Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Circulation ; 146(20): 1492-1503, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36124774

RESUMEN

BACKGROUND: Myocardial scars are assessed noninvasively using cardiovascular magnetic resonance late gadolinium enhancement (LGE) as an imaging gold standard. A contrast-free approach would provide many advantages, including a faster and cheaper scan without contrast-associated problems. METHODS: Virtual native enhancement (VNE) is a novel technology that can produce virtual LGE-like images without the need for contrast. VNE combines cine imaging and native T1 maps to produce LGE-like images using artificial intelligence. VNE was developed for patients with previous myocardial infarction from 4271 data sets (912 patients); each data set comprises slice position-matched cine, T1 maps, and LGE images. After quality control, 3002 data sets (775 patients) were used for development and 291 data sets (68 patients) for testing. The VNE generator was trained using generative adversarial networks, using 2 adversarial discriminators to improve the image quality. The left ventricle was contoured semiautomatically. Myocardial scar volume was quantified using the full width at half maximum method. Scar transmurality was measured using the centerline chord method and visualized on bull's-eye plots. Lesion quantification by VNE and LGE was compared using linear regression, Pearson correlation (R), and intraclass correlation coefficients. Proof-of-principle histopathologic comparison of VNE in a porcine model of myocardial infarction also was performed. RESULTS: VNE provided significantly better image quality than LGE on blinded analysis by 5 independent operators on 291 data sets (all P<0.001). VNE correlated strongly with LGE in quantifying scar size (R, 0.89; intraclass correlation coefficient, 0.94) and transmurality (R, 0.84; intraclass correlation coefficient, 0.90) in 66 patients (277 test data sets). Two cardiovascular magnetic resonance experts reviewed all test image slices and reported an overall accuracy of 84% for VNE in detecting scars when compared with LGE, with specificity of 100% and sensitivity of 77%. VNE also showed excellent visuospatial agreement with histopathology in 2 cases of a porcine model of myocardial infarction. CONCLUSIONS: VNE demonstrated high agreement with LGE cardiovascular magnetic resonance for myocardial scar assessment in patients with previous myocardial infarction in visuospatial distribution and lesion quantification with superior image quality. VNE is a potentially transformative artificial intelligence-based technology with promise in reducing scan times and costs, increasing clinical throughput, and improving the accessibility of cardiovascular magnetic resonance in the near future.


Asunto(s)
Aprendizaje Profundo , Infarto del Miocardio , Porcinos , Animales , Cicatriz/diagnóstico por imagen , Cicatriz/patología , Gadolinio , Medios de Contraste , Inteligencia Artificial , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/patología , Imagen por Resonancia Magnética/métodos , Miocardio/patología , Imagen por Resonancia Cinemagnética/métodos
2.
Int J Cardiol ; 333: 239-245, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33705843

RESUMEN

BACKGROUND: Adenosine stress T1-mapping on cardiovascular magnetic resonance (CMR) can differentiate between normal, ischemic, infarcted, and remote myocardial tissue classes without the need for contrast agents. Regadenoson, a selective coronary vasodilator, is often used in stress perfusion imaging when adenosine is contra-indicated, and has advantages in ease of administration, safety profile, and clinical workflow. We aimed to characterize the regadenoson stress T1-mapping response in healthy individuals, and to investigate its ability to differentiate between myocardial tissue classes in patients with coronary artery disease (CAD). METHODS: Eleven healthy controls and 25 patients with CAD underwent regadenoson stress perfusion CMR, as well as rest and stress ShMOLLI T1-mapping. Native T1 values and stress T1 reactivity were derived for normal myocardium in healthy controls and for different myocardial tissue classes in patients with CAD. RESULTS: Healthy controls had normal myocardial native T1 values at rest (931 ± 22 ms) with significant global regadenoson stress T1 reactivity (δT1 = 8.2 ± 0.8% relative to baseline; p < 0.0001). Infarcted myocardium had significantly higher resting T1 (1215 ± 115 ms) than ischemic, remote, and normal myocardium (all p < 0.0001) with an abolished stress T1 response (δT1 = -0.8% [IQR: -1.9-0.5]). Ischemic myocardium had elevated resting T1 compared to normal (964 ± 57 ms; p < 0.01) with an abolished stress T1 response (δT1 = 0.5 ± 1.6%). Remote myocardium in patients had comparable resting T1 to normal (949 ms [IQR: 915-973]; p = 0.06) with blunted stress reactivity (δT1 = 4.3% [IQR: 3.1-6.3]; p < 0.0001). CONCLUSIONS: Healthy controls demonstrate significant stress T1 reactivity during regadenoson stress. Regadenoson stress and rest T1-mapping is a viable alternative to adenosine and exercise for the assessment of CAD and can distinguish between normal, ischemic, infarcted, and remote myocardium.


Asunto(s)
Isquemia Miocárdica , Imagen de Perfusión Miocárdica , Medios de Contraste , Circulación Coronaria , Humanos , Imagen por Resonancia Magnética , Imagen por Resonancia Cinemagnética , Espectroscopía de Resonancia Magnética , Isquemia Miocárdica/diagnóstico por imagen , Miocardio , Valor Predictivo de las Pruebas , Purinas , Pirazoles
3.
Diagnostics (Basel) ; 11(6)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207123

RESUMEN

BACKGROUND: A routine diagnostic work-up does not identify structural abnormalities in a substantial proportion of patients with idiopathic ventricular arrhythmias (VAs). We investigated the added value of cardiac magnetic resonance (CMR) imaging in this group of patients. METHODS: A single-centre prospective study was undertaken of 72 patients (mean age 46 ± 16 years; 53% females) with frequent premature ventricular contractions (PVCs ≥ 500/24 h) and/or non-sustained ventricular tachycardia (NSVT), an otherwise normal electrocardiogram, normal echocardiography and no coronary artery disease. RESULTS: CMR provided an additional diagnostic yield in 54.2% of patients. The most prevalent diagnosis was previous myocarditis (23.6%) followed by possible PVC-related cardiomyopathy (20.8%), non-ischaemic cardiomyopathy (8.3%) and ischaemic heart disease (1.4%). The predictors of abnormal CMR findings were male gender, age and PVCs/NSVT non-outflow tract-related or with multiple morphologies. Patients with VAs had an impaired peak left ventricular (LV) global radial strain (GRS) compared with the controls (28.88% (IQR: 25.87% to 33.97%) vs. 36.65% (IQR: 33.19% to 40.2%), p < 0.001) and a global circumferential strain (GCS) (-17.66% (IQR: -19.62% to -16.23%) vs. -20.66% (IQR: -21.72% to -19.6%), p < 0.001). CONCLUSION: CMR reveals abnormalities in a significant proportion of patients with frequent idiopathic VAs. Male gender, age and non-outflow tract PVC origin can be clinical indicators for CMR referral.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA