Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(31): 21651-21663, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39051542

RESUMEN

Ferrocene is one of the most common electron donors, and mapping its ligand-field excited states is critical to designing donor-acceptor (D-A) molecules with long-lived charge transfer states. Although 3(d-d) states are commonly invoked in the photophysics of ferrocene complexes, mention of the high-spin 5(d-d) state is scarce. Here, we provide clear evidence of 5(d-d) formation in a bimetallic D-A molecule, ferrocenyl cobaltocenium hexafluorophosphate ([FcCc]PF6). Femtosecond optical transient absorption (OTA) spectroscopy reveals two distinct electronic excited states with 30 and 500 ps lifetimes. Using a combination of ultraviolet, visible, near-infrared, and short-wave infrared probe pulses, we capture the spectral features of these states over an ultrabroadband range spanning 320 to 2200 nm. Time-dependent density functional theory (DFT) calculations of the lowest triplet and quintet states, both primarily Fe(II) (d-d) in character, qualitatively agree with the experimental OTA spectra, allowing us to assign the 30 ps state as the 3(d-d) state and the 500 ps state as the high-spin 5(d-d) state. To confirm the ferrocene-centered high-spin character of the 500 ps state, we performed X-ray transient absorption (XTA) spectroscopy at the Fe and Co K edges. The Fe K-edge XTA spectrum at 150 ps shows a red shift of the absorption edge that is consistent with an Fe(II) high-spin state, as supported by ab initio calculations. The transient signal detected at the Co K-edge is 50× weaker, confirming the ferrocene-centered character of the excited state. Fitting of the transient extended X-ray absorption fine structure region yields an Fe-C bond length increase of 0.25 ± 0.1 Å in the excited state, as expected for the high-spin state based on DFT. Altogether, these results demonstrate that the high-spin state of ferrocene should be considered when designing donor-acceptor assemblies for photocatalysis and photovoltaics.

2.
J Am Chem Soc ; 145(38): 20868-20873, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37712762

RESUMEN

Seleniferous oxyanions are groundwater contaminants from both anthropogenic and natural sources, while pure amorphous selenium nanoparticles have a variety of industrial applications. Biology can achieve the multicomponent 6 e-/8 H+ reduction of selenate to amorphous selenium using multiple metalloenzymes, like selenate and selenite reductase. Inspired by biology, we developed a new homogeneous system that can generate pure elemental selenium with no caustic waste. The stoichiometric reductions of selenate, selenite, and selenium dioxide with an iron(II) complex produced an iron(III)-oxo and red elemental selenium, the latter of which has been characterized by a variety of spectroscopic techniques. The catalytic reduction of SeO42- and SeO32- directly to amorphous Se and isolated as Se=PPh3 is reported with a turnover number of 12 and 7, respectively.

3.
J Phys Chem A ; 126(50): 9510-9518, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36480809

RESUMEN

Femtosecond X-ray absorption spectroscopy at the Ir O3-edge and N6,7-edges is performed on the photocatalyst iridium(III) tris(2-phenylpyridine), Ir(III)(ppy)3 using a tabletop high-harmonic source. Extreme ultraviolet (XUV) absorption between 44 and 76 eV measures transitions from the Ir 5p3/2 and 4f5/2,7/2 core to 5d valence orbitals, and the position of these spectral features is shown to be sensitive to the oxidation state and ligand field of the metal center. Upon excitation of the singlet metal-to-ligand charge transfer (1MLCT) band at 400 nm, a shift in the spectra due to the formation of the Ir(IV) center is observed, as is the creation of a new spectral feature corresponding to transitions into the t2g hole. Vibrational cooling of the MLCT state on the 3 and 16 ps time scales is measured as changes in the intensity of the transient features. This work establishes XUV spectroscopy as a useful tool for measuring the electronic structure of third row transition metal photosensitizers and catalysts at ultrafast time scales.

4.
Inorg Chem ; 58(23): 15801-15811, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31714068

RESUMEN

O2 activation at nonheme iron centers is a common motif in biological systems. While synthetic models have provided numerous insights into the reactivity of high-valent iron-oxo complexes related to biological processes, the majority of these complexes are synthesized using alternative oxidants. This report describes O2 activation by an iron(II)-triflate complex of the imino-functionalized tris(pyrrol-2-ylmethyl)amine ligand framework, H3[N(piCy)3]. Initial reaction conditions result in the formation of a mixture of oxidation products including terminal iron(III)-oxo and iron(III)-hydroxo complexes. The relevance of these species to the O2 activation process is demonstrated through reactivity studies and electrochemical analysis of the iron(III)-oxo complex.

5.
Dalton Trans ; 50(35): 12088-12092, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34519757

RESUMEN

Hydrogen bonding networks are vital for metallo-enzymes to function; however, modeling these systems is non-trivial. We report the synthesis of metal chloride (M = Mn, Fe, Co) complexes with intra- and inter-ligand hydrogen bonding interactions. The intra-ligand hydrogen bonds are shown to have a profound effect on the geometry of the metal center.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA