Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(41): 20309-20314, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31548411

RESUMEN

Four North Atlantic Aerosol and Marine Ecosystems Study (NAAMES) field campaigns from winter 2015 through spring 2018 sampled an extensive set of oceanographic and atmospheric parameters during the annual phytoplankton bloom cycle. This unique dataset provides four seasons of open-ocean observations of wind speed, sea surface temperature (SST), seawater particle attenuation at 660 nm (cp,660, a measure of ocean particulate organic carbon), bacterial production rates, and sea-spray aerosol size distributions and number concentrations (NSSA). The NAAMES measurements show moderate to strong correlations (0.56 < R < 0.70) between NSSA and local wind speeds in the marine boundary layer on hourly timescales, but this relationship weakens in the campaign averages that represent each season, in part because of the reduction in range of wind speed by multiday averaging. NSSA correlates weakly with seawater cp,660 (R = 0.36, P << 0.01), but the correlation with cp,660, is improved (R = 0.51, P < 0.05) for periods of low wind speeds. In addition, NAAMES measurements provide observational dependence of SSA mode diameter (dm) on SST, with dm increasing to larger sizes at higher SST (R = 0.60, P << 0.01) on hourly timescales. These results imply that climate models using bimodal SSA parameterizations to wind speed rather than a single SSA mode that varies with SST may overestimate SSA number concentrations (hence cloud condensation nuclei) by a factor of 4 to 7 and may underestimate SSA scattering (hence direct radiative effects) by a factor of 2 to 5, in addition to overpredicting variability in SSA scattering from wind speed by a factor of 5.

2.
Environ Sci Technol ; 54(17): 10808-10819, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32867480

RESUMEN

Brown carbon (BrC) has significant climatic impact, but its emission sources and formation processes remain under-represented in climate models. However, there are only limited field studies to quantify the light absorption properties of specific types of primary and secondary organic aerosols (POAs and SOAs) in different environments. This work investigates the light absorption properties of the major OA components in Singapore, a well-developed city in the tropical region, where air quality can be influenced by multiple local urban sources and regional biomass burning events. The source-specific mass absorption cross-section (MAC) and wavelength dependence of different BrC components were quantified based on highly time-resolved aerosol chemical composition and absorption measurements. In particular, the combustion-related emission sources were the primary contributors to BrC light absorption and they were moderately absorbing. The SOA materials, which were freshly formed under atmospheric conditions with industrial influences, were also moderately light absorptive. The aged SOA components that were composed of aged regional emissions, including biomass burning and coal combustion emissions from nearby regions, were weakly light absorbing, highlighting the possibility of photobleaching of BrC during their atmospheric aging and dispersion. Lastly, our estimations illustrate that typical urban POAs and SOAs can contribute up to approximately 36-58% of the BrC absorption, even in some urban locations that are influenced by biomass burning emissions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Biomasa , Carbono/análisis , Clima , Monitoreo del Ambiente , Material Particulado/análisis
3.
Environ Sci Technol ; 54(20): 13207-13216, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32924450

RESUMEN

Atmospheric brown carbon (BrC) is a significant contributor to particulate light absorption. Reactions between small aldehydes and reduced nitrogen species have been shown to produce secondary BrC in atmospheric droplets. These reactions can be substantially accelerated upon droplet evaporation. Despite aqueous droplets undergoing continuous water evaporation and uptake in response to the surrounding relative humidity (RH), secondary BrC formation in these droplets under various RH conditions remains poorly understood. In this work, we investigate BrC formation from reactions of two aqueous-phase precursors, glyoxal and methylglyoxal, with ammonium sulfate or glycine in aqueous droplets after drying at a range of RH (30-90%). Our results illustrate, for the first time, that BrC production varies as a function of RH. For all four chemical reaction systems being investigated, mass absorption efficiencies (MAE, m2/g C) of aqueous aerosol products (from 270 to 512 nm wavelength range) generally increase with reducing RH to reach a maximum at ∼55-65% RH and subsequently decrease, caused by further drying. Chemical characterization using high-resolution aerosol mass spectrometry shows that the formation of nitrogen-containing organic species also follows a similar variation with RH. Our observations reveal that the acceleration of BrC production from evaporation of water may be diminished by other factors, such as limited particle-phase water content, phase transition, and volatility of reactants and products. Overall, our results highlight that intermediate RH conditions in the atmosphere may be more efficient in secondary BrC formation, indicating that the effect of RH needs to be included in atmospheric models for a more accurate representation of light-absorbing aerosol formation in aqueous droplets.


Asunto(s)
Carbono , Glioxal , Aerosoles , Sulfato de Amonio , Humedad , Agua
4.
Environ Sci Technol ; 54(12): 7097-7106, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32428397

RESUMEN

The relative humidity (RH) history that manifests the cycling of dehydration (water evaporation) and hydration (water uptake) may affect particle-phase reactions, products from which have strong influences on the physical properties and thus climatic effects of atmospheric particles. Using single-trapped particles, we show herein hygroscopic growths of mixed particles with reactive species undergoing three types of RH cycles, simulating different degrees of particle-phase reactions in the atmosphere. The reactive species are the widely known α-dicarbonyl glyoxal (GLY), and five reduced nitrogenous species, ammonium sulfate (AS), glycine (GC), l-alanine (AL), dimethylamine (DMA), and diethylamine (DEA). The results showed that the mixed particles after reactions generally had altered efflorescence relative humidity (ERH) and deliquescence relative humidity (DRH) values and reduced hygroscopic growths at moderately high RH (>80%) conditions. For example, with an additional slow drying step, the mean mass growth factors at 90% RH during dehydration dropped from 2.56 to 2.02 for GC/GLY mixed particles and from 2.45 to 1.23 for AL/GLY mixed particles. The reduced hygroscopicity with more RH cycling will thus lead to less efficient light scattering of the mixed particles, thereby resulting in less cooling and exacerbating direct heating due to light absorption by the products formed.


Asunto(s)
Glioxal , Nitrógeno , Aerosoles , Humedad , Humectabilidad
5.
Proc Natl Acad Sci U S A ; 114(24): 6203-6208, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28559340

RESUMEN

Summertime Arctic shipboard observations of oxygenated volatile organic compounds (OVOCs) such as organic acids, key precursors of climatically active secondary organic aerosol (SOA), are consistent with a novel source of OVOCs to the marine boundary layer via chemistry at the sea surface microlayer. Although this source has been studied in a laboratory setting, organic acid emissions from the sea surface microlayer have not previously been observed in ambient marine environments. Correlations between measurements of OVOCs, including high levels of formic acid, in the atmosphere (measured by an online high-resolution time-of-flight mass spectrometer) and dissolved organic matter in the ocean point to a marine source for the measured OVOCs. That this source is photomediated is indicated by correlations between the diurnal cycles of the OVOC measurements and solar radiation. In contrast, the OVOCs do not correlate with levels of isoprene, monoterpenes, or dimethyl sulfide. Results from box model calculations are consistent with heterogeneous chemistry as the source of the measured OVOCs. As sea ice retreats and dissolved organic carbon inputs to the Arctic increase, the impact of this source on the summer Arctic atmosphere is likely to increase. Globally, this source should be assessed in other marine environments to quantify its impact on OVOC and SOA burdens in the atmosphere, and ultimately on climate.

6.
Environ Sci Technol ; 53(16): 9429-9438, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31348654

RESUMEN

The mixing state of black carbon (BC) affects its environmental fate and impacts. This work investigates particle diversity and mixing state for refractory BC (rBC) containing particles in an urban environment. The chemical compositions of individual rBC-containing particles were measured, from which a mixing state index and particle diversity were determined. The mixing state index (χ) varied between 26% and 69% with the average of 48% in this study and was slightly enhanced with the photochemical age of air masses, indicating that most of the rBC-containing particles cannot be simply explained by fully externally and internally mixed model. Clustering of single particle measurements was used to investigate the potential effects of different primary emissions and atmospheric processes on rBC-containing particle diversity and mixing state. The average particle species diversity and the bulk population species diversity both increased with primary traffic emissions and elevated nitrate concentrations in the morning but gradually decreased with secondary organic aerosol (SOA) formation in the afternoon. The single particle clustering results illustrate that primary traffic emissions and entrainment of nitrate-containing rBC particles from the residual layer to the surface could lead to more heterogeneous aerosol compositions, whereas substantial fresh SOA formation near vehicular emissions made the rBC-containing particles more homogeneous. This work highlights the importance of considering particle diversity and mixing state for investigating the chemical evolution of rBC-containing particles and the potential effects of coating on BC absorption enhancement.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles , Carbono , Monitoreo del Ambiente , Tamaño de la Partícula
7.
Environ Sci Technol ; 52(12): 6807-6815, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29775536

RESUMEN

Characterizing intracity variations of atmospheric particulate matter has mostly relied on fixed-site monitoring and quantifying variability in terms of different bulk aerosol species. In this study, we performed ground-based mobile measurements using a single-particle mass spectrometer to study spatial patterns of source-specific particles and the evolution of particle mixing state in 21 areas in the metropolitan area of Pittsburgh, PA. We selected sampling areas based on traffic density and restaurant density with each area ranging from 0.2 to 2 km2. Organics dominate particle composition in all of the areas we sampled while the sources of organics differ. The contribution of particles from traffic and restaurant cooking varies greatly on the neighborhood scale. We also investigate how primary and aged components in particles mix across the urban scale. Lastly we quantify and map the particle mixing state for all areas we sampled and discuss the overall pattern of mixing state evolution and its implications. We find that in the upwind and downwind of the urban areas, particles are more internally mixed while in the city center, particle mixing state shows large spatial heterogeneity that is mostly driven by emissions. This study is to our knowledge, the first study to perform fine spatial scale mapping of particle mixing state using ground-based mobile measurement and single-particle mass spectrometry.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles , Ciudades , Monitoreo del Ambiente , Tamaño de la Partícula , Material Particulado
8.
Environ Sci Technol ; 51(3): 1405-1413, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28124902

RESUMEN

A key mechanism for atmospheric secondary organic aerosol (SOA) formation occurs when oxidation products of volatile organic compounds condense onto pre-existing particles. Here, we examine effects of aerosol liquid water (ALW) on relative SOA yield and composition from α-pinene ozonolysis and the photooxidation of toluene and acetylene by OH. Reactions were conducted in a room-temperature flow tube under low-NOx conditions in the presence of equivalent loadings of deliquesced (∼20 µg m-3 ALW) or effloresced (∼0.2 µg m-3 ALW) ammonium sulfate seeds at exactly the same relative humidity (RH = 70%) and state of wall conditioning. We found 13% and 19% enhancements in relative SOA yield for the α-pinene and toluene systems, respectively, when seeds were deliquesced rather than effloresced. The relative yield doubled in the acetylene system, and this enhancement was partially reversible upon drying the prepared SOA, which reduced the yield by 40% within a time scale of seconds. We attribute the high relative yield of acetylene SOA on deliquesced seeds to aqueous partitioning and particle-phase reactions of the photooxidation product glyoxal. The observed range of relative yields for α-pinene, toluene, and acetylene SOA on deliquesced and effloresced seeds suggests that ALW plays a complicated, system-dependent role in SOA formation.


Asunto(s)
Compuestos Orgánicos Volátiles , Agua , Aerosoles , Contaminantes Atmosféricos , Sulfato de Amonio , Monoterpenos , Oxidación-Reducción
9.
J Phys Chem A ; 120(9): 1395-407, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26299576

RESUMEN

Formation of secondary organic aerosol (SOA) involves atmospheric oxidation of volatile organic compounds (VOCs), the majority of which are emitted from biogenic sources. Oxidation can occur not only in the gas-phase but also in atmospheric aqueous phases such as cloudwater and aerosol liquid water. This study explores for the first time the aqueous-phase OH oxidation chemistry of oxidation products of α-pinene, a major biogenic VOC species emitted to the atmosphere. The kinetics, reaction mechanisms, and formation of SOA compounds in the aqueous phase of two model compounds, cis-pinonic acid (PIN) and tricarballylic acid (TCA), were investigated in the laboratory; TCA was used as a surrogate for 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known α-pinene oxidation product. Aerosol time-of-flight chemical ionization mass spectrometry (Aerosol-ToF-CIMS) was used to follow the kinetics and reaction mechanisms at the molecular level. Room-temperature second-order rate constants of PIN and TCA were determined to be 3.3 (± 0.5) × 10(9) and 3.1 (± 0.2) × 10(8) M(-1) s(-1), respectively, from which were estimated their condensed-phase atmospheric lifetimes. Aerosol-ToF-CIMS detected a large number of products leading to detailed reaction mechanisms for PIN and MBTCA. By monitoring the particle size distribution after drying, the amount of SOA material remaining in the particle phase was determined. An aqueous SOA yield of 40 to 60% was determined for PIN OH oxidation. Although recent laboratory studies have focused primarily on aqueous-phase processing of isoprene-related compounds, we demonstrate that aqueous formation of SOA materials also occurs from monoterpene oxidation products, thus representing an additional source of biogenically driven aerosol formation.


Asunto(s)
Aerosoles/química , Monoterpenos/química , Compuestos Orgánicos/química , Monoterpenos Bicíclicos , Cinética , Oxidación-Reducción , Fotoquímica , Ácidos Tricarboxílicos/química
10.
Environ Sci Technol ; 49(22): 13215-21, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26460477

RESUMEN

The effects of particle-phase water and the acidity of pre-existing sulfate seed particles on the formation of isoprene secondary organic aerosol (SOA) was investigated. SOA was generated from the photo-oxidation of isoprene in a flow tube reactor at 70% relative humidity (RH) and room temperature in the presence of three different sulfate seeds (effloresced and deliquesced ammonium sulfate and ammonium bisulfate) under low NOx conditions. High OH exposure conditions lead to little isoprene epoxydiol (IEPOX) SOA being generated. The primary result is that particle-phase water had the largest effect on the amount of SOA formed, with 60% more SOA formation occurring with deliquesced ammonium sulfate seeds as compared to that on effloresced ones. The additional organic material was highly oxidized. Although the amount of SOA formed did not exhibit a dependence on the range of seed particle acidity examined, perhaps because of the low amount of IEPOX SOA, the levels of high-molecular-weight material increased with acidity. While the uptake of organics was partially reversible under drying, the results nevertheless indicate that particle-phase water enhanced the amount of organic aerosol material formed and that the RH cycling of sulfate particles may mediate the extent of isoprene SOA formation in the atmosphere.


Asunto(s)
Aerosoles/química , Butadienos/química , Hemiterpenos/química , Pentanos/química , Sulfatos/química , Ácidos , Sulfato de Amonio/química , Atmósfera , Oxidación-Reducción , Agua/análisis
11.
Environ Sci Technol ; 47(22): 12819-26, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24156773

RESUMEN

In the atmosphere, volatile organic compounds such as glyoxal can partition into aqueous droplets containing significant levels of inorganic salts. Upon droplet evaporation, both the organics and inorganic ions become highly concentrated, accelerating reactions between them. To demonstrate this process, we investigated the formation of organo-nitrogen and light absorbing materials in evaporating droplets containing glyoxal and different ammonium salts including (NH4)2SO4, NH4NO3, and NH4Cl. Our results demonstrate that evaporating glyoxal-(NH4)2SO4 droplets produce light absorbing species on a time scale of seconds, which is orders of magnitude faster than observed in bulk solutions. Using aerosol mass spectrometry, we show that particle-phase organics with high N:C ratios were formed when ammonium salts were used, and that the presence of sulfate ions promoted this chemistry. Since sulfate can also significantly enhance the Henry's law partitioning of glyoxal, our results highlight the atmospheric importance of such inorganic-organic interactions in aqueous phase aerosol chemistry.


Asunto(s)
Absorción de Radiación , Sulfato de Amonio/química , Glioxal/química , Luz , Nitrógeno/química , Compuestos Orgánicos/química , Agua/química , Atmósfera/química , Carbono/química , Iones , Espectrometría de Masas , Soluciones , Factores de Tiempo , Volatilización
12.
J Phys Chem A ; 115(38): 10517-26, 2011 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-21854005

RESUMEN

Aqueous-phase chemistry of glyoxal may play an important role in the formation of highly oxidized secondary organic aerosol (SOA) in the atmosphere. In this work, we use a novel design of photochemical reactor that allows for simultaneous photo-oxidation and atomization of a bulk solution to study the aqueous-phase OH oxidation of glyoxal. By employing both online aerosol mass spectrometry (AMS) and offline ion chromatography (IC) measurements, glyoxal and some major products including formic acid, glyoxylic acid, and oxalic acid in the reacting solution were simultaneously quantified. This is the first attempt to use AMS in kinetics studies of this type. The results illustrate the formation of highly oxidized products that likely coexist with traditional SOA materials, thus, potentially improving model predictions of organic aerosol mass loading and degree of oxidation. Formic acid is the major volatile species identified, but the atmospheric relevance of its formation chemistry needs to be further investigated. While successfully quantifying low molecular weight organic oxygenates and tentatively identifying a reaction product formed directly from glyoxal and hydrogen peroxide, comparison of the results to the offline total organic carbon (TOC) analysis clearly shows that the AMS is not able to quantitatively monitor all dissolved organics in the bulk solution. This is likely due to their high volatility or low stability in the evaporated solution droplets. This experimental approach simulates atmospheric aqueous phase processing by conducting oxidation in the bulk phase, followed by evaporation of water and volatile organics to form SOA.


Asunto(s)
Glioxal/química , Radical Hidroxilo/química , Aerosoles/química , Cromatografía por Intercambio Iónico , Espectrometría de Masas , Oxidación-Reducción , Agua/química
14.
Sci Rep ; 8(1): 3235, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29459666

RESUMEN

Biogenic sources contribute to cloud condensation nuclei (CCN) in the clean marine atmosphere, but few measurements exist to constrain climate model simulations of their importance. The chemical composition of individual atmospheric aerosol particles showed two types of sulfate-containing particles in clean marine air masses in addition to mass-based Estimated Salt particles. Both types of sulfate particles lack combustion tracers and correlate, for some conditions, to atmospheric or seawater dimethyl sulfide (DMS) concentrations, which means their source was largely biogenic. The first type is identified as New Sulfate because their large sulfate mass fraction (63% sulfate) and association with entrainment conditions means they could have formed by nucleation in the free troposphere. The second type is Added Sulfate particles (38% sulfate), because they are preexisting particles onto which additional sulfate condensed. New Sulfate particles accounted for 31% (7 cm-3) and 33% (36 cm-3) CCN at 0.1% supersaturation in late-autumn and late-spring, respectively, whereas sea spray provided 55% (13 cm-3) in late-autumn but only 4% (4 cm-3) in late-spring. Our results show a clear seasonal difference in the marine CCN budget, which illustrates how important phytoplankton-produced DMS emissions are for CCN in the North Atlantic.

15.
Environ Sci Technol ; 44(1): 257-62, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19938828

RESUMEN

Single particle levitation using an electrodynamic balance (EDB) has been found to give accurate and direct hygroscopic measurements (gas-particle partitioning of water) for a number of inorganic and organic aerosol systems. In this paper, we extend the use of an EDB to examine the gas-particle partitioning of volatile to semivolatile alcohols, including methanol, n-butanol, n-octanol, and n-decanol, on levitated oleic acid particles. The measured K(p) agreed with Pankow's absorptive partitioning model. At high n-butanol vapor concentrations (10(3) ppm), the uptake of n-butanol reduced the average molecular-weight of the oleic acid particle appreciably and hence increased the K(p) according to Pankow's equation. Moreover, the hygroscopicity of mixed oleic acid/n-butanol particles was higher than the predictions given by the UNIFAC model (molecular group contribution method) and the ZSR equation (additive rule), presumably due to molecular interactions between the chemical species in the mixed particles. Despite the high vapor concentrations used, these findings warrant further research on the partitioning of atmospheric organic vapors (K(p)) near sources and how collectively they affect the hygroscopic properties of organic aerosols.


Asunto(s)
Aerosoles/análisis , Alcoholes/química , Gases/química , Compuestos Orgánicos/química
16.
Faraday Discuss ; 137: 245-63; discussion 297-318, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18214108

RESUMEN

Hygroscopic growth is one of the most fundamental properties of atmospheric aerosols. By absorbing or evaporating water, an aerosol particle changes its size, morphology, phase, chemical composition and reactivity and other parameters such as its refractive index. These changes affect the fate and the environmental impacts of atmospheric aerosols, including global climate change. The ElectroDynamic Balance (EDB) has been widely accepted as a unique tool for measuring hygroscopic properties and for investigating phase transformation of aerosols via single particle levitation. Coupled with Raman spectroscopy, an EDB/Raman system is a powerful tool that can be used to investigate both physical and chemical changes associated with the hygroscopic properties of individually levitated particles under controlled environments. In this paper, we report the use of an EDB/Raman system to investigate (1) contact ion pairs formation in supersaturated magnesium sulfate solutions; (2) phase transformation in ammonium nitrate/ammonium sulfate mixed particles; (3) hygroscopicity of organically coated inorganic aerosols; and (4) heterogeneous reactions altering the hygroscopicity of organic aerosols.


Asunto(s)
Aerosoles/química , Espectrometría Raman/métodos , Sulfato de Amonio/química , Sulfato de Magnesio/química , Nitratos/química , Tamaño de la Partícula , Humectabilidad
17.
Environ Sci Technol ; 42(19): 7138-45, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18939538

RESUMEN

Atmospheric accretion reactions of octanal with sulfuric acid as a catalyst were investigated in bulk liquid-liquid experiments and gas-particle experiments. In bulk studies, trioxane, alpha,beta-unsaturated aldehyde, and trialkyl benzene were identified by gas chromatography-mass spectrometry as major reaction products with increasing sulfuric acid concentrations (0-86 wt%). Cyclotrimerization and one or multiple steps of aldol condensation are proposed as possible accretion reaction pathways. High molecular weight (up to 700 Da) oligomers were also observed by electrospray ionization-mass spectrometry in reactions under extremely high acid concentration conditions (86 wt%). Gas-particle experiments using a reaction cell were carried out using both high (approximately 20 ppmv) and low (approximately 900 ppbv) gas-phase octanal concentrations under a wide range of relative humidity (RH, from < 1% to 50%, corresponding to > 80 wt% to 43 wt% H2SO4) and long reaction durations (24 h). One or multiple steps of aldol condensation occurred under low RH (< 1% and 10%, > 80 wt% and 64 wt% H2SO4, respectively) and high octanal concentration (approximately 20 ppmv) conditions. No cyclotrimerization was observed in the gas-particle experiments even under RH conditions corresponding to similar sulfuric acid concentration conditions that favor cyclotrimerization in bulk studies. No accretion reaction product was found in the low octanal concentration (approximately 900 ppbv) experiments, which indicates that the accretion reactions are not significant as expected when the gas-phase octanal concentration is low. A kinetic analysis of the first-step aldol condensation product was performed to understand the discrepancies between the bulk and gas-particle experiments and between the high and low octanal concentrations in the gas-particle experiments. The comparisons between experimental results and kinetic estimations suggest that caution should be exercised in the extrapolation of laboratory experiment results to ambient conditions.


Asunto(s)
Aldehídos/química , Atmósfera/química , Modelos Químicos , Ácidos Sulfúricos/química , Catálisis , Bases de Datos Factuales , Cromatografía de Gases y Espectrometría de Masas , Gases/química , Cinética
18.
J Phys Chem A ; 111(28): 6285-95, 2007 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-17585848

RESUMEN

In this study, an electrodynamic balance (EDB) and a single particle Raman spectroscopic system were used to investigate the heterogeneous reactions of linoleic acid and linolenic acid with ozone under ambient temperatures (22-24 degrees C) and dry conditions (RH<5%). Raman characterizations provide evidence that ozone-induced autoxidation, in addition to direct ozonolysis, is a plausible pathway in the reactions between ozone and linoleic acid and linolenic acid particles. Furthermore, the significance of this specific oxidation pathway depends on the ozone concentrations used in the experiment. A low ozone concentration (approximately 200-250 ppb) with a longer exposure period (20 h) favors autoxidation but an extremely high ozone concentration (approximately 10 ppm) favors ozonolysis and forces most unsaturated fatty acids to react with ozone in a relatively short period of time. In the low ozone concentration experiments, the mass of the ozone-processed linoleic acid and linolenic acid particles increased by about 2-3% and 10-13%, respectively. In addition, the mass ratios (particle mass at RH approximately 85% to particle mass at RH<5%) of the ozone-processed linoleic acid and linolenic acid particles increased by about 2-3% and 3-4%, respectively. The morphology of the pure and ozone-processed linoleic acid and linolenic acid particles are compared, based on imagining and their light scattering patterns.

19.
Environ Sci Technol ; 40(22): 6983-9, 2006 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17154005

RESUMEN

Atmospheric particles, which may have an organic coating, exhibit cyclical phase changes of deliquescence and crystallization in response to changes in the ambient relative humidity(RH). Here, we measured the hygroscopicity and Raman spectra of solid ammonium sulfate ((NH4)2SO4) particles initially coated with water-soluble glutaric acid in two consecutive cycles of deliquescence and crystallization utilizing an electrodynamic balance. (NH4)2SO4 particles with glutaric acid coating (49 wt % glutaric acid) had different hygroscopicity and morphology in the two cycles. Once the particles deliquesced, the dissolution of the solid (NH4)2SO4 core and the glutaric acid coating formed mixed (NH4)2SO4-glutaric acid solution droplets, which was confirmed by Raman characterization. Coating studies with either deliquescence or crystallization measurements, or one complete cycle of these two measurements may not fully assess the effects of the organic coatings on aerosol hygroscopicity. We also present an analysis on the kinetic and chemical effects of organic coating on aerosol hygroscopicity. Glutaric acid coating does not impede the evaporation and condensation rates of water molecules compared to the rates of (NH4)2S04 particles in the two cycles. The coating likely affects the hygroscopicity of aerosol particles through dissolution and its chemical interactions with (NH4)2S04.


Asunto(s)
Sulfato de Amonio/química , Glutaratos/química , Humedad , Adsorción , Cristalización , Ecología , Espectrometría Raman , Agua , Humectabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA