Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell ; 183(3): 620-635.e22, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33035454

RESUMEN

Hippocampal activity represents many behaviorally important variables, including context, an animal's location within a given environmental context, time, and reward. Using longitudinal calcium imaging in mice, multiple large virtual environments, and differing reward contingencies, we derived a unified probabilistic model of CA1 representations centered on a single feature-the field propensity. Each cell's propensity governs how many place fields it has per unit space, predicts its reward-related activity, and is preserved across distinct environments and over months. Propensity is broadly distributed-with many low, and some very high, propensity cells-and thus strongly shapes hippocampal representations. This results in a range of spatial codes, from sparse to dense. Propensity varied ∼10-fold between adjacent cells in salt-and-pepper fashion, indicating substantial functional differences within a presumed cell type. Intracellular recordings linked propensity to cell excitability. The stability of each cell's propensity across conditions suggests this fundamental property has anatomical, transcriptional, and/or developmental origins.


Asunto(s)
Hipocampo/anatomía & histología , Hipocampo/fisiología , Animales , Conducta Animal/fisiología , Fenómenos Biofísicos , Calcio/metabolismo , Masculino , Ratones Endogámicos C57BL , Modelos Neurológicos , Células Piramidales/fisiología , Recompensa , Análisis y Desempeño de Tareas , Factores de Tiempo
2.
Cell ; 165(7): 1749-1761, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27315482

RESUMEN

Neurons are well suited for computations on millisecond timescales, but some neuronal circuits set behavioral states over long time periods, such as those involved in energy homeostasis. We found that multiple types of hypothalamic neurons, including those that oppositely regulate body weight, are specialized as near-perfect synaptic integrators that summate inputs over extended timescales. Excitatory postsynaptic potentials (EPSPs) are greatly prolonged, outlasting the neuronal membrane time-constant up to 10-fold. This is due to the voltage-gated sodium channel Nav1.7 (Scn9a), previously associated with pain-sensation but not synaptic integration. Scn9a deletion in AGRP, POMC, or paraventricular hypothalamic neurons reduced EPSP duration, synaptic integration, and altered body weight in mice. In vivo whole-cell recordings in the hypothalamus confirmed near-perfect synaptic integration. These experiments show that integration of synaptic inputs over time by Nav1.7 is critical for body weight regulation and reveal a mechanism for synaptic control of circuits regulating long term homeostatic functions.


Asunto(s)
Mantenimiento del Peso Corporal , Hipotálamo/citología , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Neuronas/metabolismo , Sinapsis , Proteína Relacionada con Agouti/metabolismo , Animales , Homeostasis , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Transgénicos
3.
Annu Rev Neurosci ; 43: 231-247, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32084328

RESUMEN

The claustrum is one of the most widely connected regions of the forebrain, yet its function has remained obscure, largely due to the experimentally challenging nature of targeting this small, thin, and elongated brain area. However, recent advances in molecular techniques have enabled the anatomy and physiology of the claustrum to be studied with the spatiotemporal and cell type-specific precision required to eventually converge on what this area does. Here we review early anatomical and electrophysiological results from cats and primates, as well as recent work in the rodent, identifying the connectivity, cell types, and physiological circuit mechanisms underlying the communication between the claustrum and the cortex. The emerging picture is one in which the rodent claustrum is closely tied to frontal/limbic regions and plays a role in processes, such as attention, that are associated with these areas.


Asunto(s)
Ganglios Basales/fisiología , Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Claustro/anatomía & histología , Vías Nerviosas/fisiología , Animales , Ganglios Basales/anatomía & histología , Claustro/fisiopatología , Lóbulo Frontal/anatomía & histología , Lóbulo Frontal/fisiología , Corteza Prefrontal/anatomía & histología , Corteza Prefrontal/fisiología
4.
Nature ; 546(7657): 302-306, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28562582

RESUMEN

Similar to resting mature B cells, where the B-cell antigen receptor (BCR) controls cellular survival, surface BCR expression is conserved in most mature B-cell lymphomas. The identification of activating BCR mutations and the growth disadvantage upon BCR knockdown of cells of certain lymphoma entities has led to the view that BCR signalling is required for tumour cell survival. Consequently, the BCR signalling machinery has become an established target in the therapy of B-cell malignancies. Here we study the effects of BCR ablation on MYC-driven mouse B-cell lymphomas and compare them with observations in human Burkitt lymphoma. Whereas BCR ablation does not, per se, significantly affect lymphoma growth, BCR-negative (BCR-) tumour cells rapidly disappear in the presence of their BCR-expressing (BCR+) counterparts in vitro and in vivo. This requires neither cellular contact nor factors released by BCR+ tumour cells. Instead, BCR loss induces the rewiring of central carbon metabolism, increasing the sensitivity of receptor-less lymphoma cells to nutrient restriction. The BCR attenuates glycogen synthase kinase 3 beta (GSK3ß) activity to support MYC-controlled gene expression. BCR- tumour cells exhibit increased GSK3ß activity and are rescued from their competitive growth disadvantage by GSK3ß inhibition. BCR- lymphoma variants that restore competitive fitness normalize GSK3ß activity after constitutive activation of the MAPK pathway, commonly through Ras mutations. Similarly, in Burkitt lymphoma, activating RAS mutations may propagate immunoglobulin-crippled tumour cells, which usually represent a minority of the tumour bulk. Thus, while BCR expression enhances lymphoma cell fitness, BCR-targeted therapies may profit from combinations with drugs targeting BCR- tumour cells.


Asunto(s)
Linfocitos B/metabolismo , Genes myc , Aptitud Genética , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Linfoma/genética , Linfoma/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Linfoma de Burkitt/genética , Linfoma de Burkitt/inmunología , Linfoma de Burkitt/patología , Carbono/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Genes ras/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Linfoma/enzimología , Linfoma/patología , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Mutación , Receptores de Antígenos de Linfocitos B/deficiencia , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/inmunología , Células Tumorales Cultivadas
5.
Nature ; 551(7679): 232-236, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29120427

RESUMEN

Sensory, motor and cognitive operations involve the coordinated action of large neuronal populations across multiple brain regions in both superficial and deep structures. Existing extracellular probes record neural activity with excellent spatial and temporal (sub-millisecond) resolution, but from only a few dozen neurons per shank. Optical Ca2+ imaging offers more coverage but lacks the temporal resolution needed to distinguish individual spikes reliably and does not measure local field potentials. Until now, no technology compatible with use in unrestrained animals has combined high spatiotemporal resolution with large volume coverage. Here we design, fabricate and test a new silicon probe known as Neuropixels to meet this need. Each probe has 384 recording channels that can programmably address 960 complementary metal-oxide-semiconductor (CMOS) processing-compatible low-impedance TiN sites that tile a single 10-mm long, 70 × 20-µm cross-section shank. The 6 × 9-mm probe base is fabricated with the shank on a single chip. Voltage signals are filtered, amplified, multiplexed and digitized on the base, allowing the direct transmission of noise-free digital data from the probe. The combination of dense recording sites and high channel count yielded well-isolated spiking activity from hundreds of neurons per probe implanted in mice and rats. Using two probes, more than 700 well-isolated single neurons were recorded simultaneously from five brain structures in an awake mouse. The fully integrated functionality and small size of Neuropixels probes allowed large populations of neurons from several brain structures to be recorded in freely moving animals. This combination of high-performance electrode technology and scalable chip fabrication methods opens a path towards recording of brain-wide neural activity during behaviour.


Asunto(s)
Electrodos , Neuronas/fisiología , Silicio/metabolismo , Animales , Corteza Entorrinal/citología , Corteza Entorrinal/fisiología , Femenino , Masculino , Ratones , Movimiento/fisiología , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Ratas , Semiconductores , Vigilia/fisiología
6.
Genet Med ; 23(3): 443-450, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33190143

RESUMEN

PURPOSE: The percentage of a maternal cell-free DNA (cfDNA) sample that is fetal-derived (the fetal fraction; FF) is a key driver of the sensitivity and specificity of noninvasive prenatal screening (NIPS). On certain NIPS platforms, >20% of women with high body mass index (and >5% overall) receive a test failure due to low FF (<4%). METHODS: A scalable fetal fraction amplification (FFA) technology was analytically validated on 1264 samples undergoing whole-genome sequencing (WGS)-based NIPS. All samples were tested with and without FFA. RESULTS: Zero samples had FF < 4% when screened with FFA, whereas 1 in 25 of these same patients had FF < 4% without FFA. The average increase in FF was 3.9-fold for samples with low FF (2.3-fold overall) and 99.8% had higher FF with FFA. For all abnormalities screened on NIPS, z-scores increased 2.2-fold on average in positive samples and remained unchanged in negative samples, powering an increase in NIPS sensitivity and specificity. CONCLUSION: FFA transforms low-FF samples into high-FF samples. By combining FFA with WGS-based NIPS, a single round of NIPS can provide nearly all women with confident results about the broad range of potential fetal chromosomal abnormalities across the genome.


Asunto(s)
Ácidos Nucleicos Libres de Células , Pruebas Prenatales no Invasivas , Aneuploidia , Ácidos Nucleicos Libres de Células/genética , Aberraciones Cromosómicas , Femenino , Feto , Humanos , Embarazo , Atención Prenatal , Diagnóstico Prenatal
7.
J Neurophysiol ; 118(2): 1270-1291, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28566460

RESUMEN

Seconds-scale network states, affecting many neurons within a network, modulate neural activity by complementing fast integration of neuron-specific inputs that arrive in the milliseconds before spiking. Nonrhythmic subthreshold dynamics at intermediate timescales, however, are less well characterized. We found, using automated whole cell patch clamping in vivo, that spikes recorded in CA1 and barrel cortex in awake mice are often preceded not only by monotonic voltage rises lasting milliseconds but also by more gradual (lasting tens to hundreds of milliseconds) depolarizations. The latter exert a gating function on spiking, in a fashion that depends on the gradual rise duration: the probability of spiking was higher for longer gradual rises, even when controlled for the amplitude of the gradual rises. Barrel cortex double-autopatch recordings show that gradual rises are shared across some, but not all, neurons. The gradual rises may represent a new kind of state, intermediate both in timescale and in proportion of neurons participating, which gates a neuron's ability to respond to subsequent inputs.NEW & NOTEWORTHY We analyzed subthreshold activity preceding spikes in hippocampus and barrel cortex of awake mice. Aperiodic voltage ramps extending over tens to hundreds of milliseconds consistently precede and facilitate spikes, in a manner dependent on both their amplitude and their duration. These voltage ramps represent a "mesoscale" activated state that gates spike production in vivo.


Asunto(s)
Región CA1 Hipocampal/fisiología , Potenciales Evocados , Potenciales de la Membrana , Vigilia , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
8.
J Neurosci ; 34(29): 9537-50, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-25031397

RESUMEN

During many natural behaviors the relevant sensory stimuli and motor outputs are difficult to quantify. Furthermore, the high dimensionality of the space of possible stimuli and movements compounds the problem of experimental control. Head fixation facilitates stimulus control and movement tracking, and can be combined with techniques for recording and manipulating neural activity. However, head-fixed mouse behaviors are typically trained through extensive instrumental conditioning. Here we present a whisker-based, tactile virtual reality system for head-fixed mice running on a spherical treadmill. Head-fixed mice displayed natural movements, including running and rhythmic whisking at 16 Hz. Whisking was centered on a set point that changed in concert with running so that more protracted whisking was correlated with faster running. During turning, whiskers moved in an asymmetric manner, with more retracted whisker positions in the turn direction and protracted whisker movements on the other side. Under some conditions, whisker movements were phase-coupled to strides. We simulated a virtual reality tactile corridor, consisting of two moveable walls controlled in a closed-loop by running speed and direction. Mice used their whiskers to track the walls of the winding corridor without training. Whisker curvature changes, which cause forces in the sensory follicles at the base of the whiskers, were tightly coupled to distance from the walls. Our behavioral system allows for precise control of sensorimotor variables during natural tactile navigation.


Asunto(s)
Vías Aferentes/fisiología , Movimientos de la Cabeza/fisiología , Tacto , Interfaz Usuario-Computador , Vibrisas/inervación , Animales , Channelrhodopsins , Canales Epiteliales de Sodio/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología , Optogenética , Desempeño Psicomotor/fisiología , Privación Sensorial/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Grabación en Video , Percepción Visual/fisiología
9.
BMC Genomics ; 16: 1033, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26643810

RESUMEN

BACKGROUND: The Egyptian Rousette bat (Rousettus aegyptiacus), a common fruit bat species found throughout Africa and the Middle East, was recently identified as a natural reservoir host of Marburg virus. With Ebola virus, Marburg virus is a member of the family Filoviridae that causes severe hemorrhagic fever disease in humans and nonhuman primates, but results in little to no pathological consequences in bats. Understanding host-pathogen interactions within reservoir host species and how it differs from hosts that experience severe disease is an important aspect of evaluating viral pathogenesis and developing novel therapeutics and methods of prevention. RESULTS: Progress in studying bat reservoir host responses to virus infection is hampered by the lack of host-specific reagents required for immunological studies. In order to establish a basis for the design of reagents, we sequenced, assembled, and annotated the R. aegyptiacus transcriptome. We performed de novo transcriptome assembly using deep RNA sequencing data from 11 distinct tissues from one male and one female bat. We observed high similarity between this transcriptome and those available from other bat species. Gene expression analysis demonstrated clustering of expression profiles by tissue, where we also identified enrichment of tissue-specific gene ontology terms. In addition, we identified and experimentally validated the expression of novel coding transcripts that may be specific to this species. CONCLUSION: We comprehensively characterized the R. aegyptiacus transcriptome de novo. This transcriptome will be an important resource for understanding bat immunology, physiology, disease pathogenesis, and virus transmission.


Asunto(s)
Quirópteros/genética , Biología Computacional , Anotación de Secuencia Molecular , Transcriptoma , Animales , Análisis por Conglomerados , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Reproducibilidad de los Resultados
10.
Nat Neurosci ; 26(1): 131-139, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36581729

RESUMEN

Daily experience suggests that we perceive distances near us linearly. However, the actual geometry of spatial representation in the brain is unknown. Here we report that neurons in the CA1 region of rat hippocampus that mediate spatial perception represent space according to a non-linear hyperbolic geometry. This geometry uses an exponential scale and yields greater positional information than a linear scale. We found that the size of the representation matches the optimal predictions for the number of CA1 neurons. The representations also dynamically expanded proportional to the logarithm of time that the animal spent exploring the environment, in correspondence with the maximal mutual information that can be received. The dynamic changes tracked even small variations due to changes in the running speed of the animal. These results demonstrate how neural circuits achieve efficient representations using dynamic hyperbolic geometry.


Asunto(s)
Encéfalo , Hipocampo , Ratas , Animales , Hipocampo/fisiología , Percepción Espacial/fisiología , Neuronas/fisiología , Región CA1 Hipocampal/fisiología
11.
Science ; 382(6670): 566-573, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37917713

RESUMEN

The hippocampus is critical for recollecting and imagining experiences. This is believed to involve voluntarily drawing from hippocampal memory representations of people, events, and places, including maplike representations of familiar environments. However, whether representations in such "cognitive maps" can be volitionally accessed is unknown. We developed a brain-machine interface to test whether rats can do so by controlling their hippocampal activity in a flexible, goal-directed, and model-based manner. We found that rats can efficiently navigate or direct objects to arbitrary goal locations within a virtual reality arena solely by activating and sustaining appropriate hippocampal representations of remote places. This provides insight into the mechanisms underlying episodic memory recall, mental simulation and planning, and imagination and opens up possibilities for high-level neural prosthetics that use hippocampal representations.


Asunto(s)
Mapeo Encefálico , Interfaces Cerebro-Computador , Hipocampo , Volición , Animales , Ratas , Hipocampo/fisiología , Imaginación/fisiología , Memoria Episódica , Recuerdo Mental/fisiología , Volición/fisiología , Navegación Espacial
12.
bioRxiv ; 2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38187593

RESUMEN

Local field potentials (LFPs) reflect the collective dynamics of neural populations, yet their exact relationship to neural codes remains unknown1. One notable exception is the theta rhythm of the rodent hippocampus, which seems to provide a reference clock to decode the animal's position from spatiotemporal patterns of neuronal spiking2 or LFPs3. But when the animal stops, theta becomes irregular4, potentially indicating the breakdown of temporal coding by neural populations. Here we show that no such breakdown occurs, introducing an artificial neural network that can recover position-tuned rhythmic patterns (pThetas) without relying on the more prominent theta rhythm as a reference clock. pTheta and theta preferentially correlate with place cell and interneuron spiking, respectively. When rats forage in an open field, pTheta is jointly tuned to position and head orientation, a property not seen in individual place cells but expected to emerge from place cell sequences5. Our work demonstrates that weak and intermittent oscillations, as seen in many brain regions and species, can carry behavioral information commensurate with population spike codes.

13.
Elife ; 112022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36355598

RESUMEN

A wide range of techniques in neuroscience involve placing individual probes at precise locations in the brain. However, large-scale measurement and manipulation of the brain using such methods have been severely limited by the inability to miniaturize systems for probe positioning. Here, we present a fundamentally new, remote-controlled micropositioning approach composed of novel phase-change material-filled resistive heater micro-grippers arranged in an inchworm motor configuration. The microscopic dimensions, stability, gentle gripping action, individual electronic control, and high packing density of the grippers allow micrometer-precision independent positioning of many arbitrarily shaped probes using a single piezo actuator. This multi-probe single-actuator design significantly reduces the size and weight and allows for potential automation of microdrives. We demonstrate accurate placement of multiple electrodes into the rat hippocampus in vivo in acute and chronic preparations. Our robotic microdrive technology should therefore enable the scaling up of many types of multi-probe applications in neuroscience and other fields.


Asunto(s)
Neuronas , Procedimientos Quirúrgicos Robotizados , Animales , Ratas , Electrofisiología/métodos , Electrodos Implantados , Encéfalo
14.
J Am Chem Soc ; 133(26): 10155-60, 2011 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-21612291

RESUMEN

The Horner method was used to synthesize random copolymers of poly(2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene) (MEH-PPV) that incorporated different backbone-directing monomers. Single-molecule polarization absorption studies of these new polymers demonstrate that defects that preserve the linear backbone of PPV-type polymers assume the highly anisotropic configurations found in defect-free MEH-PPV. Rigid defects that are bent lower the anisotropy of the single chain, and saturated defects that provide rotational freedom for the chain backbone allow for a wide variety of possible configurations. Molecular dynamics simulations of model defect PPV oligomers in solution demonstrate that defect-free and linearly defected oligomers remain extended while the bent and saturated defects tend toward more folded, compact structures.

15.
Science ; 372(6539)2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33859006

RESUMEN

Measuring the dynamics of neural processing across time scales requires following the spiking of thousands of individual neurons over milliseconds and months. To address this need, we introduce the Neuropixels 2.0 probe together with newly designed analysis algorithms. The probe has more than 5000 sites and is miniaturized to facilitate chronic implants in small mammals and recording during unrestrained behavior. High-quality recordings over long time scales were reliably obtained in mice and rats in six laboratories. Improved site density and arrangement combined with newly created data processing methods enable automatic post hoc correction for brain movements, allowing recording from the same neurons for more than 2 months. These probes and algorithms enable stable recordings from thousands of sites during free behavior, even in small animals such as mice.


Asunto(s)
Encéfalo/fisiología , Electrodos Implantados , Electrofisiología/instrumentación , Microelectrodos , Neuronas/fisiología , Potenciales de Acción , Algoritmos , Animales , Electrofisiología/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Miniaturización , Ratas
16.
Neuron ; 51(4): 399-407, 2006 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-16908406

RESUMEN

Intracellular recording, which allows direct measurement of the membrane potential and currents of individual neurons, requires a very mechanically stable preparation and has thus been limited to in vitro and head-immobilized in vivo experiments. This restriction constitutes a major obstacle for linking cellular and synaptic physiology with animal behavior. To overcome this limitation we have developed a method for performing whole-cell recordings in freely moving rats. We constructed a miniature head-mountable recording device, with mechanical stabilization achieved by anchoring the recording pipette rigidly in place after the whole-cell configuration is established. We obtain long-duration recordings (mean of approximately 20 min, maximum 60 min) in freely moving animals that are remarkably insensitive to mechanical disturbances, then reconstruct the anatomy of the recorded cells. This head-anchored whole-cell recording technique will enable a wide range of new studies involving detailed measurement and manipulation of the physiological properties of identified cells during natural behaviors.


Asunto(s)
Encéfalo/citología , Neuronas/fisiología , Técnicas de Placa-Clamp/instrumentación , Técnicas de Placa-Clamp/métodos , Vigilia/fisiología , Animales , Animales Recién Nacidos , Conducta Animal , Electrodos Implantados , Masculino , Potenciales de la Membrana/fisiología , Microelectrodos , Ratas , Ratas Sprague-Dawley , Ratas Wistar
17.
Elife ; 92020 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-33357380

RESUMEN

The prefrontal cortex (PFC)'s functions are thought to include working memory, as its activity can reflect information that must be temporarily maintained to realize the current goal. We designed a flexible spatial working memory task that required rats to navigate - after distractions and a delay - to multiple possible goal locations from different starting points and via multiple routes. This made the current goal location the key variable to remember, instead of a particular direction or route to the goal. However, across a broad population of PFC neurons, we found no evidence of current-goal-specific memory in any previously reported form - that is differences in the rate, sequence, phase, or covariance of firing. This suggests that such patterns do not hold working memory in the PFC when information must be employed flexibly. Instead, the PFC grouped locations representing behaviorally equivalent task features together, consistent with a role in encoding long-term knowledge of task structure.


Asunto(s)
Memoria a Corto Plazo/fisiología , Corteza Prefrontal/fisiología , Memoria Espacial/fisiología , Animales , Objetivos , Masculino , Aprendizaje por Laberinto/fisiología , Plasticidad Neuronal/fisiología , Ratas , Ratas Long-Evans
18.
Curr Biol ; 30(23): R1401-R1406, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33290700

RESUMEN

The claustrum is a brain region that has been investigated for over 200 years, yet its precise function remains unknown. In the final posthumously released article of Francis Crick, written with Christof Koch, the claustrum was suggested to be critically linked to consciousness. Though the claustrum remained relatively obscure throughout the last half century, it has enjoyed a renewed interest in the last 15 years since Crick and Koch's article. During this time, the claustrum, like many other brain regions, has been studied with the myriad of modern systems neuroscience tools that have been made available by the intersection of genetic and viral technologies. This has uncovered new information about its anatomical connectivity and physiological properties and begun to reveal aspects of its function. From these studies, one clear consensus has emerged which supports Crick and Koch's primary interest in the claustrum: the claustrum has widespread extensive connectivity with the entire cerebral cortex, suggesting a prominent role in 'higher order processes'.


Asunto(s)
Corteza Cerebral/fisiología , Claustro/fisiología , Estado de Conciencia/fisiología , Animales , Claustro/anatomía & histología , Humanos , Ratones , Modelos Animales , Vías Nerviosas/fisiología
19.
Nat Biomed Eng ; 3(9): 741-753, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30936430

RESUMEN

Electrophysiology is the most used approach for the collection of functional data in basic and translational neuroscience, but it is typically limited to either intracellular or extracellular recordings. The integration of multiple physiological modalities for the routine acquisition of multimodal data with microelectrodes could be useful for biomedical applications, yet this has been challenging owing to incompatibilities of fabrication methods. Here, we present a suite of glass pipettes with integrated microelectrodes for the simultaneous acquisition of multimodal intracellular and extracellular information in vivo, electrochemistry assessments, and optogenetic perturbations of neural activity. We used the integrated devices to acquire multimodal signals from the CA1 region of the hippocampus in mice and rats, and show that these data can serve as ground-truth validation for the performance of spike-sorting algorithms. The microdevices are applicable for basic and translational neurobiology, and for the development of next-generation brain-machine interfaces.


Asunto(s)
Encéfalo/fisiología , Electrofisiología/métodos , Microelectrodos , Técnicas de Placa-Clamp/métodos , Algoritmos , Animales , Región CA1 Hipocampal , Electroquímica , Electrofisiología/instrumentación , Vidrio , Masculino , Ratones , Neuronas/fisiología , Técnicas de Placa-Clamp/instrumentación , Ratas
20.
Neuron ; 36(6): 1183-94, 2002 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-12495631

RESUMEN

Rats repeatedly ran through a sequence of spatial receptive fields of hippocampal CA1 place cells in a fixed temporal order. A novel combinatorial decoding method reveals that these neurons repeatedly fired in precisely this order in long sequences involving four or more cells during slow wave sleep (SWS) immediately following, but not preceding, the experience. The SWS sequences occurred intermittently in brief ( approximately 100 ms) bursts, each compressing the behavioral sequence in time by approximately 20-fold. This rapid encoding of sequential experience is consistent with evidence that the hippocampus is crucial for spatial learning in rodents and the formation of long-term memories of events in time in humans.


Asunto(s)
Hipocampo/fisiología , Aprendizaje/fisiología , Memoria/fisiología , Vías Nerviosas/fisiología , Células Piramidales/fisiología , Sueño/fisiología , Potenciales de Acción/fisiología , Animales , Hipocampo/citología , Masculino , Vías Nerviosas/citología , Pruebas Neuropsicológicas , Células Piramidales/citología , Ratas , Ratas Long-Evans , Procesamiento de Señales Asistido por Computador , Transducción de Señal/fisiología , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA