Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Exp Eye Res ; 145: 269-277, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26854823

RESUMEN

Age-related macular degeneration (AMD) is a major cause of blindness among the elderly in the developed world. Genetic analysis of AMD has identified 34 high-risk loci associated with AMD. The genes at these high risk loci belong to diverse biological pathways, suggesting different mechanisms leading to AMD pathogenesis. Thus, therapies targeting a single pathway for all AMD patients will likely not be universally effective. Recent evidence suggests defects in mitochondria (mt) of the retinal pigment epithelium (RPE) may constitute a key pathogenic event in some AMD patients. The purpose of this study is to determine if individuals with a specific genetic background have a greater propensity for mtDNA damage. We used human eyebank tissues from 76 donors with AMD and 42 age-matched controls to determine the extent of mtDNA damage in the RPE that was harvested from the macula using a long extension polymerase chain reaction assay. Genotype analyses were performed for ten common AMD-associated nuclear risk alleles (ARMS2, TNFRSF10A, CFH, C2, C3, APOE, CETP, LIPC, VEGF and COL10A1) and mtDNA haplogroups. Sufficient samples were available for genotype association with mtDNA damage for TNFRSF10A, CFH, CETP, VEGFA, and COL10A1. Our results show that AMD donors carrying the high risk allele for CFH (C) had significantly more mtDNA damage compared with donors having the wild-type genetic profile. The data from an additional 39 donors (12 controls and 27 AMD) genotyped for CFH alleles further supported these findings. Taken together, these studies provide the rationale for a more personalized approach for treating AMD by uncovering a significant correlation between the CFH high risk allele and accelerated mtDNA damage. Patients harboring this genetic risk factor may benefit from therapies that stabilize and protect the mt in the RPE.


Asunto(s)
Factor H de Complemento/genética , Daño del ADN/fisiología , ADN Mitocondrial , Degeneración Macular/genética , Epitelio Pigmentado de la Retina , Anciano , Anciano de 80 o más Años , Alelos , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Degeneración Macular/metabolismo , Degeneración Macular/fisiopatología , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa
2.
Mol Genet Metab Rep ; 19: 100464, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30891420

RESUMEN

Clinical laboratories have adopted next generation sequencing (NGS) as a gold standard for the diagnosis of hereditary disorders because of its analytic accuracy, high throughput, and potential for cost-effectiveness. We describe the implementation of a single broad-based NGS sequencing assay to meet the genetic testing needs at the University of Minnesota. A single hybrid capture library preparation was used for each test ordered, data was informatically blinded to clinically-ordered genes, and identified variants were reviewed and classified by genetic counselors and molecular pathologists. We performed 2509 sequencing tests from August 2012 till December 2017. The diagnostic yield has remained steady at 25%, but the number of variants of uncertain significance (VUS) included in a patient report decreased over time with 50% of the patient reports including at least one VUS in 2012 and only 22% of the patient reports reporting a VUS in 2017 (p = .002). Among the various clinical specialties, the diagnostic yield was highest in dermatology (60% diagnostic yield) and ophthalmology (42% diagnostic yield) while the diagnostic yield was lowest in gastrointestinal diseases and pulmonary diseases (10% detection yield in both specialties). Deletion/duplication analysis was also implemented in a subset of panels ordered, with 9% of samples having a diagnostic finding using the deletion/duplication analysis. We have demonstrated the feasibility of this broad-based NGS platform to meet the needs of our academic institution by aggregating a sufficient sample volume from many individually rare tests and providing a flexible ordering for custom, patient-specific panels.

3.
Redox Biol ; 13: 255-265, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28600982

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of blindness among older adults. It has been suggested that mitochondrial defects in the retinal pigment epithelium (RPE) underlies AMD pathology. To test this idea, we developed primary cultures of RPE to ask whether RPE from donors with AMD differ in their metabolic profile compared with healthy age-matched donors. Analysis of gene expression, protein content, and RPE function showed that these cultured cells replicated many of the cardinal features of RPE in vivo. Using the Seahorse Extracellular Flux Analyzer to measure bioenergetics, we observed RPE from donors with AMD exhibited reduced mitochondrial and glycolytic function compared with healthy donors. RPE from AMD donors were also more resistant to oxidative inactivation of these two energy-producing pathways and were less susceptible to oxidation-induced cell death compared with cells from healthy donors. Investigation of the potential mechanism responsible for differences in bioenergetics and resistance to oxidative stress showed RPE from AMD donors had increased PGC1α protein as well as differential expression of multiple genes in response to an oxidative challenge. Based on our data, we propose that cultured RPE from donors phenotyped for the presence or absence of AMD provides an excellent model system for studying "AMD in a dish". Our results are consistent with the ideas that (i) a bioenergetics crisis in the RPE contributes to AMD pathology, and (ii) the diseased environment in vivo causes changes in the cellular profile that are retained in vitro.


Asunto(s)
Degeneración Macular/metabolismo , Estrés Oxidativo , Epitelio Pigmentado de la Retina/metabolismo , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Células Cultivadas , Células Epiteliales/metabolismo , Femenino , Glucólisis , Humanos , Degeneración Macular/patología , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Fosforilación Oxidativa , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Epitelio Pigmentado de la Retina/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA