RESUMEN
BACKGROUND: Doxycycline is an antibiotic used in combination with quinine or artesunate for malaria treatment or alone for malaria chemoprophylaxis. Recently, one prophylactic failure has been reported, and several studies have highlighted in vitro doxycycline decreased susceptibility in Plasmodium falciparum isolates from different areas. The genetic markers that contribute to detecting and monitoring the susceptibility of P. falciparum to doxycycline, the pfmdt and pftetQ genes, have recently been identified. However, these markers are not sufficient to explain in vitro decreased susceptibility of P. falciparum to doxycycline. In this paper, the association between polymorphism of the small sub-unit ribosomal RNA apicoplastic gene pfssrRNA (PFC10_API0057) and in vitro susceptibilities of P. falciparum isolates to doxycycline were investigated. METHODS: Doxycycline IC50 determinations using the hypoxanthine uptake inhibition assay were performed on 178 African and Thai P. falciparum isolates. The polymorphism of pfssrRNA was investigated in these samples by standard PCR followed by sequencing. RESULTS: No point mutations were found in pfssrRNA in the Thai or African isolates, regardless of the determined IC50 values. CONCLUSIONS: The pfssrRNA gene is not associated with in vitro decreased susceptibility of P. falciparum to doxycycline. Identifying new in vitro molecular markers associated with reduced susceptibility is needed, to survey the emergence of doxycycline resistance.
Asunto(s)
Antimaláricos/farmacología , Doxiciclina/farmacología , Resistencia a Medicamentos/genética , Genes Protozoarios/genética , Genes de ARNr/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Humanos , Concentración 50 Inhibidora , Malaria Falciparum/parasitologíaRESUMEN
Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized methods from the WorldWide Antimalarial Resistance Network. Data for more than 7,000 patients were analyzed to assess relationships between parasite polymorphisms in pfcrt and pfmdr1 and clinically relevant outcomes after treatment with AL or ASAQ. Presence of the pfmdr1 gene N86 (adjusted hazards ratio = 4.74, 95% confidence interval = 2.29 - 9.78, P < 0.001) and increased pfmdr1 copy number (adjusted hazards ratio = 6.52, 95% confidence interval = 2.36-17.97, P < 0.001 : were significant independent risk factors for recrudescence in patients treated with AL. AL and ASAQ exerted opposing selective effects on single-nucleotide polymorphisms in pfcrt and pfmdr1. Monitoring selection and responding to emerging signs of drug resistance are critical tools for preserving efficacy of artemisinin combination therapies; determination of the prevalence of at least pfcrt K76T and pfmdr1 N86Y should now be routine.