Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Respir Res ; 21(1): 259, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33036612

RESUMEN

BACKGROUND: To aid in the diagnosis of Primary Ciliary Dyskinesia (PCD) and to evaluate the respiratory epithelium in respiratory disease, normal age-related reference ranges are needed for ciliary beat frequency (CBF), beat pattern and ultrastructure. Our aim was to establish reference ranges for healthy Chinese children. METHODS: Ciliated epithelial samples were obtained from 135 healthy Chinese children aged below 18 years by brushing the inferior nasal turbinate. CBF and beat pattern were analysed from high speed video recordings. Epithelial integrity and ciliary ultrastructure were assessed using transmission electronic microscopy. RESULTS: The mean CBF from 135 children studied was 10.1 Hz (95% CI 9.8 to 10.4). Approximately 20% (ranged 18.0-24.2%) of ciliated epithelial edges were found to have areas of dyskinetically beating cilia. Normal beat pattern was observed in ciliated epithelium from all subjects. We did not find any effect of exposure to second hand smoke on CBF in our subjects. Microtubular defects were found in 9.3% of all of the cilia counted in these children, while other ciliary ultrastructural defects were found in less than 3%. CONCLUSIONS: We established the reference range for CBF, beat pattern and ultrastructure in healthy Chinese children. Using similar methodology, we found a lower overall mean CBF than previously obtained European values. This study highlights the need to establish normative data for ciliary function in different populations.


Asunto(s)
Pueblo Asiatico , Neuronas Receptoras Olfatorias/fisiología , Neuronas Receptoras Olfatorias/ultraestructura , Adolescente , Adulto , Niño , Preescolar , Cilios/fisiología , Cilios/ultraestructura , Femenino , Hong Kong/epidemiología , Humanos , Masculino , Microscopía Electrónica/métodos , Persona de Mediana Edad , Mucosa Nasal/fisiología , Mucosa Nasal/ultraestructura , Mucosa Respiratoria/fisiología , Mucosa Respiratoria/ultraestructura , Grabación en Video/métodos , Adulto Joven
2.
J Air Waste Manag Assoc ; 73(7): 533-552, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36947591

RESUMEN

During thermal processes utilized in affixing fluoropolymer coatings dispersion to fibers and fabrics, coating components are vaporized. It is suspected that per- and polyfluoroalkyl substances (PFAS) from the dispersions may undergo chemical transformations at the temperatures used, leading to additional emitted PFAS thermal byproducts. It is important to characterize these emissions to support evaluation of the resulting environmental and health impacts. In this study, a bench-scale system was built to simulate this industrial process via thermal application of dispersions to fiberglass utilizing relevant temperatures and residence times in sequential drying, baking, and sintering steps. Experiments were performed with two commercially available dispersions and a simple model mixture containing a single PFAS (6:2 fluorotelomer alcohol [6:2 FTOH]). Vapor-phase emissions were sampled and characterized by several off-line and real-time mass spectrometry techniques for targeted and nontargeted PFAS. Results indicate that multiple PFAS thermal transformation products and multiple nonhalogenated organic species were emitted from the exit of the high temperature third (sintering) furnace when 6:2 FTOH was the only PFAS present in the aqueous mixture. This finding supports the hypothesis that temperatures typical of these industrial furnaces may also induce chemical transformations within the fluorinated air emissions. Experiments using the two commercial fluoropolymer dispersions indicate air emissions of part-per-million by volume (ppmv) concentrations of heptafluoropropyl-1,2,2,2-tetrafluoroethyl ether (Fluoroether E1), as well as other PFAS at operationally relevant temperatures. We suspect that E1 is a direct thermal decomposition product (via decarboxylation) of 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid (commonly referred to as HFPO-DA) present in the dispersions. Other thermal decomposition products, including the monomer, tetrafluoroethene, may originate from the PFAS used to stabilize the dispersion or from the polymer particles in suspension. This study represents the first researcher-built coating application simulator to report nontargeted PFAS emission characterization, real-time analyses, and the quantification of 30 volatile target PFAS.Implications: Thermal processes used to affix fluoropolymers to fabrics are believed to be a source of PFAS air emissions. These coating operations are used by many large and small manufacturers and typically do not currently require any air emissions control. This research designed and constructed a bench-scale system that simulates these processes and used several off-line and advanced real-time mass spectroscopy techniques to characterize PFAS air emissions from two commercial fluoropolymer dispersions. Further, as the compositions of commercial dispersions are largely unknown, a model three-component solution containing a single PFAS was used to characterize emissions of multiple PFAS thermal transformation products at operationally relevant conditions. This research shows that fluoropolymer fabric coating facilities can be sources of complex mixtures of PFAS air emissions that include volatile and semivolatile PFAS present in the dispersions, as well as PFAS byproducts formed by the thermal transformation of fluorocarbon and hydrocarbon species present in these dispersions.


Asunto(s)
Polímeros de Fluorocarbono , Fluorocarburos , Polímeros de Fluorocarbono/análisis , Fluorocarburos/análisis , Fluorocarburos/química , Calor , Temperatura
3.
J Air Waste Manag Assoc ; 72(3): 256-270, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34994684

RESUMEN

A combustion model, originally developed to simulate the destruction of chemical warfare agents, was modified to include C1-C3 fluorinated organic reactions and kinetics compiled by the National Institute of Standards and Technology (NIST). A simplified plug flow reactor version of this model was used to predict the destruction efficiency (DE) and formation of products of incomplete combustion (PICs) for three C1 and C2 per- and poly-fluorinated alkyl substances (PFAS) (CF4, CHF3, and C2F6) and compare predicted values to Fourier Transform Infrared spectroscopy (FTIR)-based measurements made from a pilot-scale EPA research combustor (40-64 kW, natural gas-fired, 20% excess air). PFAS were introduced through the flame, and at post-flame locations along a time-temperature profile allowing for simulation of direct flame and non-flame injection, and examination of the sensitivity of PFAS destruction on temperature and free radical flame chemistry. Results indicate that CF4 is particularly difficult to destroy with DEs ranging from ~60 to 95% when introduced through the flame at increasing furnace loads. Due to the presence of lower energy C-H and C-C bonds to initiate molecular dissociation reactions, CHF3 and C2F6 were easier to destroy, exhibiting DEs >99% even when introduced post-flame. However, these lower bond energies may also lead to the formation of CF2 and CF3 radicals at thermal conditions unable to fully de-fluorinate these species and formation of fluorinated PICs. DEs determined by the model agreed well with the measurements for CHF3 and C2F6 but overpredicted DEs at high temperatures and underpredicted DEs at low temperatures for CF4. However, high DEs do not necessarily mean absence of PICs, with both model predictions and limited FTIR measurements indicating the presence of similar fluorinated PICs in the combustion emissions. The FTIR was able to provide real-time emission measurements and additional model development may improve prediction of PFAS destruction and PIC formation.Implications: The widespread use of PFAS for over 70 years has led to their presence in multiple environmental matrixes including human tissues. While the chemical and thermal stability of PFAS are related to their desirable properties, this stability means that PFAS are very slow to degrade naturally and potentially difficult to destroy completely through thermal treatment processes often used for organic waste destruction. In this applied combustion study, model PFAS compounds were introduced to a pilot-scale EPA research furnace. Real-time FTIR measurements were performed of the injected compound and trace products of incomplete combustion (PICs) at operationally relevant conditions, and the results were successfully compared to kinetic model predictions of those same PFAS destruction efficiencies and trace gas-phase PIC constituents. This study represents a significant potential enhancement in available tools to support effective management of PFAS-containing wastes.


Asunto(s)
Fluorocarburos , Incineración , Fluorocarburos/análisis , Humanos , Incineración/métodos , Cinética , Temperatura
4.
Front Genet ; 13: 933381, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003331

RESUMEN

Bronchiectasis is the abnormal dilation of the airway which may be caused by various etiologies in children. Beyond the more recognized cause of bacterial and viral infections and primary immunodeficiencies, other genetic conditions such as cystic fibrosis and primary ciliary dyskinesia (PCD) can also contribute to the disease. Currently, there is still debate on whether genome sequencing (GS) or exome sequencing reanalysis (rES) would be beneficial if the initial targeted testing results returned negative. This study aims to provide a back-to-back comparison between rES and GS to explore the best integrated approach for the functional and genetics evaluation for patients referred for assessment of bronchiectasis. In phase 1, an initial 60 patients were analyzed by exome sequencing (ES) with one additional individual recruited later as an affected sibling for ES. Functional evaluation of the nasal nitric oxide test, transmission electron microscopy, and high-speed video microscopy were also conducted when possible. In phase 2, GS was performed on 30 selected cases with trio samples available. To provide a back-to-back comparison, two teams of genome analysts were alternatively allocated to GS or rES and were blinded to each other's analysis. The time for bioinformatics, analysis, and diagnostic utility was recorded for evaluation. ES revealed five positive diagnoses (5/60, 8.3%) in phase 1, and four additional diagnoses were made by rES and GS (4/30, 13%) during phase 2. Subsequently, one additional positive diagnosis was identified in a sibling by ES and an overall diagnostic yield of 10/61 (16.4%) was reached. Among those patients with a clinical suspicion of PCD (n = 31/61), the diagnostic yield was 26% (n = 8/31). While GS did not increase the diagnostic yield, we showed that a variant of uncertain significance could only be detected by GS due to improved coverage over ES and hence is a potential benefit for GS in the future. We show that genetic testing is an essential component for the diagnosis of early-onset bronchiectasis and is most effective when used in combination with functional tools such as TEM or HSVM. Our comparison of rES vs. GS suggests that rES and GS are comparable in clinical diagnosis.

5.
Chemosphere ; 272: 129859, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34675448

RESUMEN

Given the extent to which per- and polyfluoroalkyl substances (PFAS) are used in commercial and industrial applications, the need to evaluate treatment options that reduce environmental emissions and human and ecological exposures of PFAS is becoming more necessary. One specific chemical class of PFAS, fluorotelomer alcohols (FTOHs), have vapor pressures such that a significant fraction is expected to be present in the gas-phase even at ambient temperatures. FTOHs are used in a variety of PFAS applications, including synthesis and material coatings. Using two complementary mass spectrometric methods, the use of calcium oxide (CaO) was examined as a low temperature and potentially low-cost thermal treatment media for removal and destruction of four gas-phase FTOHs of varying molecular weights. This was accomplished by assessing the removal/destruction efficiency of the FTOHs and the formation of fluorinated byproducts as a function of treatment temperature (200 - 800 °C) in the presence of CaO compared to thermal-only destruction. During the treatment process, there is evidence that other PFAS compounds are produced at low temperatures (200 - 600 °C) as the primary FTOH partially degrades. At temperatures above 600 °C, thermal treatment with CaO prevented the formation or removed nearly all these secondary products.


Asunto(s)
Alcoholes , Fluorocarburos , Compuestos de Calcio , Monitoreo del Ambiente , Fluorocarburos/análisis , Humanos , Óxidos , Temperatura
6.
EBioMedicine ; 71: 103530, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34455394

RESUMEN

BACKGROUND: Biliary atresia (BA) is the most common obstructive cholangiopathy in neonates, often progressing to end-stage cirrhosis. BA pathogenesis is believed to be multifactorial, but the genetic contribution, especially for nonsyndromic BA (common form: > 85%) remains poorly defined. METHODS: We conducted whole exome sequencing on 89 nonsyndromic BA trios to identify rare variants contributing to BA etiology. Functional evaluation using patients' liver biopsies, human cell and zebrafish models were performed. Clinical impact on respiratory system was assessed with clinical evaluation, nasal nitric oxide (nNO), high speed video analysis and transmission electron microscopy. FINDINGS: We detected rare, deleterious de novo or biallelic variants in liver-expressed ciliary genes in 31.5% (28/89) of the BA patients. Burden test revealed 2.6-fold (odds ratio (OR) [95% confidence intervals (CI)]= 2.58 [1.15-6.07], adjusted p = 0.034) over-representation of rare, deleterious mutations in liver-expressed ciliary gene set in patients compared to controls. Functional analyses further demonstrated absence of cilia in the BA livers with KIF3B and TTC17 mutations, and knockdown of PCNT, KIF3B and TTC17 in human control fibroblasts and cholangiocytes resulted in reduced number of cilia. Additionally, CRISPR/Cas9-engineered zebrafish knockouts of KIF3B, PCNT and TTC17 displayed reduced biliary flow. Abnormally low level of nNO was detected in 80% (8/10) of BA patients carrying deleterious ciliary mutations, implicating the intrinsic ciliary defects. INTERPRETATION: Our findings support strong genetic susceptibility for nonsyndromic BA. Ciliary gene mutations leading to cholangiocyte cilia malformation and dysfunction could be a key biological mechanism in BA pathogenesis. FUNDING: The study is supported by General Research Fund, HMRF Commissioned Paediatric Research at HKCH and Li Ka Shing Faculty of Medicine Enhanced New Staff Start-up Fund.


Asunto(s)
Atresia Biliar/etiología , Cilios/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación , Fenotipo , Animales , Atresia Biliar/diagnóstico , Sistemas CRISPR-Cas , Línea Celular , Biología Computacional/métodos , Edición Génica , Técnicas de Silenciamiento del Gen , Ontología de Genes , Estudios de Asociación Genética/métodos , Heterogeneidad Genética , Sitios Genéticos , Humanos , Hígado/metabolismo , Hígado/patología , Análisis de Secuencia de ADN , Secuenciación del Exoma , Pez Cebra
7.
Proc Combust Inst ; 36(6): 4029-4037, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30344457

RESUMEN

Pulverized bituminous coal was burned in a 10W externally heated entrained flow furnace under air-combustion and three oxy-combustion inlet oxygen conditions (28, 32, and 36%). Experiments were designed to produce flames with practically relevant stoichiometric ratios (SR=1.2-1.4) and constant residence times (2.3s). Size-classified fly ash samples were collected, and measurements focused on the soot, elemental carbon (EC), and organic carbon (OC) composition of the total and ultrafine (<0.6µm) fly ash. Results indicate that although the total fly ash carbon, as measured by loss on ignition, was always acceptably low (<2%) with all three oxycombustion conditions lower than air-combustion, the ultrafine fly ash for both air-fired and oxy-fired combustion conditions consists primarily of carbonaceous material (50-95%). Carbonaceous components on particles <0.6µm measured by a thermal optical method showed that large fractions (52-93%) consisted of OC rather than EC, as expected. This observation was supported by thermogravimetric analysis indicating that for the air, 28% oxy, and 32% oxy conditions, 14-71% of this material may be OC volatilizing between 100 and 550°C with the remaining 29-86% being EC/soot. However, for the 36% oxy condition, OC may comprise over 90% of the ultrafine carbon with a much smaller EC/soot contribution. These data were interpreted by considering the effects of oxy-combustion on flame attachment, ignition delay, and soot oxidation of a bituminous coal, and the effects of these processes on OC and EC emissions. Flame aerodynamics and inlet oxidant composition may influence emissions of organic hazardous air pollutants (HAPs) from a bituminous coal. During oxy-coal combustion, judicious control of inlet oxygen concentration and placement may be used to minimize organic HAP and soot emissions.

8.
J Clin Neurosci ; 21(2): 349-50, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24100109

RESUMEN

Gorlin's syndrome or naevoid basal cell carcinoma syndrome is a rare autosominal dominant condition characterised by a variety of congenital anomalies and various malignancies. The chief manifestations include multiple basal cell naevi, mandibular cysts, plantar and palmar pits, vertebral and rib abnormalities and intracranial calcifications. We report a patient with Gorlin's syndrome associated with meningioma treated at our institution. The clinical and radiological features together with the management strategies of this unusual disease entity are discussed.


Asunto(s)
Síndrome del Nevo Basocelular/complicaciones , Neoplasias Encefálicas/complicaciones , Meningioma/complicaciones , Adulto , Síndrome del Nevo Basocelular/patología , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/cirugía , Femenino , Humanos , Quistes Maxilomandibulares/diagnóstico por imagen , Imagen por Resonancia Magnética , Mandíbula/diagnóstico por imagen , Meningioma/patología , Meningioma/cirugía , Costillas/anomalías , Costillas/diagnóstico por imagen , Tomografía Computarizada por Rayos X
9.
Int J Cardiol ; 177(2): 680-2, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25449483
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA