Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Med Chem ; 106: 117735, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38714021

RESUMEN

Numerous natural antimicrobial peptides (AMPs) exhibit a cationic amphipathic helical conformation, wherein cationic amino acids, such as lysine and arginine, play pivotal roles in antimicrobial activity by aiding initial attraction to negatively charged bacterial membranes. Expanding on our previous work, which introduced a de novo design of amphipathic helices within cationic heptapeptides using an 'all-hydrocarbon peptide stapling' approach, we investigated the impact of lysine-homologue substitution on helix formation, antimicrobial activity, hemolytic activity, and proteolytic stability of these novel AMPs. Our results demonstrate that substituting lysine with ornithine enhances both the antimicrobial activity and proteolytic stability of the stapled heptapeptide AMP series, while maintaining low hemolytic activity. This finding underscores lysine-homologue substitution as a valuable strategy for optimizing the therapeutic potential of diverse cationic AMPs.


Asunto(s)
Antibacterianos , Péptidos Catiónicos Antimicrobianos , Hemólisis , Lisina , Pruebas de Sensibilidad Microbiana , Lisina/química , Lisina/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Hemólisis/efectos de los fármacos , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/síntesis química , Relación Estructura-Actividad , Proteolisis/efectos de los fármacos , Humanos , Estructura Molecular
2.
Nucleic Acids Res ; 50(4): 2319-2333, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35141752

RESUMEN

Staphylococcus aureus is a notorious and globally distributed pathogenic bacterium. New strategies to develop novel antibiotics based on intrinsic bacterial toxin-antitoxin (TA) systems have been recently reported. Because TA systems are present only in bacteria and not in humans, these distinctive systems are attractive targets for developing antibiotics with new modes of action. S. aureus PemIK is a type II TA system, comprising the toxin protein PemK and the labile antitoxin protein PemI. Here, we determined the crystal structures of both PemK and the PemIK complex, in which PemK is neutralized by PemI. Our biochemical approaches, including fluorescence quenching and polarization assays, identified Glu20, Arg25, Thr48, Thr49, and Arg84 of PemK as being important for RNase function. Our study indicates that the active site and RNA-binding residues of PemK are covered by PemI, leading to unique conformational changes in PemK accompanied by repositioning of the loop between ß1 and ß2. These changes can interfere with RNA binding by PemK. Overall, PemK adopts particular open and closed forms for precise neutralization by PemI. This structural and functional information on PemIK will contribute to the discovery and development of novel antibiotics in the form of peptides or small molecules inhibiting direct binding between PemI and PemK.


Asunto(s)
Antitoxinas , Staphylococcus aureus , Antibacterianos/metabolismo , Antitoxinas/genética , Antitoxinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ARN/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
3.
Biochem Biophys Res Commun ; 616: 19-25, 2022 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-35636251

RESUMEN

Toxin - Antitoxin systems are crucial for bacterial survival against harsh circumstances such as antibiotic treatment. The VapBC systems are the most abundant Toxin-Antitoxin systems among the Toxin - Antitoxin systems in the Mycobacterium tuberculosis. The VapBC43 system is one of them, which is related to the response to the vancomycin treatment. However, the structure of the VapBC43 complex remained unknown. Here, we present the crystal structure of the VapBC43 complex in which a single VapB43 molecule binds to the VapC43 dimer. The electrophoretic mobility shift assay shows that the VapB43 can bind to its promoter DNA. In addition, this structure reveals that the VapC43 contains a PIN (PilT N-terminus) domain motif which is essential for ribonuclease activity but has less conserved acidic residues than other homologs. The results of ribonuclease assays show that the VapC43 exhibits ribonuclease activity despite the lack of acidic residues which are well conserved in a PIN domain superfamily. Based on the previous finding that the VapBC43 contributes to the survival of Mycobacterium tuberculosis under vancomycin treatment, the structural information of the VapBC43 complex may enable the development of the inhibitor of VapC43 that can be used as an adjuvant for vancomycin therapy against M. tuberculosis.


Asunto(s)
Antitoxinas , Toxinas Bacterianas , Mycobacterium tuberculosis , Antitoxinas/química , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Modelos Moleculares , Mycobacterium tuberculosis/metabolismo , Ribonucleasas/química , Vancomicina
4.
Cell Mol Life Sci ; 78(1): 207-225, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32140747

RESUMEN

NAD(P)-dependent steroid dehydrogenase-like (NSDHL), an essential enzyme in human cholesterol synthesis and a regulator of epidermal growth factor receptor (EGFR) trafficking pathways, has attracted interest as a therapeutic target due to its crucial relevance to cholesterol-related diseases and carcinomas. However, the development of pharmacological agents for targeting NSDHL has been hindered by the absence of the atomic details of NSDHL. In this study, we reported two X-ray crystal structures of human NSDHL, which revealed a detailed description of the coenzyme-binding site and the unique conformational change upon the binding of a coenzyme. A structure-based virtual screening and biochemical evaluation were performed and identified a novel inhibitor for NSDHL harboring suppressive activity towards EGFR. In EGFR-driven human cancer cells, treatment with the potent NSDHL inhibitor enhanced the antitumor effect of an EGFR kinase inhibitor. Overall, these findings could serve as good platforms for the development of therapeutic agents against NSDHL-related diseases.


Asunto(s)
3-Hidroxiesteroide Deshidrogenasas/metabolismo , Inhibidores Enzimáticos/metabolismo , 3-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 3-Hidroxiesteroide Deshidrogenasas/química , 3-Hidroxiesteroide Deshidrogenasas/genética , Sitios de Unión , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Colesterol/química , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib/química , Clorhidrato de Erlotinib/metabolismo , Clorhidrato de Erlotinib/farmacología , Humanos , Cinética , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , NAD/química , NAD/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Transducción de Señal
5.
FASEB J ; 34(2): 3051-3068, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908032

RESUMEN

Bacterial toxin-antitoxin (TA) system has gained attention for its essential roles in cellular maintenance and survival under harsh environmental conditions such as nutrient deficiency and antibiotic treatment. There are at least 14 TA systems in Salmonella enterica serovar Typhimurium LT2, a pathogenic bacterium, and none of the structures of these TA systems have been determined. We determined the crystal structure of the VapBC TA complex from S. Typhimurium LT2 in proteolyzed and DNA-bound forms at 2.0 Å and 2.8 Å resolution, respectively. The VapC toxin possesses a pilT N-terminal domain (PIN-domain) that shows ribonuclease activity, and the VapB antitoxin has an AbrB-type DNA binding domain. In addition, the structure revealed details of interaction mode between VapBC and the cognate promoter DNA, including the inhibition of VapC by VapB and linear conformation of bound DNA in the VapBC complex. The complexation of VapBC with the linear DNA is not consistent with known structures of VapBC homologs in complex with bent DNA. We also identified VapC from S. Typhimurium LT2 as a putative Ca2+ -dependent ribonuclease, which differs from previous data showing that VapC homologs have Mg2+ or Mn2+ -dependent ribonuclease activities. The present studies could provide structural understanding of the physiology of VapBC systems and foundation for the development of new antibiotic drugs against Salmonella infection.


Asunto(s)
Proteínas Bacterianas/química , ADN Bacteriano/química , Ribonucleasas/química , Salmonella typhimurium/enzimología , Cristalografía por Rayos X , Dominios Proteicos , Estructura Cuaternaria de Proteína
6.
J Lipid Res ; 61(5): 722-733, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32165394

RESUMEN

Acne is one of the most common dermatological conditions, but the details of its pathology are unclear, and current management regimens often have adverse effects. Cutibacterium acnes is known as a major acne-associated bacterium that derives energy from lipase-mediated sebum lipid degradation. C. acnes is commensal, but lipase activity has been observed to differ among C. acnes types. For example, higher populations of the type IA strains are present in acne lesions with higher lipase activity. In the present study, we examined a conserved lipase in types IB and II that was truncated in type IA C. acnes strains. Closed, blocked, and open structures of C. acnes ATCC11828 lipases were elucidated by X-ray crystallography at 1.6-2.4 Å. The closed crystal structure, which is the most common form in aqueous solution, revealed that a hydrophobic lid domain shields the active site. By comparing closed, blocked, and open structures, we found that the lid domain-opening mechanisms of C. acnes lipases (CAlipases) involve the lid-opening residues, Phe-179 and Phe-211. To the best of our knowledge, this is the first structure-function study of CAlipases, which may help to shed light on the mechanisms involved in acne development and may aid in future drug design.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Lipasa/química , Lipasa/metabolismo , Propionibacteriaceae/enzimología , Secuencia de Aminoácidos , Secuencia Conservada , Lisofosfatidilcolinas/metabolismo , Modelos Moleculares , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Especificidad de la Especie
7.
Biochem Biophys Res Commun ; 527(1): 264-269, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32446378

RESUMEN

Toxin-antitoxin (TA) systems are ubiquitously found in bacteria and are related to cell maintenance and survival under environmental stresses such as heat shock, nutrient starvation, and antibiotic treatment. Here, we report for the first time the crystal structure of the Staphylococcus aureus TA complex YoeBSa1-YefMSa1 at a resolution of 1.7 Å. This structure reveals a heterotetramer with a 2:2 stoichiometry between YoeBSa1 and YefMSa1. The N-terminal regions of the YefMSa1 antitoxin form a homodimer characteristic of a hydrophobic core, and the C-terminal extended region of each YefMSa1 protomer makes contact with each YoeBSa1 monomer. The binding stoichiometry of YoeBSa1 and YefMSa1 is different from that of YoeB and YefM of E. coli (YoeBEc and YefMEc), which is the only structural homologue among YoeB-YefM families; however, the structures of individual YoeBSa1 and YefMSa1 subunits in the complex are highly similar to the corresponding structures in E. coli. In addition, docking simulation with a minimal RNA substrate provides structural insight into the guanosine specificity of YoeBSa1 for cleavage in the active site, which is distinct from the specificity of YoeBEc for adenosine rather than guanosine. Given the previous finding that YoeBSa1 exhibits fatal toxicity without inducing persister cells, the structure of the YoeBSa1-YefMSa1 complex will contribute to the design of a new category of anti-staphylococcal agents that disrupt the YoeBSa1-YefMSa1 complex and increase YoeBSa1 toxicity.


Asunto(s)
Proteínas Bacterianas/química , Toxinas Bacterianas/química , Endorribonucleasas/química , Staphylococcus aureus/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Toxinas Bacterianas/genética , Toxinas Bacterianas/aislamiento & purificación , Endorribonucleasas/genética , Endorribonucleasas/aislamiento & purificación , Simulación del Acoplamiento Molecular , Conformación Proteica
8.
Biochem Biophys Res Commun ; 532(2): 173-178, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-32838967

RESUMEN

Acylphosphatase is the smallest enzyme that is widely distributed in many diverse organisms ranging from archaebacteria to higher-eukaryotes including the humans. The enzyme hydrolyzes the carboxyl-phosphate bonds of the acyl phosphates which are important intermediates in glycolysis, membrane pumps, tricarboxylic acid cycle, and urea biosynthesis. Despite its biological importance in critical cellular functions, very limited structural investigations have been conducted on bacterial acylphosphatases. Here, we first unveiled the crystal structure of SaAcP, an acylphosphatase from gram-positive S. aureus at the atomic level. Structural insights on the active site together with mutation study provided greater understanding of the catalytic mechanism of SaAcP as a bacterial acylphosphatase and as a putative apyrase. Furthermore, through NMR titration experiment of SaAcP in its solution state, the dynamics and the alterations of residues affected by the phosphate ion were validated. Our findings elucidate the structure-function relationship of acylphosphatases in gram-positive bacteria and will provide a valuable basis for researchers in the field related to bacterial acylphosphatases.


Asunto(s)
Ácido Anhídrido Hidrolasas/química , Ácido Anhídrido Hidrolasas/metabolismo , Staphylococcus aureus/enzimología , Ácido Anhídrido Hidrolasas/genética , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Benzoatos/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Proteica , Acilfosfatasa
9.
Nucleic Acids Res ; 46(12): 6371-6386, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29878152

RESUMEN

Streptococcus pneumonia has attracted increasing attention due to its resistance to existing antibiotics. TA systems are essential for bacterial persistence under stressful conditions such as nutrient deprivation, antibiotic treatment, and immune system attacks. In particular, S. pneumoniae expresses the HicBA TA gene, which encodes the stable HicA toxin and the labile HicB antitoxin. These proteins interact to form a non-toxic TA complex under normal conditions, but the toxin is activated by release from the antitoxin in response to unfavorable growth conditions. Here, we present the first crystal structure showing the complete conformation of the HicBA complex from S. pneumonia. The structure reveals that the HicA toxin contains a double-stranded RNA-binding domain that is essential for RNA recognition and that the C-terminus of the HicB antitoxin folds into a ribbon-helix-helix DNA-binding motif. The active site of HicA is sterically blocked by the N-terminal region of HicB. RNase activity assays show that His36 is essential for the ribonuclease activity of HicA, and nuclear magnetic resonance (NMR) spectra show that several residues of HicB participate in binding to the promoter DNA of the HicBA operon. A toxin-mimicking peptide that inhibits TA complex formation and thereby increases toxin activity was designed, providing a novel approach to the development of new antibiotics.


Asunto(s)
Proteínas Bacterianas/química , Toxinas Bacterianas/química , Streptococcus pneumoniae , Sistemas Toxina-Antitoxina , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidad , Dominio Catalítico , Modelos Moleculares , Regiones Promotoras Genéticas , Dominios Proteicos , Ribonucleasas/química , Ribonucleasas/metabolismo
10.
Nucleic Acids Res ; 45(14): 8564-8580, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28575388

RESUMEN

Toxin-antitoxin (TA) systems are essential for bacterial persistence under stressful conditions. In particular, Mycobacterium tuberculosis express VapBC TA genes that encode the stable VapC toxin and the labile VapB antitoxin. Under normal conditions, these proteins interact to form a non-toxic TA complex, but the toxin is activated by release from the antitoxin in response to unfavorable conditions. Here, we present the crystal structure of the M. tuberculosis VapBC26 complex and show that the VapC26 toxin contains a pilus retraction protein (PilT) N-terminal (PIN) domain that is essential for ribonuclease activity and that, the VapB26 antitoxin folds into a ribbon-helix-helix DNA-binding motif at the N-terminus. The active site of VapC26 is sterically blocked by the flexible C-terminal region of VapB26. The C-terminal region of free VapB26 adopts an unfolded conformation but forms a helix upon binding to VapC26. The results of RNase activity assays show that Mg2+ and Mn2+ are essential for the ribonuclease activity of VapC26. As shown in the nuclear magnetic resonance spectra, several residues of VapB26 participate in the specific binding to the promoter region of the VapBC26 operon. In addition, toxin-mimicking peptides were designed that inhibit TA complex formation and thereby increase toxin activity, providing a novel approach to the development of new antibiotics.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Glicoproteínas de Membrana/metabolismo , Mycobacterium tuberculosis/metabolismo , Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Calorimetría/métodos , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Interacciones Hidrofóbicas e Hidrofílicas , Magnesio/química , Magnesio/metabolismo , Magnesio/farmacología , Manganeso/química , Manganeso/metabolismo , Manganeso/farmacología , Espectrometría de Masas/métodos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Modelos Moleculares , Mutación , Mycobacterium tuberculosis/genética , Unión Proteica/efectos de los fármacos , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ribonucleasas/química , Ribonucleasas/genética , Ribonucleasas/metabolismo , Homología de Secuencia de Aminoácido
11.
Proc Natl Acad Sci U S A ; 113(35): E5202-11, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27531959

RESUMEN

For bacteria, cysteine thiol groups in proteins are commonly used as thiol-based switches for redox sensing to activate specific detoxification pathways and restore the redox balance. Among the known thiol-based regulatory systems, the MarR/DUF24 family regulators have been reported to sense and respond to reactive electrophilic species, including diamide, quinones, and aldehydes, with high specificity. Here, we report that the prototypical regulator YodB of the MarR/DUF24 family from Bacillus subtilis uses two distinct pathways to regulate transcription in response to two reactive electrophilic species (diamide or methyl-p-benzoquinone), as revealed by X-ray crystallography, NMR spectroscopy, and biochemical experiments. Diamide induces structural changes in the YodB dimer by promoting the formation of disulfide bonds, whereas methyl-p-benzoquinone allows the YodB dimer to be dissociated from DNA, with little effect on the YodB dimer. The results indicate that B. subtilis may discriminate toxic quinones, such as methyl-p-benzoquinone, from diamide to efficiently manage multiple oxidative signals. These results also provide evidence that different thiol-reactive compounds induce dissimilar conformational changes in the regulator to trigger the separate regulation of target DNA. This specific control of YodB is dependent upon the type of thiol-reactive compound present, is linked to its direct transcriptional activity, and is important for the survival of B. subtilis This study of B. subtilis YodB also provides a structural basis for the relationship that exists between the ligand-induced conformational changes adopted by the protein and its functional switch.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Transducción de Señal/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Benzoquinonas/química , Benzoquinonas/farmacología , Cristalografía por Rayos X , Diamida/química , Diamida/farmacología , Oxidación-Reducción , Conformación Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos
12.
J Biol Chem ; 292(46): 18832-18847, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28972145

RESUMEN

The bacterial toxin-antitoxin MazEF system in the tuberculosis (TB)-causing bacterium Mycobacterium tuberculosis is activated under unfavorable conditions, including starvation, antibiotic exposure, and oxidative stress. This system contains the ribonucleolytic enzyme MazF and has emerged as a promising drug target for TB treatments targeting the latent stage of M. tuberculosis infection and reportedly mediates a cell death process via a peptide called extracellular death factor (EDF). Although it is well established that the increase in EDF-mediated toxicity of MazF drives a cell-killing phenomenon, the molecular details are poorly understood. Moreover, the divergence in sequences among reported EDFs suggests that each bacterial species has a unique EDF. To address these open questions, we report here the structures of MazF4 and MazEF4 complexes from M. tuberculosis, representing the first MazEF structures from this organism. We found that MazF4 possesses a negatively charged MazE4-binding pocket in contrast to the positively charged MazE-binding pockets in homologous MazEF complex structures from other bacteria. Moreover, using NMR spectroscopy and biochemical assays, we unraveled the molecular interactions of MazF4 with its RNA substrate and with a new EDF homolog originating from M. tuberculosis The EDF homolog discovered here possesses a positively charged residue at the C terminus, making this EDF distinct from previously reported EDFs. Overall, our results suggest that M. tuberculosis evolved a unique MazF and EDF and that the distinctive EDF sequence could serve as a starting point for designing new anti-tuberculosis drugs. We therefore conclude that this study might contribute to the development of a new line of anti-tuberculosis agents.


Asunto(s)
Antitoxinas/metabolismo , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Endorribonucleasas/metabolismo , Mycobacterium tuberculosis/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Antitoxinas/química , Proteínas Bacterianas/química , Toxinas Bacterianas/química , Cristalografía por Rayos X , Descubrimiento de Drogas , Endorribonucleasas/química , Humanos , Modelos Moleculares , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/fisiología , Péptidos/química , Conformación Proteica , Multimerización de Proteína , Percepción de Quorum , Alineación de Secuencia , Tuberculosis/microbiología
13.
Biochim Biophys Acta Proteins Proteom ; 1865(1): 65-75, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27784646

RESUMEN

Translation initiation, the rate-limiting step in the protein synthesis, is tightly regulated. As one of the translation initiation factors, translation initiation factor 1 (IF1) plays crucial roles not only in translation but also in many cellular processes that are important for genomic stability, such as the activity of RNA chaperones. Here, we characterize the RNA interactions and dynamics of IF1 from Staphylococcus aureus Mu50 (IF1Sa) by NMR spectroscopy. First, the NMR-derived solution structure of IF1Sa revealed that IF1Sa adopts an oligonucleotide/oligosaccharide binding (OB)-fold. Structural comparisons showed large deviations in the α-helix and the following loop, which are potential RNA-binding regions of the OB-fold, as well as differences in the electrostatic potential surface among bacterial IF1s. Second, the 15N NMR relaxation data for IF1Sa indicated the flexible nature of the α-helix and the following loop region of IF1Sa. Third, RNA-binding properties were studied using FP assays and NMR titrations. FP binding assays revealed that IF1Sa binds to RNAs with moderate affinity. In combination with the structural analysis, the NMR titration results revealed the RNA binding sites. Taken together, these results show that IF1Sa binds RNAs with moderate binding affinity via the residues that occupy the large surface area of its ß-barrel. These findings suggest that IF1Sa is likely to bind RNA in various conformations rather than only at a specific site and indicate that the flexible RNA binding mode of IF1Sa is necessary for its interaction with various RNA substrates.


Asunto(s)
Proteínas Bacterianas/química , Factores Procarióticos de Iniciación/química , Proteínas de Unión al ARN/química , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular , Iniciación de la Cadena Peptídica Traduccional , Factores Procarióticos de Iniciación/genética , Factores Procarióticos de Iniciación/ultraestructura , Unión Proteica , Estructura Secundaria de Proteína , ARN Bacteriano/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/ultraestructura , Alineación de Secuencia , Staphylococcus aureus/genética
14.
Biochem J ; 473(1): 55-66, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26487697

RESUMEN

The DJ-1/ThiJ/PfpI superfamily is a group of proteins found in diverse organisms. This superfamily includes versatile proteins, such as proteases, chaperones, heat-shock proteins and human Parkinson's disease protein. Most members of the DJ-1/ThiJ/PfpI superfamily are oligomers and are classified into subfamilies depending on discriminating quaternary structures (DJ-1, YhbO and Hsp types). SAV1875, a conserved protein from Staphylococcus aureus, is a member of the YhbO-type subfamily. However, its structure and function remain unknown. Thus, to understand the function and activity mechanism of this protein, the crystal structure of SAV1875 from S. aureus was determined. The overall fold of SAV1875 is similar to that observed for the DJ-1/ThiJ/PfpI superfamily. The cysteine residue located in the dimeric interface (Cys(105)) forms a catalytic triad with His(106) and Asp(77), and it is spontaneously oxidized to Cys(105)-SO2H in the crystal structure. To study the oxidative propensity of Cys(105) and the corresponding functional differences with changes in cysteine oxidation state, the crystal structures of SAV1875 variants E17N, E17D and C105D, and over-oxidized SAV1875 were determined. We identified SAV1875 as a novel member of the YhbO-type subfamily exhibiting chaperone function. However, if SAV1875 is over-oxidized further with H2O2, its chaperone activity is eliminated. On the basis of our study, we suggest that SAV1875 functions as a chaperone and the redox state of Cys(105) may play an important role.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Staphylococcus aureus/metabolismo , Cristalografía por Rayos X , Oxidación-Reducción , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
15.
Nucleic Acids Res ; 43(15): 7624-37, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26150422

RESUMEN

Toxin-antitoxin (TA) systems play important roles in bacterial physiology, such as multidrug tolerance, biofilm formation, and arrest of cellular growth under stress conditions. To develop novel antimicrobial agents against tuberculosis, we focused on VapBC systems, which encompass more than half of TA systems in Mycobacterium tuberculosis. Here, we report that theMycobacterium tuberculosis VapC30 toxin regulates cellular growth through both magnesium and manganese ion-dependent ribonuclease activity and is inhibited by the cognate VapB30 antitoxin. We also determined the 2.7-Å resolution crystal structure of the M. tuberculosis VapBC30 complex, which revealed a novel process of inactivation of the VapC30 toxin via swapped blocking by the VapB30 antitoxin. Our study on M. tuberculosis VapBC30 leads us to design two kinds of VapB30 and VapC30-based novel peptides which successfully disrupt the toxin-antitoxin complex and thus activate the ribonuclease activity of the VapC30 toxin. Our discovery herein possibly paves the way to treat tuberculosis for next generation.


Asunto(s)
Antibióticos Antituberculosos/farmacología , Proteínas Bacterianas/química , Toxinas Bacterianas/química , Mycobacterium tuberculosis , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/antagonistas & inhibidores , Toxinas Bacterianas/metabolismo , Dominio Catalítico , Magnesio/fisiología , Manganeso/fisiología , Modelos Moleculares , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/crecimiento & desarrollo , Péptidos/farmacología , Ribonucleasas/química , Ribonucleasas/metabolismo
16.
Nucleic Acids Res ; 43(10): 5194-207, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25916841

RESUMEN

HP0268 is a conserved, uncharacterized protein from Helicobacter pylori. Here, we determined the solution structure of HP0268 using three-dimensional nuclear magnetic resonance (NMR) spectroscopy, revealing that this protein is structurally most similar to a small MutS-related (SMR) domain that exhibits nicking endonuclease activity. We also demonstrated for the first time that HP0268 is a nicking endonuclease and a purine-specific ribonuclease through gel electrophoresis and fluorescence spectroscopy. The nuclease activities for DNA and RNA were maximally increased by Mn(2+) and Mg(2+) ions, respectively, and decreased by Cu(2+) ions. Using NMR chemical shift perturbations, the metal and nucleotide binding sites of HP0268 were determined to be spatially divided but close to each other. The lysine residues (Lys7, Lys11 and Lys43) are clustered and form the nucleotide binding site. Moreover, site-directed mutagenesis was used to define the catalytic active site of HP0268, revealing that this site contains two acidic residues, Asp50 and Glu54, in the metal binding site. The nucleotide binding and active sites are not conserved in the structural homologues of HP0268. This study will contribute to improving our understanding of the structure and functionality of a wide spectrum of nucleases.


Asunto(s)
Proteínas Bacterianas/química , Endodesoxirribonucleasas/química , Helicobacter pylori/enzimología , Ribonucleasas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , Endodesoxirribonucleasas/metabolismo , Metales/metabolismo , Nucleótidos/metabolismo , Purinas/metabolismo , Ribonucleasas/metabolismo
17.
Molecules ; 22(4)2017 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-28441772

RESUMEN

Fourteen well-defined ribozyme classes have been identified to date, among which nine are site-specific self-cleaving ribozymes. Very recently, small self-cleaving ribozymes have attracted renewed interest in their structure, biochemistry, and biological function since the discovery, during the last three years, of four novel ribozymes, termed twister, twister sister, pistol, and hatchet. In this review, we mainly address the structure, biochemistry, and catalytic mechanism of the novel ribozymes. They are characterized by distinct active site architectures and divergent, but similar, biochemical properties. The cleavage activities of the ribozymes are highly dependent upon divalent cations, pH, and base-specific mutations, which can cause changes in the nucleotide arrangement and/or electrostatic potential around the cleavage site. It is most likely that a guanine and adenine in close proximity of the cleavage site are involved in general acid-base catalysis. In addition, metal ions appear to play a structural rather than catalytic role although some of their crystal structures have shown a direct metal ion coordination to a non-bridging phosphate oxygen at the cleavage site. Collectively, the structural and biochemical data of the four newest ribozymes could contribute to advance our mechanistic understanding of how self-cleaving ribozymes accomplish their efficient site-specific RNA cleavages.


Asunto(s)
ARN Catalítico/química , Secuencia de Bases , Biocatálisis , Coenzimas/química , Modelos Moleculares , Conformación de Ácido Nucleico , División del ARN
18.
Molecules ; 22(9)2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28858250

RESUMEN

Tuberculosis is an infectious disease caused by Mycobacteriumtuberculosis, which triggers severe pulmonary diseases. Recently, multidrug/extensively drug-resistant tuberculosis strains have emerged and continue to threaten global health. Because of the development of drug-resistant tuberculosis, there is an urgent need for novel antibiotics to treat these drug-resistant bacteria. In light of the clinical importance of M. tuberculosis, 2067 structures of M. tuberculsosis proteins have been determined. Among them, 52 structures have been solved and studied using solution nuclear magnetic resonance (NMR). The functional details based on structural analysis of M. tuberculosis using NMR can provide essential biochemical data for the development of novel antibiotic drugs. In this review, we introduce diverse structural and biochemical studies on M. tuberculosis proteins determined using NMR spectroscopy.


Asunto(s)
Antituberculosos/química , Mycobacterium tuberculosis , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Descubrimiento de Drogas , Humanos , Terapia Molecular Dirigida , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Soluciones , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/microbiología
19.
Molecules ; 22(8)2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28809779

RESUMEN

A large portion of proteins in living organisms are membrane proteins which play critical roles in the biology of the cell, from maintenance of the biological membrane integrity to communication of cells with their surroundings. To understand their mechanism of action, structural information is essential. Nevertheless, structure determination of transmembrane proteins is still a challenging area, even though recently the number of deposited structures of membrane proteins in the PDB has rapidly increased thanks to the efforts using X-ray crystallography, electron microscopy, and solid and solution nuclear magnetic resonance (NMR) technology. Among these technologies, solution NMR is a powerful tool for studying protein-protein, protein-ligand interactions and protein dynamics at a wide range of time scales as well as structure determination of membrane proteins. This review provides general and useful guideline for membrane protein sample preparation and the choice of membrane-mimetic media, which are the key step for successful structural analysis. Furthermore, this review provides an opportunity to look at recent applications of solution NMR to structural studies on α-helical membrane proteins through some success stories.


Asunto(s)
Proteínas de la Membrana/química , Animales , Membrana Celular/química , Cristalografía por Rayos X , Humanos , Ligandos , Microscopía Electrónica , Conformación Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica
20.
Biochim Biophys Acta ; 1854(5): 449-59, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25707357

RESUMEN

The Hox DNA binding domain, the homeodomain, plays critical roles in genetic control of development and cell fate determination. The variable regulatory functions of Hox proteins are accomplished by binding to target DNA sequences and collaborating protein partners that includes human high mobility group B1 (HMGB1). To better understand the interaction between Hox and HMGB1 and the facilitation of Hox-DNA binding by HMGB1, we solved the solution structure of the homeodomain of Hox including the N-terminal arm region (Hoxc9DBD hereafter). In addition, the details of the interaction between these two proteins, as well as DNA binding of the Hox-HMGB1 complex, were investigated by NMR, ITC, and EMSA. The results suggest that binding of the HMGB1 A-box to Hoxc9DBD makes the loop-1 (loop preceding helix-2 of Hoxc9DBD) more access to DNA backbone, which facilitate Hox-DNA binding with enhanced affinity.


Asunto(s)
ADN/metabolismo , Proteína HMGB1/química , Proteína HMGB1/metabolismo , Proteínas de Homeodominio/química , Proteínas de Homeodominio/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA