Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecol Lett ; 27(8): e14493, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39140430

RESUMEN

Invasions are commonly found to benefit from disturbance events. However, the importance of the relative timing of the invasion and disturbance for invader success and impact on community composition remains uncertain. Here, we experimentally test this by invading a five-species bacterial community on eight separate occasions-four before a disturbance and four after. Invader success and impact on community composition was greatest when the invasion immediately followed the disturbance. However, the subsequent invasions had negligible success or impact. Pre-disturbance, invader success and impact was greatest when the invader was added just before the disturbance. Importantly, however, the first three pre-disturbance invasion events had significantly greater success than the last three post-disturbance invasions. Moreover, these findings were consistent across a range of propagule pressures. Overall, we demonstrate that timing is highly important for both the success and impact on community composition of an invader, with both being lower as time since disturbance progresses.


Asunto(s)
Bacterias , Especies Introducidas , Microbiota , Bacterias/clasificación , Ecosistema
2.
Microbiology (Reading) ; 170(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39297874

RESUMEN

Model microbial communities are regularly used to test ecological and evolutionary theory as they are easy to manipulate and have fast generation times, allowing for large-scale, high-throughput experiments. A key assumption for most model microbial communities is that they stably coexist, but this is rarely tested experimentally. Here we report the (dis)assembly of a five-species microbial community from a metacommunity of soil microbes that can be used for future experiments. Using reciprocal invasion-from-rare experiments we show that all species can coexist and we demonstrate that the community is stable for a long time (~600 generations). Crucially for future work, we show that each species can be identified by their plate morphologies, even after >1 year in co-culture. We characterise pairwise species interactions and produce high-quality reference genomes for each species. This stable five-species community can be used to test key questions in microbial ecology and evolution.


Asunto(s)
Bacterias , Microbiota , Microbiología del Suelo , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Ecología , Evolución Biológica , Interacciones Microbianas
3.
Ecol Lett ; 26(12): 2056-2065, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37847646

RESUMEN

Anthropogenic activities expose many ecosystems to multiple novel disturbances simultaneously. Despite this, how biodiversity responds to simultaneous disturbances remains unclear, with conflicting empirical results on their interactive effects. Here, we experimentally test how one disturbance (an invasive species) affects the diversity of a community over multiple levels of another disturbance regime (pulse mortality). Specifically, we invade stably coexisting bacterial communities under four different pulse frequencies, and compare their final resident diversity to uninvaded communities under the same pulse mortality regimes. Our experiment shows that the disturbances synergistically interact, such that the invader significantly reduces resident diversity at high pulse frequency, but not at low. This work therefore highlights the need to study simultaneous disturbance effects over multiple disturbance regimes as well as to carefully document unmanipulated disturbances, and may help explain the conflicting results seen in previous multiple-disturbance work.


Asunto(s)
Biodiversidad , Ecosistema , Especies Introducidas , Bacterias
4.
Microbiology (Reading) ; 168(12)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36748702

RESUMEN

There exists an enormous diversity of bacteria capable of human infection, but no up-to-date, publicly accessible list is available. Combining a pragmatic definition of pathogenicity with an extensive search strategy, we report 1513 bacterial pathogens known to infect humans described pre-2021. Of these, 73 % were regarded as established (have infected at least three persons in three or more references) and 27 % as putative (fewer than three known cases). Pathogen species belong to 10 phyla and 24 classes scattered throughout the bacterial phylogeny. We show that new human pathogens are discovered at a rapid rate. Finally, we discuss how our results could be expanded to a database, which could provide a useful resource for microbiologists. Our list is freely available and archived on GitHub and Zenodo and we have provided walkthroughs to facilitate access and use.


Asunto(s)
Bacterias , Humanos , Bacterias/genética , Bases de Datos Factuales , Filogenia
5.
BMC Microbiol ; 22(1): 303, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36510131

RESUMEN

BACKGROUND: Iron is essential for almost all bacterial pathogens and consequently it is actively withheld by their hosts. However, the production of extracellular siderophores enables iron sequestration by pathogens, increasing their virulence. Another function of siderophores is extracellular detoxification of non-ferrous metals. Here, we experimentally link the detoxification and virulence roles of siderophores by testing whether the opportunistic pathogen Pseudomonas aeruginosa displays greater virulence after exposure to copper. To do this, we incubated P. aeruginosa under different environmentally relevant copper regimes for either two or twelve days. Subsequent growth in a copper-free environment removed phenotypic effects, before we quantified pyoverdine production (the primary siderophore produced by P. aeruginosa), and virulence using the Galleria mellonella infection model. RESULTS: Copper selected for increased pyoverdine production, which was positively correlated with virulence. This effect increased with time, such that populations incubated with high copper for twelve days were the most virulent. Replication of the experiment with a non-pyoverdine producing strain of P. aeruginosa demonstrated that pyoverdine production was largely responsible for the change in virulence. CONCLUSIONS: We here show a direct link between metal stress and bacterial virulence, highlighting another dimension of the detrimental effects of metal pollution on human health.


Asunto(s)
Pseudomonas aeruginosa , Sideróforos , Humanos , Virulencia , Hierro
6.
Proc Biol Sci ; 287(1919): 20192415, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31992171

RESUMEN

Disturbances can play a major role in biological invasions: by destroying biomass, they alter habitat and resource abundances. Previous field studies suggest that disturbance-mediated invader success is a consequence of resource influxes, but the importance of other potential covarying causes, notably the opening up of habitats, have yet to be directly tested. Using experimental populations of the bacterium Pseudomonas fluorescens, we determined the relative importance of disturbance-mediated habitat opening and resource influxes, plus any interaction between them, for invader success of two ecologically distinct morphotypes. Resource addition increased invasibility, while habitat opening had little impact and did not interact with resource addition. Both invaders behaved similarly, despite occupying different ecological niches in the microcosms. Treatment also affected the composition of the resident population, which further affected invader success. Our results provide experimental support for the observation that resource input is a key mechanism through which disturbance increases invasibility.


Asunto(s)
Ecosistema , Especies Introducidas , Pseudomonas fluorescens , Biomasa , Ecología
7.
Evol Appl ; 16(7): 1377-1389, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37492145

RESUMEN

Anthropogenic metal pollution can result in co-selection for antibiotic resistance and potentially select for increased virulence in bacterial pathogens. Metal-polluted environments can select for the increased production of siderophore molecules to detoxify non-ferrous metals. However, these same molecules also aid the uptake of ferric iron, a limiting factor for within-host pathogen growth, and are consequently a virulence factor. Anthropogenic methods to remediate environmental metal contamination commonly involve amendment with lime-containing materials. However, whether this reduces in situ co-selection for antibiotic resistance and siderophore-mediated virulence remains unknown. Here, using microcosms containing non-sterile metal-contaminated river water and sediment, we test whether liming reduces co-selection for these pathogenicity traits in the opportunistic pathogen Pseudomonas aeruginosa. To account for the effect of environmental structure, which is known to impact siderophore production, microcosms were incubated under either static or shaking conditions. Evolved P. aeruginosa populations had greater fitness in the presence of toxic concentrations of copper than the ancestral strain and showed increased resistance to the clinically relevant antibiotics apramycin, cefotaxime and trimethoprim, regardless of lime addition or environmental structure. Although we found virulence to be significantly associated with siderophore production, neither virulence nor siderophore production significantly differed between the four treatments. Furthermore, liming did not mitigate metal-imposed selection for antibiotic resistance or virulence in P. aeruginosa. Consequently, metal-contaminated environments may select for antibiotic resistance and virulence traits even when treated with lime.

8.
Environ Int ; 182: 108295, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37980880

RESUMEN

Increasing environmental concentrations of metals as a result of anthropogenic pollution are significantly changing many microbial communities. While there is evidence metal pollution can result in increased antibiotic resistance, the effects of metal pollution on the virulence of bacterial communities remains largely undetermined. Here, we experimentally test whether metal stress alters the virulence of bacterial communities. We do this by incubating three wastewater influent communities under different environmentally relevant copper concentrations for three days. We then quantify the virulence of the community phenotypically using the Galleria mellonella infection model, and test if differences are due to changes in the rate of biomass accumulation (productivity), copper resistance, or community composition (quantified using 16S amplicon sequencing). The virulence of the communities was found to be reduced by the highest copper concentration, but not to be affected by the lower concentration. As well as reduced virulence, communities exposed to the highest copper concentration were less diverse and had lower productivity. This work highlights that metal pollution may decrease virulence in bacterial communities, but at a cost to diversity and productivity.


Asunto(s)
Bacterias , Cobre , Cobre/toxicidad , Virulencia , Bacterias/genética , Metales/farmacología , Contaminación Ambiental
9.
Ecology ; 103(8): e3728, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35412647

RESUMEN

Disturbances can facilitate biological invasions, with the associated increase in resource availability being a proposed cause. Here, we experimentally tested the interactive effects of disturbance regime (different frequencies of biomass removal at equal intensities) and resource abundance on invasion success using a factorial design containing five disturbance frequencies and three resource levels. We invaded populations of the bacterium Pseudomonas fluorescens with two ecologically different invader morphotypes: a fast-growing "colonizer" type and a slower growing "competitor" type. As resident populations were altered by the treatments, we additionally tested their effect on invader success. Disturbance frequency and resource abundance interacted to affect the success of both invaders, but this interaction differed between the invader types. The success of the colonizer type was positively affected by disturbance under high resources but negatively under low. However, disturbance negatively affected the success of the competitor type under high resource abundance but not under low or medium. Resident population changes did not alter invader success beyond direct treatment effects. We therefore demonstrate that the same disturbance regime can either be beneficial or detrimental for an invader depending on both community resource abundance and its life history. These results may help to explain some of the inconsistencies found in the disturbance-invasion literature.


Asunto(s)
Ecosistema , Bacterias , Biomasa , Especies Introducidas
10.
Sci Total Environ ; 838(Pt 4): 156199, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35636543

RESUMEN

Accumulation of plastics in the marine environment has widespread detrimental consequences for ecosystems and wildlife. Marine plastics are rapidly colonised by a wide diversity of bacteria, including human pathogens, posing potential risks to health. Here, we investigate the effect of polymer type, residence time and estuarine location on bacterial colonisation of common household plastics, including pathogenic bacteria. We submerged five main household plastic types: low-density PE (LDPE), high-density PE (HDPE), polypropylene (PP), polyvinyl chloride (PVC) and polyethylene terephthalate (PET) at an estuarine site in Cornwall (U.K.) and tracked bacterial colonisation dynamics. Using both culture-dependent and culture-independent approaches, we found that bacteria rapidly colonised plastics irrespective of polymer type, reaching culturable densities of up to 1000 cells cm3 after 7 weeks. Community composition of the biofilms changed over time, but not among polymer types. The presence of pathogenic bacteria, quantified using the insect model Galleria mellonella, increased dramatically over a five-week period, with Galleria mortality increasing from 4% in week one to 65% in week five. No consistent differences in virulence were observed between polymer types. Pathogens isolated from plastic biofilms using Galleria enrichment included Serratia and Enterococcus species and they harboured a wide range of antimicrobial resistance genes. Our findings show that plastics in coastal waters are rapidly colonised by a wide diversity of bacteria independent of polymer type. Further, our results show that marine plastic biofilms become increasingly associated with virulent bacteria over time.


Asunto(s)
Ecosistema , Plásticos , Bacterias , Biopelículas , Humanos , Cloruro de Polivinilo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA