Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(10): 1677-1692.e8, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37207626

RESUMEN

PERIOD (PER) and Casein Kinase 1δ regulate circadian rhythms through a phosphoswitch that controls PER stability and repressive activity in the molecular clock. CK1δ phosphorylation of the familial advanced sleep phase (FASP) serine cluster embedded within the Casein Kinase 1 binding domain (CK1BD) of mammalian PER1/2 inhibits its activity on phosphodegrons to stabilize PER and extend circadian period. Here, we show that the phosphorylated FASP region (pFASP) of PER2 directly interacts with and inhibits CK1δ. Co-crystal structures in conjunction with molecular dynamics simulations reveal how pFASP phosphoserines dock into conserved anion binding sites near the active site of CK1δ. Limiting phosphorylation of the FASP serine cluster reduces product inhibition, decreasing PER2 stability and shortening circadian period in human cells. We found that Drosophila PER also regulates CK1δ via feedback inhibition through the phosphorylated PER-Short domain, revealing a conserved mechanism by which PER phosphorylation near the CK1BD regulates CK1 kinase activity.


Asunto(s)
Relojes Circadianos , Proteínas Circadianas Period , Animales , Humanos , Fosforilación , Retroalimentación , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Quinasa de la Caseína I/genética , Quinasa de la Caseína I/metabolismo , Ritmo Circadiano/genética , Drosophila/metabolismo , Serina/metabolismo , Mamíferos/metabolismo
2.
Mol Cell ; 78(5): 835-849.e7, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32369735

RESUMEN

Disrupted sleep-wake and molecular circadian rhythms are a feature of aging associated with metabolic disease and reduced levels of NAD+, yet whether changes in nucleotide metabolism control circadian behavioral and genomic rhythms remains unknown. Here, we reveal that supplementation with the NAD+ precursor nicotinamide riboside (NR) markedly reprograms metabolic and stress-response pathways that decline with aging through inhibition of the clock repressor PER2. NR enhances BMAL1 chromatin binding genome-wide through PER2K680 deacetylation, which in turn primes PER2 phosphorylation within a domain that controls nuclear transport and stability and that is mutated in human advanced sleep phase syndrome. In old mice, dampened BMAL1 chromatin binding, transcriptional oscillations, mitochondrial respiration rhythms, and late evening activity are restored by NAD+ repletion to youthful levels with NR. These results reveal effects of NAD+ on metabolism and the circadian system with aging through the spatiotemporal control of the molecular clock.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Proteínas Circadianas Period/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Edad , Envejecimiento/genética , Animales , Proteínas CLOCK/genética , Ritmo Circadiano/fisiología , Citocinas/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , NAD/metabolismo , Proteínas Circadianas Period/genética , Sirtuina 1/metabolismo , Sirtuinas/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(6): e2212255120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36724252

RESUMEN

Adverse consequences from having a faulty circadian clock include compromised sleep quality and poor performance in the short-term, and metabolic diseases and cancer in the long-term. However, our understanding of circadian disorders is limited by the incompleteness of our molecular models and our dearth of defined mutant models. Because it would be prohibitively expensive to develop live animal models to study the full range of complicated clock mechanisms, we developed PER1-luc and PER2-luc endogenous circadian reporters in a validated clock cell model, U-2 OS, where the genome can be easily manipulated, and functional consequences of mutations can be accurately studied. When major clock genes were knocked out in these cells, circadian rhythms were modulated similarly compared with corresponding mutant mice, validating the platform for genetics studies. Using these reporter cells, we uncovered critical differences between two paralogs of PER. Although PER1 and PER2 are considered redundant and either one can serve as a pacemaker alone, they were dramatically different in biochemical parameters such as stability and phosphorylation kinetics. Consistently, circadian phase was dramatically different between PER1 and PER2 knockout reporter cells. We further showed that the stable binding of casein kinase1δ/ε to PER is not required for PER phosphorylation itself, but is critical for delayed timing of phosphorylation. Our system can be used as an efficient platform to study circadian disorders associated with pathogenic mutations and their underlying molecular mechanisms.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Proteínas Circadianas Period , Animales , Ratones , Relojes Circadianos/genética , Ritmo Circadiano/genética , Fosforilación , Proteínas Circadianas Period/genética
4.
J Cell Physiol ; 239(3): e31095, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37584358

RESUMEN

Cellular energy is primarily produced from glucose and fat through glycolysis and fatty acid oxidation (FAO) followed by the tricarboxylic acid cycle in mitochondria; energy homeostasis is carefully maintained via numerous feedback pathways. In this report, we uncovered a new master regulator of carbohydrate and lipid metabolism. When ubiquitin E3 ligase ß-TrCP2 was inducibly knocked out in ß-TrCP1 knockout adult mice, the resulting double knockout mice (DKO) lost fat mass rapidly. Biochemical analyses of the tissues and cells from ß-TrCP2 KO and DKO mice revealed that glycolysis, FAO, and lipolysis were dramatically upregulated. The absence of ß-TrCP2 increased the protein stability of metabolic rate-limiting enzymes including 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3), adipose triglyceride lipase (ATGL), carnitine palmitoyltransferase 1A (CPT1A), and carnitine/acylcarnitine translocase (CACT). Our data suggest that ß-TrCP is a potential regulator for total energy homeostasis by simultaneously controlling glucose and fatty acid metabolism and that targeting ß-TrCP could be an effective strategy to treat obesity and other metabolic disorders.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Ácidos Grasos , Proteínas con Repetición de beta-Transducina , Animales , Ratones , Proteínas con Repetición de beta-Transducina/genética , Proteínas con Repetición de beta-Transducina/metabolismo , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Glucólisis , Ratones Noqueados , Ubiquitina-Proteína Ligasas/metabolismo
5.
Mol Cell ; 64(5): 900-912, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27867006

RESUMEN

Circadian clock-gated cell division cycles are observed from cyanobacteria to mammals via intracellular molecular connections between these two oscillators. Here we demonstrate WNT-mediated intercellular coupling between the cell cycle and circadian clock in 3D murine intestinal organoids (enteroids). The circadian clock gates a population of cells with heterogeneous cell-cycle times that emerge as 12-hr synchronized cell division cycles. Remarkably, we observe reduced-amplitude oscillations of circadian rhythms in intestinal stem cells and progenitor cells, indicating an intercellular signal arising from differentiated cells governing circadian clock-dependent synchronized cell division cycles. Stochastic simulations and experimental validations reveal Paneth cell-secreted WNT as the key intercellular coupling component linking the circadian clock and cell cycle in enteroids.


Asunto(s)
Ciclo Celular/fisiología , Relojes Circadianos/fisiología , Mucosa Intestinal/fisiología , Vía de Señalización Wnt/fisiología , Células Madre Adultas/fisiología , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ritmo Circadiano , Yeyuno/metabolismo , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Organoides , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Técnicas de Cultivo de Tejidos
6.
Proc Natl Acad Sci U S A ; 117(45): 28402-28411, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33106420

RESUMEN

The circadian clock is based on a transcriptional feedback loop with an essential time delay before feedback inhibition. Previous work has shown that PERIOD (PER) proteins generate circadian time cues through rhythmic nuclear accumulation of the inhibitor complex and subsequent interaction with the activator complex in the feedback loop. Although this temporal manifestation of the feedback inhibition is the direct consequence of PER's cytoplasmic trafficking before nuclear entry, how this spatial regulation of the pacemaker affects circadian timing has been largely unexplored. Here we show that circadian rhythms, including wake-sleep cycles, are lengthened and severely unstable if the cytoplasmic trafficking of PER is disrupted by any disease condition that leads to increased congestion in the cytoplasm. Furthermore, we found that the time delay and robustness in the circadian clock are seamlessly generated by delayed and collective phosphorylation of PER molecules, followed by synchronous nuclear entry. These results provide clear mechanistic insight into why circadian and sleep disorders arise in such clinical conditions as metabolic and neurodegenerative diseases and aging, in which the cytoplasm is congested.


Asunto(s)
Citoplasma/metabolismo , Homeostasis , Transporte de Proteínas/fisiología , Sueño/fisiología , Células 3T3-L1 , Animales , Proteína 5 Relacionada con la Autofagia , Proteínas CLOCK/metabolismo , Línea Celular , Relojes Circadianos , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
7.
Am J Physiol Endocrinol Metab ; 321(5): E606-E620, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34541876

RESUMEN

Circadian rhythms are central to optimal physiological function, as disruption contributes to the development of several chronic diseases. Alcohol (EtOH) intoxication disrupts circadian rhythms within liver, brain, and intestines, but it is unknown whether alcohol also disrupts components of the core clock in skeletal muscle. Female C57BL/6Hsd mice were randomized to receive either saline (control) or alcohol (EtOH) (5 g/kg) via intraperitoneal injection at the start of the dark cycle [Zeitgeber time (ZT12)], and gastrocnemius was collected every 4 h from control and EtOH-treated mice for the next 48 h following isoflurane anesthetization. In addition, metyrapone was administered before alcohol intoxication in separate mice to determine whether the alcohol-induced increase in serum corticosterone contributed to circadian gene regulation. Finally, synchronized C2C12 myotubes were treated with alcohol (100 mM) to assess the influence of centrally or peripherally mediated effects of alcohol on the muscle clock. Alcohol significantly disrupted mRNA expression of Bmal1, Per1/2, and Cry1/2 in addition to perturbing the circadian pattern of clock-controlled genes, Myod1, Dbp, Tef, and Bhlhe40 (P < 0.05), in muscle. Alcohol increased serum corticosterone levels and glucocorticoid target gene, Redd1, in muscle. Metyrapone prevented the EtOH-mediated increase in serum corticosterone but did not normalize the EtOH-induced change in Per1, Cry1 and Cry2, and Myod1 mRNA expression. Core clock gene expression (Bmal, Per1/2, and Cry1/2) was not changed following 4, 8, or 12 h of alcohol treatment on synchronized C2C12 myotubes. Therefore, binge alcohol disrupted genes of the core molecular clock independently of elevated serum corticosterone or direct effects of EtOH on the muscle.NEW & NOTEWORTHY Alcohol is a myotoxin that impairs skeletal muscle metabolism and function following either chronic consumption or acute binge drinking; however, mechanisms underlying alcohol-related myotoxicity have not been fully elucidated. Herein, we demonstrate that alcohol acutely interrupts oscillation of skeletal muscle core clock genes, and this is neither a direct effect of ethanol on the skeletal muscle, nor an effect of elevated serum corticosterone, a major clock regulator.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Ritmo Circadiano/efectos de los fármacos , Glucocorticoides/metabolismo , Músculo Esquelético/metabolismo , Intoxicación Alcohólica/sangre , Animales , Ritmo Circadiano/genética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Metirapona/farmacología , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética
8.
PLoS Genet ; 14(5): e1007369, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29750810

RESUMEN

The circadian clock coordinates physiology and metabolism. mTOR (mammalian/mechanistic target of rapamycin) is a major intracellular sensor that integrates nutrient and energy status to regulate protein synthesis, metabolism, and cell growth. Previous studies have identified a key role for mTOR in regulating photic entrainment and synchrony of the central circadian clock in the suprachiasmatic nucleus (SCN). Given that mTOR activities exhibit robust circadian oscillations in a variety of tissues and cells including the SCN, here we continued to investigate the role of mTOR in orchestrating autonomous clock functions in central and peripheral circadian oscillators. Using a combination of genetic and pharmacological approaches we show that mTOR regulates intrinsic clock properties including period and amplitude. In peripheral clock models of hepatocytes and adipocytes, mTOR inhibition lengthens period and dampens amplitude, whereas mTOR activation shortens period and augments amplitude. Constitutive activation of mTOR in Tsc2-/-fibroblasts elevates levels of core clock proteins, including CRY1, BMAL1 and CLOCK. Serum stimulation induces CRY1 upregulation in fibroblasts in an mTOR-dependent but Bmal1- and Period-independent manner. Consistent with results from cellular clock models, mTOR perturbation also regulates period and amplitude in the ex vivo SCN and liver clocks. Further, mTOR heterozygous mice show lengthened circadian period of locomotor activity in both constant darkness and constant light. Together, these results support a significant role for mTOR in circadian timekeeping and in linking metabolic states to circadian clock functions.


Asunto(s)
Relojes Circadianos/genética , Transducción de Señal/genética , Núcleo Supraquiasmático/metabolismo , Serina-Treonina Quinasas TOR/genética , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Línea Celular , Células Cultivadas , Fibroblastos/metabolismo , Hepatocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Núcleo Supraquiasmático/citología , Serina-Treonina Quinasas TOR/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
9.
Proc Natl Acad Sci U S A ; 114(42): E8855-E8864, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28973913

RESUMEN

We previously created two PER2::LUCIFERASE (PER2::LUC) circadian reporter knockin mice that differ only in the Per2 3'-UTR region: Per2::Luc, which retains the endogenous Per2 3'-UTR and Per2::LucSV, where the endogenous Per2 3'-UTR was replaced by an SV40 late poly(A) signal. To delineate the in vivo functions of Per2 3'-UTR, we analyzed circadian rhythms of Per2::LucSV mice. Interestingly, Per2::LucSV mice displayed more than threefold stronger amplitude in bioluminescence rhythms than Per2::Luc mice, and also exhibited lengthened free-running periods (∼24.0 h), greater phase delays following light pulse, and enhanced temperature compensation relative to Per2::Luc Analysis of the Per2 3'-UTR sequence revealed that miR-24, and to a lesser degree miR-30, suppressed PER2 protein translation, and the reversal of this inhibition in Per2::LucSV augmented PER2::LUC protein level and oscillatory amplitude. Interestingly, Bmal1 mRNA and protein oscillatory amplitude as well as CRY1 protein oscillation were increased in Per2::LucSV mice, suggesting rhythmic overexpression of PER2 enhances expression of Per2 and other core clock genes. Together, these studies provide important mechanistic insights into the regulatory roles of Per2 3'-UTR, miR-24, and PER2 in Per2 expression and core clock function.


Asunto(s)
Ritmo Circadiano/fisiología , MicroARNs/genética , Proteínas Circadianas Period/genética , Regiones no Traducidas 3' , Animales , Relojes Circadianos/genética , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Luciferasas/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Circadianas Period/metabolismo , Biosíntesis de Proteínas , Temperatura
10.
Am J Physiol Endocrinol Metab ; 317(4): E631-E645, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31361545

RESUMEN

Androgen depletion in humans leads to significant atrophy of the limb muscles. However, the pathways by which androgens regulate limb muscle mass are unclear. Our laboratory previously showed that mitochondrial degradation was related to the induction of autophagy and the degree of muscle atrophy following androgen depletion, implying that decreased mitochondrial quality contributes to muscle atrophy. To increase our understanding of androgen-sensitive pathways regulating decreased mitochondrial quality, total RNA from the tibialis anterior of sham and castrated mice was subjected to microarray analysis. Using this unbiased approach, we identified significant changes in the expression of genes that compose the core molecular clock. To assess the extent to which androgen depletion altered the limb muscle clock, the tibialis anterior muscles from sham and castrated mice were harvested every 4 h throughout a diurnal cycle. The circadian expression patterns of various core clock genes and known clock-controlled genes were disrupted by castration, with most genes exhibiting an overall reduction in phase amplitude. Given that the core clock regulates mitochondrial quality, disruption of the clock coincided with changes in the expression of genes involved with mitochondrial quality control, suggesting a novel mechanism by which androgens may regulate mitochondrial quality. These events coincided with an overall increase in mitochondrial degradation in the muscle of castrated mice and an increase in markers of global autophagy-mediated protein breakdown. In all, these data are consistent with a novel conceptual model linking androgen depletion-induced limb muscle atrophy to reduced mitochondrial quality control via disruption of the molecular clock.


Asunto(s)
Andrógenos/fisiología , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Extremidades/fisiología , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Animales , Atrofia , Autofagia , Peso Corporal , Extremidades/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitofagia , Músculo Esquelético/patología , Orquiectomía , Testosterona/fisiología , Tibia/anatomía & histología , Tibia/crecimiento & desarrollo
11.
Mol Cell ; 36(3): 417-30, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19917250

RESUMEN

Circadian rhythms in mammals are generated by a transcriptional negative feedback loop that is driven primarily by oscillations of PER and CRY, which inhibit their own transcriptional activators, CLOCK and BMAL1. Current models posit that CRY is the dominant repressor, while PER may play an accessory role. In this study, however, constitutive expression of PER, and not CRY1, severely disrupted the clock in fibroblasts and liver. Furthermore, constitutive expression of PER2 in the brain and SCN of transgenic mice caused a complete loss of behavioral circadian rhythms in a conditional and reversible manner. These results demonstrate that rhythmic levels of PER2, rather than CRY1, are critical for circadian oscillations in cells and in the intact organism. Our biochemical evidence supports an elegant mechanism for the disparity: PER2 directly and rhythmically binds to CLOCK:BMAL1, while CRY only interacts indirectly; PER2 bridges CRY and CLOCK:BMAL1 to drive the circadian negative feedback loop.


Asunto(s)
Relojes Biológicos/fisiología , Proteínas CLOCK/metabolismo , Ritmo Circadiano/fisiología , Proteínas Circadianas Period/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Relojes Biológicos/genética , Proteínas CLOCK/genética , Células Cultivadas , Ritmo Circadiano/genética , Criptocromos/genética , Criptocromos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Immunoblotting , Hígado/metabolismo , Luciferasas/genética , Luciferasas/metabolismo , Mediciones Luminiscentes , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas Circadianas Period/genética , Unión Proteica
12.
Biomacromolecules ; 17(12): 3853-3861, 2016 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-27802592

RESUMEN

A new terpolymer adhesive, poly(2-methoxyethyl acrylate-co-N-methacryloyl 3,4-dihydroxyl-l-phenylalanine-co-heptaisobutyl substituted polyhedral oligomeric silsesquioxane propyl methacrylate) (poly(MEA-co-MDOPA-co-MPOSS) was synthesized by thermally initiated radical polymerization. In this study, we investigated the effect of the POSS component on adhesion, mechanical, and optical properties of the catechol-group containing bioinspired adhesives. The terpolymer contains the catechol group which is known to improve the adhesion properties of polymers. Only a very small amount of the POSS-containing monomer, MPOSS, was included, 0.5 mol %. In the presence of POSS, the synthesized poly(MEA-co-MDOPA-co-MPOSS) demonstrated strong adhesion properties, 23.2 ± 6.2 J/m2 with 0.05 N preloading and 300 s holding time, compared to many previously prepared catechol-containing adhesives. The mechanical properties (Young's modulus and stress at 10% strain) of the POSS-containing terpolymer showed significant increases (6-fold higher) over the control polymer, which does not contain POSS. Optical transmittance of the synthesized terpolymer was also improved significantly in the visible light range, 450-750 nm. Cell testing with human embryonic kidney cells (HEK293A) indicates that the new terpolymer is a promising candidate in biomedical adhesives without acute cytotoxicity. The synthesized poly(MEA-co-MDOPA-co-MPOSS) is the first example of POSS-containing pressure sensitive bioinspired adhesive for biomedical applications. The study of poly(MEA-co-MDOPA-co-MPOSS) demonstrated a convenient method to enhance two important properties, mechanical and optical properties, by the addition of a very small amount of POSS. Based on this study, it was found that POSS can be used to strengthen mechanical properties of bioinspired adhesive without the need for a covalent cross-linking step.


Asunto(s)
Adhesivos/química , Metacrilatos/química , Compuestos de Organosilicio/química , Polímeros/química , Proliferación Celular , Módulo de Elasticidad , Células HEK293 , Humanos , Ensayo de Materiales , Fenómenos Ópticos , Polimerizacion , Estrés Mecánico , Propiedades de Superficie
13.
J Biol Chem ; 289(27): 18893-903, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24817118

RESUMEN

Eukaryotic mitotic entry is controlled by Cdk1, which is activated by the Cdc25 phosphatase and inhibited by Wee1 tyrosine kinase, a target of the ubiquitin proteasome pathway. Here we use a reporter of Wee1 degradation, K328M-Wee1-luciferase, to screen a kinase-directed chemical library. Hit profiling identified CK1δ-dependent Wee1 degradation. Small-molecule CK1δ inhibitors specifically disrupted Wee1 destruction and arrested HeLa cell proliferation. Pharmacological inhibition, siRNA knockdown, or conditional deletion of CK1δ also reduced Wee1 turnover. Thus, these studies define a previously unappreciated role for CK1δ in controlling the cell cycle.


Asunto(s)
Quinasa Idelta de la Caseína/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteolisis , Secuencia de Aminoácidos , Animales , Quinasa Idelta de la Caseína/antagonistas & inhibidores , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/química , Evaluación Preclínica de Medicamentos , Células HeLa , Humanos , Ratones , Datos de Secuencia Molecular , Proteínas Nucleares/química , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Estabilidad Proteica/efectos de los fármacos , Proteínas Tirosina Quinasas/química , Proteolisis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología
14.
Proc Natl Acad Sci U S A ; 108(39): 16451-6, 2011 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-21930935

RESUMEN

Mounting evidence suggests that PERIOD (PER) proteins play a central role in setting the speed (period) and phase of the circadian clock. Pharmacological and genetic studies have shown that changes in PER phosphorylation kinetics are associated with changes in circadian rhythm period and phase, which can lead to sleep disorders such as Familial Advanced Sleep Phase Syndrome in humans. We and others have shown that casein kinase 1δ and ε (CK1δ/ε) are essential PER kinases, but it is clear that additional, unknown mechanisms are also crucial for regulating the kinetics of PER phosphorylation. Here we report that circadian periodicity is determined primarily through PER phosphorylation kinetics set by the balance between CK1δ/ε and protein phosphatase 1 (PP1). In CK1δ/ε-deficient cells, PER phosphorylation is severely compromised and nonrhythmic, and the PER proteins are constitutively cytoplasmic. However, when PP1 is disrupted, PER phosphorylation is dramatically accelerated; the same effect is not seen when PP2A is disrupted. Our work demonstrates that the speed and rhythmicity of PER phosphorylation are controlled by the balance between CK1δ/ε and PP1, which in turn determines the period of the circadian oscillator. Thus, our findings provide clear insights into the molecular basis of how the period and phase of our daily rhythms are determined.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Ritmo Circadiano , Proteínas Circadianas Period/fisiología , Proteína Fosfatasa 1/metabolismo , Animales , Electroforesis en Gel de Poliacrilamida , Ratones , Proteínas Circadianas Period/metabolismo , Fosforilación
15.
Sci Rep ; 13(1): 8109, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208532

RESUMEN

The creation of mutant mice has been invaluable for advancing biomedical science, but is too time- and resource-intensive for investigating the full range of mutations and polymorphisms. Cell culture models are therefore an invaluable complement to mouse models, especially for cell-autonomous pathways like the circadian clock. In this study, we quantitatively assessed the use of CRISPR to create cell models in mouse embryonic fibroblasts (MEFs) as compared to mouse models. We generated two point mutations in the clock genes Per1 and Per2 in mice and in MEFs using the same sgRNAs and repair templates for HDR and quantified the frequency of the mutations by digital PCR. The frequency was about an order of magnitude higher in mouse zygotes compared to that in MEFs. However, the mutation frequency in MEFs was still high enough for clonal isolation by simple screening of a few dozen individual cells. The Per mutant cells that we generated provide important new insights into the role of the PAS domain in regulating PER phosphorylation, a key aspect of the circadian clock mechanism. Quantification of the mutation frequency in bulk MEF populations provides a valuable basis for optimizing CRISPR protocols and time/resource planning for generating cell models for further studies.


Asunto(s)
Sistemas CRISPR-Cas , Relojes Circadianos , Animales , Ratones , Fibroblastos/metabolismo , Relojes Circadianos/genética , Técnicas de Cultivo de Célula , Factores de Transcripción/metabolismo , Modelos Animales de Enfermedad , Ritmo Circadiano/genética
16.
J Biol Chem ; 286(9): 7033-42, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21199878

RESUMEN

The mammalian circadian oscillator is primarily driven by an essential negative feedback loop comprising a positive component, the CLOCK-BMAL1 complex, and a negative component, the PER-CRY complex. Numerous studies suggest that feedback inhibition of CLOCK-BMAL1 is mediated by time-dependent physical interaction with its direct target gene products PER and CRY, suggesting that the ratio between the negative and positive complexes must be important for the molecular oscillator and rhythm generation. We explored this idea by altering expression of clock components in fibroblasts derived from Per2(Luc) and Per mutant mice, a cell system extensively used to study in vivo clock mechanisms. Our data demonstrate that the stoichiometric relationship between clock components is critical for the robustness of circadian rhythms and provide insights into the mechanistic organization of the negative feedback loop. Our findings may explain why certain mutant mice or cells are arrhythmic, whereas others are rhythmic, and suggest that robustness of circadian rhythms can be increased even in wild-type cells by modulating the stoichiometry.


Asunto(s)
Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Ritmo Circadiano/fisiología , Retroalimentación Fisiológica/fisiología , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Células COS , Chlorocebus aethiops , Criptocromos/genética , Criptocromos/metabolismo , Fibroblastos/citología , Fibroblastos/fisiología , Regulación de la Expresión Génica/fisiología , Ratones , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Regiones Promotoras Genéticas/fisiología
17.
Proc Natl Acad Sci U S A ; 106(50): 21359-64, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19948962

RESUMEN

Circadian rhythms in mammals are generated by a negative transcriptional feedback loop in which PERIOD (PER) is rate-limiting for feedback inhibition. Casein kinases Idelta and Iepsilon (CKIdelta/epsilon) can regulate temporal abundance/activity of PER by phosphorylation-mediated degradation and cellular localization. Despite their potentially crucial effects on PER, it has not been demonstrated in a mammalian system that these kinases play essential roles in circadian rhythm generation as does their homolog in Drosophila. To disrupt both CKIdelta/epsilon while avoiding the embryonic lethality of CKIdelta disruption in mice, we used CKIdelta-deficient Per2(Luc) mouse embryonic fibroblasts (MEFs) and overexpressed a dominant-negative mutant CKIepsilon (DN-CKIepsilon) in the mutant MEFs. CKIdelta-deficient MEFs exhibited a robust circadian rhythm, albeit with a longer period, suggesting that the cells possess a way to compensate for CKIdelta loss. When CKIepsilon activity was disrupted by the DN-CKIepsilon in the mutant MEFs, circadian bioluminescence rhythms were eliminated and rhythms in endogenous PER abundance and phosphorylation were severely compromised, demonstrating that CKIdelta/epsilon are indeed essential kinases for the clockwork. This is further supported by abolition of circadian rhythms when physical interaction between PER and CKIdelta/epsilon was disrupted by overexpressing the CKIdelta/epsilon binding domain of PER2 (CKBD-P2). Interestingly, CKBD-P2 overexpression led to dramatically low levels of endogenous PER, while PER-binding, kinase-inactive DN-CKIepsilon did not, suggesting that CKIdelta/epsilon may have a non-catalytic role in stabilizing PER. Our results show that an essential role of CKIdelta/epsilon is conserved between Drosophila and mammals, but CKIdelta/epsilon and DBT may have divergent non-catalytic functions in the clockwork as well.


Asunto(s)
Caseína Cinasa 1 épsilon/fisiología , Quinasa Idelta de la Caseína/fisiología , Ritmo Circadiano , Animales , Caseína Cinasa 1 épsilon/metabolismo , Quinasa Idelta de la Caseína/deficiencia , Quinasa Idelta de la Caseína/metabolismo , Línea Celular , Drosophila , Fibroblastos/citología , Ratones , Ratones Noqueados , Mutación , Proteínas Circadianas Period/metabolismo , Unión Proteica
18.
J Neurosci ; 28(46): 11839-47, 2008 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-19005049

RESUMEN

The mammalian molecular circadian clock in the suprachiasmatic nuclei (SCN) regulates locomotor activity rhythms as well as clocks in peripheral tissues (Reppert and Weaver, 2002; Ko and Takahashi, 2006). Constant light (LL) can induce behavioral and physiological arrhythmicity by desynchronizing clock cells in the SCN (Ohta et al., 2005). We examined how the disordered clock cells resynchronize by probing the molecular clock and measuring behavior in mice transferred from LL to constant darkness (DD). The circadian locomotor activity rhythms disrupted in LL become robustly rhythmic again from the beginning of DD, and the starting phase of the rhythm in DD is specific, not random, suggesting that the desynchronized clock cells are quickly reset in an unconventional manner by the L/D transition. By measuring mPERIOD protein rhythms, we showed that the SCN and peripheral tissue clocks quickly become rhythmic again in phase with the behavioral rhythms. We propose that this resetting mechanism may be different from conventional phase shifting, which involves light induction of Period genes (Albrecht et al., 1997; Shearman et al., 1997; Shigeyoshi et al., 1997). Using our functional insights, we could shift the circadian phase of locomotor activity rhythms by 12 h using a 15 h LL treatment: essentially producing phase reversal by a single light pulse, a feat that has not been reported previously in wild-type mice and that has potential clinical utility.


Asunto(s)
Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Oscuridad , Luz , Núcleo Supraquiasmático/metabolismo , Animales , Relojes Biológicos/efectos de la radiación , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ritmo Circadiano/efectos de la radiación , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/fisiología , Actividad Motora/efectos de la radiación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Estimulación Luminosa , Núcleo Supraquiasmático/efectos de la radiación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Eur J Neurosci ; 29(3): 477-89, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19222558

RESUMEN

Circadian rhythms of many body functions in mammals are controlled by a master pacemaker, residing in the hypothalamic suprachiasmatic nucleus (SCN), which synchronises peripheral oscillators. The SCN and peripheral oscillators share several components of the molecular clockwork and comprise transcriptional activators (BMAL1 and CLOCK/NPAS2) and inhibitors (mPER1/2 and mCRY1/2). Here we compared the ontogenetic maturation of the clockwork in the SCN and pars tuberalis (PT). The PT is a peripheral oscillator that strongly depends on rhythmic melatonin signals. Immunoreactions for clock gene proteins were determined in the SCN and PT at four different timepoints during four differential stages of mouse ontogeny: foetal (embryonic day 18), newborn (2-day-old), infantile (10-day-old), and adult. In the foetal SCN, levels of immunoreactions of all clock proteins were significantly lower than adult levels except for BMAL1. In the newborn SCN the clock protein immunoreactions had not yet reached adult levels, but the infantile SCN showed similar levels of immunoreactions as the adult. In contrast, immunoreactions for all clock gene proteins in the foetal PT were as intense as in newborn, infantile and adult, and showed the same phase. As the foetal pineal gland is not yet capable of rhythmic melatonin production, the rhythms in clock gene proteins in the foetal PT are presumably dependent on the maternal melatonin signal. Thus, our data provide the first evidence that maternal melatonin is important for establishing and maintaining circadian rhythms in a foetal peripheral oscillator.


Asunto(s)
Relojes Biológicos/genética , Ritmo Circadiano/genética , Regulación del Desarrollo de la Expresión Génica/genética , Adenohipófisis/embriología , Adenohipófisis/crecimiento & desarrollo , Núcleo Supraquiasmático/embriología , Núcleo Supraquiasmático/crecimiento & desarrollo , Factores de Transcripción ARNTL , Envejecimiento/genética , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas CLOCK , Recuento de Células , Criptocromos , Femenino , Flavoproteínas/genética , Flavoproteínas/metabolismo , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos C3H , Neurogénesis/genética , Neuronas/metabolismo , Distribución Normal , Proteínas Circadianas Period , Adenohipófisis/metabolismo , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Núcleo Supraquiasmático/metabolismo , Factores de Tiempo , Transactivadores/genética , Transactivadores/metabolismo
20.
Cell Div ; 14: 12, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31700528

RESUMEN

Cryptochromes (CRYs) are UVA and blue light photoreceptors present in all major evolutionary lineages ranging from cyanobacteria to plants and animals, including mammals. In plants, blue light activates CRYs to induce photomorphogenesis by inhibiting the CRL4Cop1 E3 ligase complex which regulates the degradation of critical transcription factors involved in plant development and growth. However, in mammals, CRYs do not physically interact with Cop1, and of course mammals are not photomorphogenic, leading to the belief that the CRY-Cop1 axis is not conserved in mammals. This belief was recently overturned by Rizzini et al., who showed that although mammalian CRYs do not inhibit Cop1 activity in a light-dependent manner, they antagonize Cop1 activity by displacing Cop1 from CRL4 E3 ligase complex. Because CRYs oscillate, they act in a circadian manner resulting in daily oscillations in Cop1 substrates and the downstream pathways that they regulate. The conserved antagonism of Cop1 by CRY indicates that the CRY-Cop1 axis has an ancient origin, and was repurposed by evolution to regulate photomorphogenesis in plants and circadian rhythms in mammals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA