genes env/genética , Genes env/fisiología , VIH-1/metabolismo , Productos del Gen rev/genética , Infecciones por VIH/virología , Seropositividad para VIH/genética , VIH-1/fisiología , Humanos , Mutación , Conformación de Ácido Nucleico , Nucleótidos/metabolismo , Unión Proteica , ARN Mensajero/genética , ARN Viral/genética , Elementos de Respuesta/genética , Replicación Viral/genética , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/ultraestructura
7.
J Enzyme Inhib Med Chem ; 35(1): 1953-1963, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33143469

RESUMEN

Bioisosteric replacement and scaffold hopping are powerful strategies in drug design useful for rationally modifying a hit compound towards novel lead therapeutic agents. Recently, we reported a series of thienopyrimidinones that compromise dynamics at the p66/p51 HIV-1 reverse transcriptase (RT)-associated Ribonuclease H (RNase H) dimer interface, thereby allosterically interrupting catalysis by altering the active site geometry. Although they exhibited good submicromolar activity, the isosteric replacement of the thiophene ring, a potential toxicophore, is warranted. Thus, in this article, the most active 2-(3,4-dihydroxyphenyl)-5,6-dimethylthieno[2,3-d]pyrimidin-4(3H)-one 1 was selected as the hit scaffold and several isosteric substitutions of the thiophene ring were performed. A novel series of highly active RNase H allosteric quinazolinone inhibitors was thus obtained. To determine their target selectivity, they were tested against RT-associated RNA-dependent DNA polymerase (RDDP) and integrase (IN). Interestingly, none of the compounds were particularly active on (RDDP) but many displayed micromolar to submicromolar activity against IN.


Asunto(s)
Fármacos Anti-VIH/síntesis química , Transcriptasa Inversa del VIH/metabolismo , Pirimidinonas/química , Quinazolinonas/síntesis química , Inhibidores de la Transcriptasa Inversa/síntesis química , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Fármacos Anti-VIH/farmacología , Dominio Catalítico , Diseño de Fármacos , Humanos , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Quinazolinonas/farmacología , Inhibidores de la Transcriptasa Inversa/farmacología , Relación Estructura-Actividad , Tiofenos/química
8.
Molecules ; 25(19)2020 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-32992516

RESUMEN

Initiation of protein-primed (-) strand DNA synthesis in hepatitis B virus (HBV) requires interaction of the viral reverse transcriptase with epsilon (ε), a cis-acting regulatory signal located at the 5' terminus of pre-genomic RNA (pgRNA), and several host-encoded chaperone proteins. Binding of the viral polymerase (P protein) to ε is necessary for pgRNA encapsidation and synthesis of a short primer covalently attached to its terminal domain. Although we identified small molecules that recognize HBV ε RNA, these failed to inhibit protein-primed DNA synthesis. However, since initiation of HBV (-) strand DNA synthesis occurs within a complex of viral and host components (e.g., Hsp90, DDX3 and APOBEC3G), we considered an alternative therapeutic strategy of allosteric inhibition by disrupting the initiation complex or modifying its topology. To this end, we show here that 3,7-dihydroxytropolones (3,7-dHTs) can inhibit HBV protein-primed DNA synthesis. Since DNA polymerase activity of a ribonuclease (RNase H)-deficient HBV reverse transcriptase that otherwise retains DNA polymerase function is also abrogated, this eliminates direct involvement of RNase (ribonuclease) H activity of HBV reverse transcriptase and supports the notion that the HBV initiation complex might be therapeutically targeted. Modeling studies also provide a rationale for preferential activity of 3,7-dHTs over structurally related α-hydroxytropolones (α-HTs).


Asunto(s)
Replicación del ADN/efectos de los fármacos , ADN Viral/metabolismo , Virus de la Hepatitis B/fisiología , ARN Viral/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , Tropolona/análogos & derivados , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos , Desaminasa APOBEC-3G/metabolismo , ARN Helicasas DEAD-box/metabolismo , Células HEK293 , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Tropolona/farmacología
9.
Bioorg Med Chem ; 27(8): 1759-1765, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30879859

RESUMEN

Interaction of HIV-1 rev response element (RRE) RNA with its cognate protein, Rev, is critical for HIV-1 replication. Understanding the mode of interaction between RRE RNA and ligands at the binding site can facilitate RNA molecular recognition as well as provide a strategy for developing anti-HIV therapeutics. Our approach utilizes branched peptides as a scaffold for multivalent binding to RRE IIB (high affinity rev binding site) with incorporation of unnatural amino acids to increase affinity via non-canonical interactions with the RNA. Previous high throughput screening of a 46,656-member library revealed several hits that bound RRE IIB RNA in the sub-micromolar range. In particular, the lead compound, 4B3, displayed a Kd value of 410 nM and demonstrated selectivity towards RRE. A ribonuclease protection assay revealed that 4B3 binds to the stem-loop structure of RRE IIB RNA, which was confirmed by SHAPE analysis with 234 nt long NL4-3 RRE RNA. Our studies further indicated interaction of 4B3 with both primary and secondary Rev binding sites.


Asunto(s)
VIH-1/genética , Péptidos/química , ARN Viral/química , Elementos de Respuesta/genética , Sitios de Unión , Humanos , Conformación de Ácido Nucleico , Péptidos/síntesis química , Péptidos/metabolismo , Unión Proteica , ARN Viral/metabolismo , Ribonucleasas/química , Ribonucleasas/metabolismo
10.
Nucleic Acids Res ; 45(16): e146, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28934505

RESUMEN

Although ∼98% of the human genomic output is transcribed as non-protein coding RNA, <2% of the protein data bank structures comprise RNA. This huge structural disparity stems from combined difficulties of crystallizing RNA for X-ray crystallography along with extensive chemical shift overlap and broadened linewidths associated with NMR of RNA. While half of the deposited RNA structures in the PDB were solved by NMR methods, the usefulness of NMR is still limited by the high cost of sample preparation and challenges of resonance assignment. Here we propose a novel strategy for resonance assignment that combines new strategic 13C labeling technologies with filter/edit type NOESY experiments to greatly reduce spectral complexity and crowding. This new strategy allowed us to assign important non-exchangeable resonances of proton and carbon (1', 2', 2, 5, 6 and 8) nuclei using only one sample and <24 h of NMR instrument time for a 27 nt model RNA. The method was further extended to assigning a 6 nt bulge from a 61 nt viral RNA element justifying its use for a wide range RNA chemical shift resonance assignment problems.


Asunto(s)
Marcaje Isotópico/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , ARN/química , Adenina/química , Isótopos de Carbono , Conformación de Ácido Nucleico , Protones , Pirimidinas/química
11.
Nucleic Acids Res ; 45(11): 6805-6821, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28383682

RESUMEN

Kaposi's sarcoma-associated herpes virus (KSHV) polyadenylated nuclear (PAN) RNA facilitates lytic infection, modulating the cellular immune response by interacting with viral and cellular proteins and DNA. Although a number nucleoprotein interactions involving PAN have been implicated, our understanding of binding partners and PAN RNA binding motifs remains incomplete. Herein, we used SHAPE-mutational profiling (SHAPE-MaP) to probe PAN in its nuclear, cytoplasmic or viral environments or following cell/virion lysis and removal of proteins. We thus characterized and put into context discrete RNA structural elements, including the cis-acting Mta responsive element and expression and nuclear retention element (1,2). By comparing mutational profiles in different biological contexts, we identified sites on PAN either protected from chemical modification by protein binding or characterized by a loss of structure. While some protein binding sites were selectively localized, others were occupied in all three biological contexts. Individual binding sites of select KSHV gene products on PAN RNA were also identified in in vitro experiments. This work constitutes the most extensive structural characterization of a viral lncRNA and interactions with its protein partners in discrete biological contexts, providing a broad framework for understanding the roles of PAN RNA in KSHV infection.


Asunto(s)
Herpesvirus Humano 8/genética , ARN Mensajero/metabolismo , ARN Nuclear/metabolismo , ARN Viral/metabolismo , Sitios de Unión , Núcleo Celular/metabolismo , Núcleo Celular/virología , Citoplasma/metabolismo , Citoplasma/virología , Herpesvirus Humano 8/metabolismo , Humanos , Secuencias Invertidas Repetidas , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta , Polimorfismo de Nucleótido Simple , Unión Proteica , ARN Mensajero/genética , ARN Nuclear/genética , ARN Viral/genética , Células Tumorales Cultivadas , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
12.
Artículo en Inglés | MEDLINE | ID: mdl-30061278

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent of Kaposi's sarcoma, belongs to the Herpesviridae family, whose members employ a multicomponent terminase to resolve nonparametric viral DNA into genome-length units prior to their packaging. Homology modeling of the ORF29 C-terminal nuclease domain (pORF29C) and bacteriophage Sf6 gp2 have suggested an active site clustered with four acidic residues, D476, E550, D661, and D662, that collectively sequester the catalytic divalent metal (Mn2+) and also provided important insight into a potential inhibitor binding mode. Using this model, we have expressed, purified, and characterized the wild-type pORF29C and variants with substitutions at the proposed active-site residues. Differential scanning calorimetry demonstrated divalent metal-induced stabilization of wild-type (WT) and D661A pORF29C, consistent with which these two enzymes exhibited Mn2+-dependent nuclease activity, although the latter mutant was significantly impaired. Thermal stability of WT and D661A pORF29C was also enhanced by binding of an α-hydroxytropolone (α-HT) inhibitor shown to replace divalent metal at the active site. For the remaining mutants, thermal stability was unaffected by divalent metal or α-HT binding, supporting their role in catalysis. pORF29C nuclease activity was also inhibited by two classes of small molecules reported to inhibit HIV RNase H and integrase, both of which belong to the superfamily of nucleotidyltransferases. Finally, α-HT inhibition of KSHV replication suggests ORF29 nuclease function as an antiviral target that could be combined with latency-activating compounds as a shock-and-kill antiviral strategy.


Asunto(s)
Endonucleasas/química , Endonucleasas/metabolismo , Herpesvirus Humano 8/enzimología , Sarcoma de Kaposi/virología , Rastreo Diferencial de Calorimetría , Dominio Catalítico , ADN Viral/genética , Endodesoxirribonucleasas/genética , Endonucleasas/genética , Activación Enzimática/efectos de los fármacos , Inhibidores de Integrasa VIH/farmacología , Herpesvirus Humano 8/genética , Integrasas/genética , Mutagénesis Sitio-Dirigida , Sistemas de Lectura Abierta/genética , Estructura Secundaria de Proteína , Ribonucleasa H/genética
13.
J Virol ; 91(23)2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28956767

RESUMEN

The herpes simplex virus (HSV) type I alkaline nuclease, UL12, has 5'-to-3' exonuclease activity and shares homology with nucleases from other members of the Herpesviridae family. We previously reported that a UL12-null virus exhibits a severe defect in viral growth. To determine whether the growth defect was a result of loss of nuclease activity or another function of UL12, we introduced an exonuclease-inactivating mutation into the viral genome. The recombinant virus, UL12 D340E (the D340E mutant), behaved identically to the null virus (AN-1) in virus yield experiments, exhibiting a 4-log decrease in the production of infectious virus. Furthermore, both viruses were severely defective in cell-to-cell spread and produced fewer DNA-containing capsids and more empty capsids than wild-type virus. In addition, DNA packaged by the viral mutants was aberrant, as determined by infectivity assays and pulsed-field gel electrophoresis. We conclude that UL12 exonuclease activity is essential for the production of viral DNA that can be packaged to produce infectious virus. This conclusion was bolstered by experiments showing that a series of natural and synthetic α-hydroxytropolones recently reported to inhibit HSV replication also inhibit the nuclease activity of UL12. Taken together, our results demonstrate that the exonuclease activity of UL12 is essential for the production of infectious virus and may be considered a target for development of antiviral agents.IMPORTANCE Herpes simplex virus is a major pathogen, and although nucleoside analogs such as acyclovir are highly effective in controlling HSV-1 or -2 infections in immunocompetent individuals, their use in immunocompromised patients is complicated by the development of resistance. Identification of additional proteins essential for viral replication is necessary to develop improved therapies. In this communication, we confirm that the exonuclease activity of UL12 is essential for viral replication through the analysis of a nuclease-deficient viral mutant. We demonstrate that the exonuclease activity of UL12 is essential for the production of viral progeny and thus provides an attractive, druggable enzymatic target.


Asunto(s)
Desoxirribonucleasas/metabolismo , Herpesvirus Humano 1/patogenicidad , Mutación , Proteínas Virales/metabolismo , Ensamble de Virus , Animales , Cápside/metabolismo , Chlorocebus aethiops , Replicación del ADN , Desoxirribonucleasas/química , Desoxirribonucleasas/genética , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/fisiología , Humanos , Células Vero , Proteínas Virales/química , Proteínas Virales/genética , Replicación Viral
14.
RNA Biol ; 15(1): 13-16, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29099331

RESUMEN

As the notion of small molecule targeting of regulatory viral and cellular RNAs gathers momentum, understanding their structure, and variations thereof, in the appropriate biological context will play a critical role. This is especially true of the ∼1100-nt polyadenylated nuclear (PAN) long non-coding (lnc) RNA of Kaposi's sarcoma herpesvirus (KSHV), whose interaction with viral and cellular proteins is central to lytic infection. Nuclear accumulation of PAN RNA is mediated via a unique triple helical structure at its 3' terminus (within the expression and nuclear retention element, or ENE) which protects it from deadenylation-dependent decay. Additionally, significant levels of PAN RNA have been reported in both the cytoplasm of KSHV-infected cells and in budding virions, leading us to consider which viral and host proteins might associate with, or dissociate from, this lncRNA during its "journey" through the cell. By combining the power of SHAPE-mutational profiling (SHAPE-MaP) with large scale virus culture facilities of the National Cancer Institute, Frederick MD, Sztuba-Solinska et al. have provide the first detailed description of KSHV PAN nucleoprotein complexes in multiple biological contexts, complementing this by mapping sites of recombinant KSHV proteins on an in vitro-synthesized, polyadenylated counterpart.


Asunto(s)
Herpesvirus Humano 8/genética , ARN Largo no Codificante/genética , ARN Viral/genética , Replicación Viral/genética , Citoplasma/virología , Regulación Viral de la Expresión Génica , Herpesvirus Humano 8/patogenicidad , Interacciones Huésped-Patógeno/genética , Humanos , Nucleoproteínas/genética , ARN Largo no Codificante/química , ARN Mensajero/química , ARN Mensajero/genética , ARN Viral/química
15.
Nucleic Acids Res ; 44(17): 8376-84, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27471033

RESUMEN

Finding the target site and associating in a specific orientation are essential tasks for DNA-binding proteins. In order to make the target search process as efficient as possible, proteins should not only rapidly diffuse to the target site but also dynamically explore multiple local configurations before diffusing away. Protein flipping is an example of this second process that has been observed previously, but the underlying mechanism of flipping remains unclear. Here, we probed the mechanism of protein flipping at the single molecule level, using HIV-1 reverse transcriptase (RT) as a model system. In order to test the effects of long-range attractive forces on flipping efficiency, we varied the salt concentration and macromolecular crowding conditions. As expected, increased salt concentrations weaken the binding of RT to DNA while increased crowding strengthens the binding. Moreover, when we analyzed the flipping kinetics, i.e. the rate and probability of flipping, at each condition we found that flipping was more efficient when RT bound more strongly. Our data are consistent with a view that DNA bound proteins undergo multiple rapid re-binding events, or short hops, that allow the protein to explore other configurations without completely dissociating from the DNA.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/química , Conformación de Ácido Nucleico , ADN/metabolismo , Cartilla de ADN/metabolismo , Proteínas de Unión al ADN/química , Transferencia Resonante de Energía de Fluorescencia , Transcriptasa Inversa del VIH/química , Transcriptasa Inversa del VIH/metabolismo , Iones , Cinética , Sustancias Macromoleculares/metabolismo , Nucleótidos/metabolismo , Unión Proteica
16.
Nucleic Acids Res ; 43(9): 4676-86, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25855816

RESUMEN

The HIV Rev protein forms a complex with a 351 nucleotide sequence present in unspliced and incompletely spliced human immunodeficiency virus (HIV) mRNAs, the Rev response element (RRE), to recruit the cellular nuclear export receptor Crm1 and Ran-GTP. This complex facilitates nucleo-cytoplasmic export of these mRNAs. The precise secondary structure of the HIV-1 RRE has been controversial, since studies have reported alternative structures comprising either four or five stem-loops. The published structures differ only in regions that lie outside of the primary Rev binding site. Using in-gel SHAPE, we have now determined that the wt NL4-3 RRE exists as a mixture of both structures. To assess functional differences between these RRE 'conformers', we created conformationally locked mutants by site-directed mutagenesis. Using subgenomic reporters, as well as HIV replication assays, we demonstrate that the five stem-loop form of the RRE promotes greater functional Rev/RRE activity compared to the four stem-loop counterpart.


Asunto(s)
VIH-1/genética , ARN Viral/química , Secuencias Reguladoras de Ácido Ribonucleico , Replicación Viral/genética , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/metabolismo , Proteínas de Fusión gag-pol/metabolismo , Genes env , VIH-1/fisiología , Mutación , Conformación de Ácido Nucleico , ARN Viral/metabolismo
17.
Nucleic Acids Res ; 43(22): 11003-16, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26450964

RESUMEN

Many dsDNA viruses encode DNA-packaging terminases, each containing a nuclease domain that resolves concatemeric DNA into genome-length units. Terminase nucleases resemble the RNase H-superfamily nucleotidyltransferases in folds, and share a two-metal-ion catalytic mechanism. Here we show that residue K428 of a bacteriophage terminase gp2 nuclease domain mediates binding of the metal cofactor Mg(2+). A K428A mutation allows visualization, at high resolution, of a metal ion binding mode with a coupled-octahedral configuration at the active site, exhibiting an unusually short metal-metal distance of 2.42 Å. Such proximity of the two metal ions may play an essential role in catalysis by generating a highly positive electrostatic niche to enable formation of the negatively charged pentacovalent phosphate transition state, and provides the structural basis for distinguishing Mg(2+) from Ca(2+). Using a metal ion chelator ß-thujaplicinol as a molecular probe, we observed a second mode of metal ion binding at the active site, mimicking the DNA binding state. Arrangement of the active site residues differs drastically from those in RNase H-like nucleases, suggesting a drifting of the active site configuration during evolution. The two distinct metal ion binding modes unveiled mechanistic details of the two-metal-ion catalysis at atomic resolution.


Asunto(s)
Endodesoxirribonucleasas/química , Metales/química , Proteínas Virales/química , Biocatálisis , Dominio Catalítico , Empaquetamiento del ADN , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Lisina/química , Magnesio/química , Manganeso/química , Modelos Moleculares , Mutación , Podoviridae/enzimología , Unión Proteica , Tropolona/análogos & derivados , Tropolona/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
18.
Biochemistry ; 55(5): 809-19, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26829613

RESUMEN

The natural product α-hydroxytropolones manicol and ß-thujaplicinol inhibit replication of herpes simplex viruses 1 and 2 (HSV-1 and HSV-2, respectively) at nontoxic concentrations. Because these were originally developed as divalent metal-sequestering inhibitors of the ribonuclease H activity of HIV-1 reverse transcriptase, α-hydroxytropolones likely target related HSV proteins of the nucleotidyltransferase (NTase) superfamily, which share an "RNase H-like" fold. One potential candidate is pUL15, a component of the viral terminase molecular motor complex, whose C-terminal nuclease domain, pUL15C, has recently been crystallized. Crystallography also provided a working model for DNA occupancy of the nuclease active site, suggesting potential protein-nucleic acid contacts over a region of ∼ 14 bp. In this work, we extend crystallographic analysis by examining pUL15C-mediated hydrolysis of short, closely related DNA duplexes. In addition to defining a minimal substrate length, this strategy facilitated construction of a dual-probe fluorescence assay for rapid kinetic analysis of wild-type and mutant nucleases. On the basis of its proposed role in binding the phosphate backbone, studies with pUL15C variant Lys700Ala showed that this mutation affected neither binding of duplex DNA nor binding of small molecule to the active site but caused a 17-fold reduction in the turnover rate (kcat), possibly by slowing conversion of the enzyme-substrate complex to the enzyme-product complex and/or inhibiting dissociation from the hydrolysis product. Finally, with a view of pUL15-associated nuclease activity as an antiviral target, the dual-probe fluorescence assay, in combination with differential scanning fluorimetry, was used to demonstrate inhibition by several classes of small molecules that target divalent metal at the active site.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Herpesvirus Humano 1/química , Nucleotidiltransferasas/antagonistas & inhibidores , Proteínas Virales/química , Fluorescencia
19.
J Virol ; 89(23): 12058-69, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26401032

RESUMEN

UNLABELLED: Human immunodeficiency virus type 1 (HIV-1) replication requires reverse transcription of its RNA genome into a double-stranded cDNA copy, which is then integrated into the host cell chromosome. The essential steps of reverse transcription and integration are catalyzed by the viral enzymes reverse transcriptase (RT) and integrase (IN), respectively. In vitro, HIV-1 RT can bind with IN, and the C-terminal domain (CTD) of IN is necessary and sufficient for this binding. To better define the RT-IN interaction, we performed nuclear magnetic resonance (NMR) spectroscopy experiments to map a binding surface on the IN CTD in the presence of RT prebound to a duplex DNA construct that mimics the primer-binding site in the HIV-1 genome. To determine the biological significance of the RT-IN interaction during viral replication, we used the NMR chemical shift mapping information as a guide to introduce single amino acid substitutions of nine different residues on the putative RT-binding surface in the IN CTD. We found that six viral clones bearing such IN substitutions (R231E, W243E, G247E, A248E, V250E, and I251E) were noninfectious. Further analyses of the replication-defective IN mutants indicated that the block in replication took place specifically during early reverse transcription. The recombinant INs purified from these mutants, though retaining enzymatic activities, had diminished ability to bind RT in a cosedimentation assay. The results indicate that the RT-IN interaction is functionally relevant during the reverse transcription step of the HIV-1 life cycle. IMPORTANCE: To establish a productive infection, human immunodeficiency virus type 1 (HIV-1) needs to reverse transcribe its RNA genome to create a double-stranded DNA copy and then integrate this viral DNA genome into the chromosome of the host cell. These two essential steps are catalyzed by the HIV-1 enzymes reverse transcriptase (RT) and integrase (IN), respectively. We have shown previously that IN physically interacts with RT, but the importance of this interaction during HIV-1 replication has not been fully characterized. In this study, we have established the biological significance of the HIV-1 RT-IN interaction during the viral life cycle by demonstrating that altering the RT-binding surface on IN disrupts both reverse transcription and viral replication. These findings contribute to our understanding of the RT-IN binding mechanism, as well as indicate that the RT-IN interaction can be exploited as a new antiviral drug target.


Asunto(s)
Integrasa de VIH/metabolismo , Transcriptasa Inversa del VIH/metabolismo , VIH-1/fisiología , Transcripción Reversa/fisiología , Replicación Viral/fisiología , Sustitución de Aminoácidos/genética , Western Blotting , Cartilla de ADN/genética , Escherichia coli , Integrasa de VIH/genética , Transcriptasa Inversa del VIH/genética , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
Curr Top Microbiol Immunol ; 389: 147-69, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25735922

RESUMEN

Small molecules targeting the enzymes responsible for human immunodeficiency virus (HIV) maturation, DNA synthesis and its subsequent chromosomal integration as ribonucleotide-free double-stranded DNA remain the mainstay of combination antiretroviral therapy. For infected individuals harboring drug-susceptible virus, this approach has afforded complete or near-complete viral suppression. However, in the absence of a curative strategy, the predictable emergence of drug-resistant variants requires continued development of improved antiviral strategies, inherent to which is the necessity of identifying novel targets. Regulatory elementsRegulatory elements that mediate transcription, translation, nucleocytoplasmic transport, dimerization, packaging and reverse transcription of the (+) strand RNA genomeRNA genome should now be considered viable targets for small molecule, peptide- and oligonucleotide-based therapeuticsTherapeutics . Where target specificity and cellular penetration and toxicity have been the primary obstacle to successful "macromolecule therapeutics", this chapter summarizes (a) novel approaches targeting RNA motifs whose three-dimensional structure is critical for biological function and consequently may be less prone to resistance-conferring mutations and (b) improved methods for deliveryDelivery .


Asunto(s)
Fármacos Anti-VIH/farmacología , Genoma Viral/efectos de los fármacos , ARN Viral/efectos de los fármacos , Transporte Activo de Núcleo Celular/efectos de los fármacos , ADN Viral/biosíntesis , Duplicado del Terminal Largo de VIH , Humanos , Transcripción Reversa/efectos de los fármacos , Proteínas Virales/biosíntesis , Ensamble de Virus , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA