RESUMEN
The relevance of extracellular magnesium in cellular immunity remains largely unknown. Here, we show that the co-stimulatory cell-surface molecule LFA-1 requires magnesium to adopt its active conformation on CD8+ T cells, thereby augmenting calcium flux, signal transduction, metabolic reprogramming, immune synapse formation, and, as a consequence, specific cytotoxicity. Accordingly, magnesium-sufficiency sensed via LFA-1 translated to the superior performance of pathogen- and tumor-specific T cells, enhanced effectiveness of bi-specific T cell engaging antibodies, and improved CAR T cell function. Clinically, low serum magnesium levels were associated with more rapid disease progression and shorter overall survival in CAR T cell and immune checkpoint antibody-treated patients. LFA-1 thus directly incorporates information on the composition of the microenvironment as a determinant of outside-in signaling activity. These findings conceptually link co-stimulation and nutrient sensing and point to the magnesium-LFA-1 axis as a therapeutically amenable biologic system.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Magnesio/metabolismo , Animales , Infecciones Bacterianas/inmunología , Restricción Calórica , Línea Celular Tumoral , Citotoxicidad Inmunológica , Células HEK293 , Humanos , Memoria Inmunológica , Sinapsis Inmunológicas/metabolismo , Inmunoterapia , Activación de Linfocitos/inmunología , Sistema de Señalización de MAP Quinasas , Magnesio/administración & dosificación , Masculino , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Fenotipo , Fosforilación , Proteínas Proto-Oncogénicas c-jun/metabolismoRESUMEN
Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ) are key effectors of the Hippo pathway to control cell growth and organ size, of which dysregulation yields to tumorigenesis or hypertrophy. Upon activation, YAP/TAZ translocate into the nucleus and bind to TEAD transcription factors to promote transcriptional programs for proliferation or cell specification. Immediate early genes, represented by AP-1 complex, are rapidly induced and control later-phase transcriptional program to play key roles in tumorigenesis and organ maintenance. Here, we report that YAP/TAZ directly promote FOS transcription that in turn contributes to the biological function of YAP/TAZ. YAP/TAZ bind to the promoter region of FOS to stimulate its transcription. Deletion of YAP/TAZ blocks the induction of immediate early genes in response to mitogenic stimuli. FOS induction contributes to expression of YAP/TAZ downstream target genes. Genetic deletion or chemical inhibition of AP-1 suppresses growth of YAP-driven cancer cells, such as Lats1/2-deficient cancer cells as well as Gαq/11 mutated uveal melanoma. Furthermore, AP-1 inhibition almost completely abrogates the hepatomegaly induced by YAP overexpression. Our findings reveal a feed-forward interplay between immediate early transcription of AP-1 and Hippo pathway function.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Regulación Neoplásica de la Expresión Génica , Transactivadores/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes fos/genética , Células HEK293 , Humanos , Hígado/metabolismo , Melanoma/fisiopatología , Ratones , Mitógenos/farmacología , Tamaño de los Órganos/genética , Regiones Promotoras Genéticas/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Neoplasias de la Úvea/fisiopatología , Proteínas Señalizadoras YAPRESUMEN
Over the past few decades, the increased application of nanomaterials has raised questions regarding their safety and possible toxic effects. Organoids have been suggested as promising tools, offering efficient assays for nanomaterial-induced toxicity evaluation. However, organoid systems have some limitations, such as size heterogeneity and poor penetration of nanoparticles because of the extracellular matrix, which is necessary for organoid culture. Here, we developed a novel system for the improved safety assessment of nanomaterials by establishing a 3D floating organoid paradigm. In addition to overcoming the limitations of two-dimensional systems including the lack of in vitro-in vivo cross-talk, our method provides multiple benefits as compared with conventional organoid systems that rely on an extracellular matrix for culture. Organoids cultured using our method exhibited relatively uniform sizing and structural integrity and were more conducive to the internalization of nanoparticles. Our floating culture system will accelerate the research and development of safe nanomaterials.
Asunto(s)
Nanoestructuras , Organoides , Matriz ExtracelularRESUMEN
Regular monitoring of Norovirus presence in environmental and food samples is crucial due to its high transmission rates and outbreak potential. For detecting Norovirus GI, reverse transcription qPCR method is commonly used, but its sensitivity can be affected by assay performance. This study shows significantly reduced assay performance in digital PCR or qPCR when using primers targeting Norovirus GI genome 5291-5319 (NC_001959), located on the hairpin of the predicted RNA structure. It is highly recommended to avoid this region in commercial kit development or diagnosis to minimizing potential risk of false negatives.
Asunto(s)
Norovirus , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Norovirus/genética , Norovirus/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , ARN Viral/genética , ARN Viral/análisis , Humanos , Infecciones por Caliciviridae/diagnóstico , Infecciones por Caliciviridae/virologíaRESUMEN
Age is a risk factor for numerous diseases. Although the development of modern medicine has greatly extended the human lifespan, the duration of relatively healthy old age, or 'healthspan', has not increased. Targeting the detrimental processes that can occur before the onset of age-related diseases can greatly improve health and lifespan. Healthspan is significantly affected by what, when and how much one eats. Dietary restriction, including calorie restriction, fasting or fasting-mimicking diets, to extend both lifespan and healthspan has recently attracted much attention. However, direct scientific evidence that consuming specific foods extends the lifespan and healthspan seems lacking. Here, we synthesized the results of recent studies on the lifespan and healthspan extension properties of foods and their phytochemicals in various organisms to confirm how far the scientific research on the effect of food on the lifespan has reached.
RESUMEN
Diabetic retinopathy (DR) is one of the vascular complications associated with diabetes mellitus. Pericyte loss is an early characteristic phenomenon in DR. However, the mechanism by which pericyte apoptosis occurs in DR is not fully understood. We have focused on the increased STAT3 activation in diabetic retinas because STAT3 activation is associated with inflammation, and persistent chronic inflammation is closely related to retinal lesions. In this study, we demonstrated that STAT3 was activated by IFN-γ and IL-6 that highly expressed in diabetic retinas. We identified TNF-α as a potent inducer of pericyte apoptosis in diabetic retinas from the gene expression analysis and found that STAT3 activation in microglia increased TNF-α expression in the diabetic retinas. We also demonstrated that increased TNF-α expression in microglia caused pericyte apoptosis through downregulating AKT/p70S6 kinase signaling. Moreover, we took advantage of mice lacking STAT3 in microglia and demonstrated that STAT3 ablation in microglia reduced the pericyte apoptosis and TNF-α expression in the diabetic retinas. These results suggest that STAT3 activation in microglia plays an important role in pericyte apoptosis in the diabetic retinas through increased TNF-α expression and provide STAT3 activation in microglia as a potential therapeutic target for preventing pericyte loss in DR.
Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Animales , Apoptosis , Diabetes Mellitus/metabolismo , Retinopatía Diabética/metabolismo , Inflamación/patología , Ratones , Microglía/metabolismo , Pericitos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Retina/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacologíaRESUMEN
OBJECTIVE: We investigated the utility of Positron emission tomography-Computed tomography (PET-CT) in the setting of two different sentinel lymph node (SLN) mapping techniques; the conventional cervical injection method (one-step) and the two-step method, which involves fundal injection followed by cervical injection. METHODS: Patients with endometrial cancer undergoing FDG PET-CT followed by laparoscopic or robotic surgical staging with SLN mapping at the Yonsei Cancer Center between July 2014 and April 2021 were stratified into the PET-positive group (with suspected or likely lymph nodes metastasis) and PET-negative group. A chart review was performed for the number of harvested SLNs, patterns of SLN metastases, and recurrence. RESULTS: Among 466 patients undergoing one-step (n = 276) and two-step (n = 190) SLN mapping, LN metastasis was identified in 21 of 434 PET-negative and 18 of 32 PET-positive patients. The sensitivity and specificity of PET-CT for diagnosing lymph node metastasis were 46.2% and 96.7%, respectively. Among PET-positive patients with LN metastasis, anatomical distribution was concordant in 14/18 patients (77.8%). Among PET-negative patients, four (2.3%) had metastatic para-aortic SLNs, including three (1.7%) with isolated para-aortic metastases; metastatic para-aortic SLNs were exclusively found in the two-step group. Among PET-positive patients, para-aortic SLN metastasis was identified in 35.7% of two-step and 16.7% of one-step group. Among the 21 PET false-negative patients, recurrence was seen in four patients (19%) after a median follow-up of 34 months (range: 7-70 months). CONCLUSIONS: PET-CT served as a useful guide to clinicians with high anatomical concordance rate in patients with LN metastasis. However, despite high specificity, sensitivity was limited. SLN metastasis pattern, especially at the para-aortic level, indicates that the two-step SLN technique might be useful in PET-negative and PET-positive patients.
Asunto(s)
Neoplasias Endometriales , Ganglio Linfático Centinela , Neoplasias Endometriales/diagnóstico por imagen , Neoplasias Endometriales/patología , Neoplasias Endometriales/cirugía , Femenino , Humanos , Escisión del Ganglio Linfático , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Ganglios Linfáticos/cirugía , Metástasis Linfática/diagnóstico por imagen , Metástasis Linfática/patología , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Ganglio Linfático Centinela/diagnóstico por imagen , Ganglio Linfático Centinela/patología , Ganglio Linfático Centinela/cirugía , Biopsia del Ganglio Linfático Centinela/métodosRESUMEN
Nucleic acid tests to detect the SARS-CoV-2 virus have been performed worldwide since the beginning of the COVID-19 pandemic. For the quality assessment of testing laboratories and the performance evaluation of molecular diagnosis products, reference materials (RMs) are required. In this work, we report the production of a lentiviral SARS-CoV-2 RM containing approximately 12 kilobases of its genome including common diagnostics targets such as RdRp, N, E, and S genes. The RM was measured with multiple assays using two different digital PCR platforms. To measure the homogeneity and stability of the lentiviral SARS-CoV-2 RM, reverse transcription droplet digital PCR (RT-ddPCR) was used with in-house duplex assays. The copy number concentration of each target gene in the extracted RNA solution was then converted to that of the RM solution. Their copy number values are measured to be from 1.5 × 105 to 2.0 × 105 copies/mL. The RM has a between-bottle homogeneity of 4.80-8.23% and is stable at 4 °C for 1 week and at -70 °C for 6 months. The lentiviral SARS-CoV-2 RM closely mimics real samples that undergo identical pre-analytical processes for SARS-CoV-2 molecular testing. By offering accurate reference values for the absolute copy number of viral target genes, the developed RM can be used to improve the reliability of SARS-CoV-2 molecular testing.
Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Genoma Viral , ARN Viral/genética , Juego de Reactivos para Diagnóstico/normas , SARS-CoV-2/genética , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19/normas , Proteínas de la Envoltura de Coronavirus/genética , Proteínas de la Envoltura de Coronavirus/metabolismo , Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/metabolismo , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Dosificación de Gen , Expresión Génica , Humanos , Células Jurkat , Lentivirus/genética , Lentivirus/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN Viral/metabolismo , ARN Viral/normas , Juego de Reactivos para Diagnóstico/provisión & distribución , Estándares de Referencia , Reproducibilidad de los Resultados , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Empaquetamiento del Genoma ViralRESUMEN
Diabetes mellitus (DM) characterized by hyperglycemia leads to a variety of complications, including cognitive impairment or memory loss. The hippocampus is a key brain area for learning and memory and is one of the regions that is most sensitive to diabetes. However, the pathogenesis of diabetic neuronal lesion is not yet completely understood. We focused on the association of microglia activation and brain lesions in diabetes. In this study, we investigated whether and how signal transducer and activator of transcription 3 (STAT3) activation in microglia affects neuronal lesions in diabetic brains. Using a streptozotocin-induced type 1 DM model, we showed enhanced hippocampal neuronal apoptosis that was associated with increased STAT3 activation. We found that hyperglycemia increased the expression of inflammatory cytokines such as interferon-γ (IFN-γ) and interleukin-6, in the diabetic hippocampus. In particular, IFN-γ induced autocrine activation of microglia, and STAT3 activation is important for this process. We also demonstrated that STAT3 activation in microglia increased tumor necrosis factor-α (TNF-α) expression; subsequently, TNF-α increased neuronal apoptosis by increasing reactive oxygen species (ROS) levels in the neuronal cells. We also took advantage of mice lacking STAT3 in microglia and demonstrated that depletion of microglial STAT3 reduced neuronal apoptosis in the diabetic hippocampus. Taken together, these results suggest that STAT3 activation in microglia plays an important role in hyperglycemia-induced neuronal apoptosis in the diabetic hippocampus and provide a potential therapeutic benefit of STAT3 inhibition in microglia for preventing diabetic neuronal lesions.
Asunto(s)
Apoptosis , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Hipocampo/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Comunicación Autocrina , Línea Celular Tumoral , Citocinas/genética , Citocinas/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , Hipocampo/patología , Humanos , Mediadores de Inflamación/metabolismo , Ratones Noqueados , Microglía/patología , Neuronas/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de SeñalRESUMEN
Yes-associated protein (YAP) and myocardin-related transcription factor (MRTF) play similar roles and exhibit significant crosstalk in directing transcriptional responses to chemical and physical extracellular cues. The mechanism underlying this crosstalk, however, remains unclear. Here, we show MRTF family proteins bind YAP via a conserved PPXY motif that interacts with the YAP WW domain. This interaction allows MRTF to recruit NcoA3 to the TEAD-YAP transcriptional complex and potentiate its transcriptional activity. We show this interaction of MRTF and YAP is critical for LPA-induced cancer cell invasion in vitro and breast cancer metastasis to the lung in vivo We also demonstrate the significance of MRTF-YAP binding in regulation of YAP activity upon acute actin cytoskeletal damage. Acute actin disruption induces nucleo-cytoplasmic shuttling of MRTF, and this process underlies the LATS-independent regulation of YAP activity. Our results provide clear evidence of crosstalk between MRTF and YAP independent of the LATS kinases that normally act upstream of YAP signaling. Our results also suggest a mechanism by which extracellular stimuli can coordinate physiological events downstream of YAP.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al ADN/metabolismo , Metástasis de la Neoplasia , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Línea Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Pulmón/patología , Neoplasias Pulmonares/patología , Ratones Endogámicos BALB C , Coactivador 3 de Receptor Nuclear/metabolismo , Unión Proteica , Multimerización de Proteína , Factores de Transcripción de Dominio TEA , Proteínas Señalizadoras YAPRESUMEN
BACKGROUND: The receptor for advanced glycation end-products (RAGE) is involved in neuroinflammation. This study investigated the changes in RAGE expression following noise-induced hearing loss. METHODS: Three-week-old female Sprague-Dawley rats were exposed to 115 dB SPL white noise for 4 h daily for 3 d (noise group, n = 16). In parallel, age and sex-matched control rats were raised under standard conditions without noise exposure (control group, n = 16). After 2 h (noise immediate, n = 8) and 4 wk (noise 4-week, n = 8) of noise exposure, the auditory cortex was harvested and cytoplasmic and nuclear fractions were isolated. The gene expression levels of tumor necrosis factor alpha (TNF-α), interleukin 6 (IL6), interleukin 1 beta (IL1ß), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and RAGE were evaluated using real-time reverse transcription polymerase chain reaction. The protein expression levels of nuclear RAGE and cytosolic RAGE were evaluated using western blotting. Additionally, matrix metalloproteinase 9 (MMP9) was pharmacologically inhibited in the noise immediate group, and then nuclear and cytosolic RAGE expression levels were evaluated. RESULTS: The noise immediate and noise 4-week groups exhibited increased auditory thresholds at 4, 8, 16, and 32 kHz frequencies. The genes encoding the pro-inflammatory cytokines TNF-α, IL6, IL1ß, and NF- κB were increased 3.74, 1.63, 6.42, and 6.23-fold in the noise immediate group, respectively (P = 0.047, 0.043, 0.044, and 0.041). RAGE mRNA expression was elevated 1.42-fold in the noise 4-week group (P = 0.032). Cytosolic RAGE expression was increased 1.76 and 6.99-fold in the noise immediate and noise 4-week groups, respectively (P = 0.04 and 0.03). Nuclear RAGE expression was comparable between the noise and control groups. matrix metalloproteinase 9 (MMP9) inhibition reduced cytosolic RAGE expression in the noise immediate group (P = 0.004). CONCLUSIONS: Noise exposure increased the expression of cytosolic RAGE in the auditory cortex and upregulated pro-inflammatory genes, but this response could be alleviated by MMP9 inhibition.
Asunto(s)
Corteza Auditiva/metabolismo , Pérdida Auditiva Provocada por Ruido/metabolismo , Mediadores de Inflamación/metabolismo , Receptor para Productos Finales de Glicación Avanzada/biosíntesis , Animales , Femenino , Expresión Génica , Pérdida Auditiva Provocada por Ruido/genética , Ratas , Ratas Sprague-Dawley , Receptor para Productos Finales de Glicación Avanzada/genéticaRESUMEN
This study aimed to explore gene expression changes in the inferior colliculus (IC) after single-sided deafness (SSD). Forty 8-week-old female Sprague-Dawley rats were used. Twenty rats underwent right-side cochlear ablation, and IC tissues were harvested after 2 weeks (SSD 2-week group). Twenty rats underwent a sham operation and were sacrificed after 2 weeks (control group). Both sides of the IC were analyzed using a gene expression array. Pathway analyses were performed on genes that were differentially expressed compared with their levels in the control group. The expression levels of genes involved in the candidate pathways were confirmed using reverse transcription polymerase chain reaction (RT-PCR). Among the genes with ≥ 1.5-fold changes in expression levels and P < 0.05, there were 7 and 9 genes with increased and decreased expression, respectively, in the ipsilateral IC and 10 and 12 genes with increased and decreased expression, respectively, in the contralateral IC. The pathway analysis did not identify significantly related pathway. In the bilateral analysis, a total of 14 genes were ≥ 1.3-fold downregulated in both the ipsilateral and contralateral IC in the SSD 2-week group compared with their expression in the control group. Pathway analyses of these 14 genes included 7 genes, namely, amine compound solute carrier (Slc)5a7; Slc18a3; Slc6a5; synaptic vesicle glycoprotein 2C (Sv2c); S100 calcium binding protein A10 (S100a10); a gene with sequence similarity to family 111, member A (Fam111a); and peripherin (Prph), that were related to the acetylcholine neurotransmitter release cycle, SLC transporters, and the neurotransmitter release cycle pathways. RT-PCR showed reduced expression of Slc5a7, Sv2c, and Prph in the contralateral IC and Slc18a3 and Slc6a5 in the ipsilateral IC of the SSD 2-week group compared with that in the control group.
Asunto(s)
Cóclea/cirugía , Perfilación de la Expresión Génica , Colículos Inferiores/metabolismo , Animales , Umbral Auditivo , Femenino , Pérdida Auditiva/genética , Pérdida Auditiva/fisiopatología , Colículos Inferiores/cirugía , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
BACKGROUND: This study aimed to investigate the changes in molecules related to perineuronal nets (PNNs) and synaptic transporters in the primary auditory cortices of rats with noise-induced hearing loss. Female Sprague-Dawley rats at postnatal day 7 were divided into the noise and control groups. Four hours of 115 dB SPL white noise was delivered for 10 days to the noise group. Thirty days after noise exposure, the primary auditory cortex and the inferior colliculus were harvested. The expression levels of vesicular glutamatergic transporter (VGLUT)1, VGLUT2, vesicular GABA transporter (VGAT), glutamate decarboxylase (GAD)67, brevican, aggrecan, MMP9, and MMP14 were evaluated using real-time reverse transcription polymerase chain reaction or western blot. An immunofluorescence assay was conducted to assess parvalbumin (PV), Wisteria floribunda agglutinin (WFA), and brevican. The immune-positive cells were counted in the primary auditory cortex. RESULTS: The expression level of VGLUT1 in the primary auditory cortex was decreased in the noise group. The expression level of VGLUT2 in the inferior colliculus was elevated in the noise group. The expression levels of brevican and PV + WFA in the primary auditory cortex were decreased in the noise group. The expression level of MMP9 in the primary auditory cortex was increased in the noise group. CONCLUSION: Noise-induced hearing loss during the precritical period impacted PNN expression in the primary auditory cortex. Increased MMP9 expression may have contributed to the decrease in brevican expression. These changes were accompanied by the attenuation of glutamatergic synaptic transporters.
Asunto(s)
Brevicano/metabolismo , Matriz Extracelular/metabolismo , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Provocada por Ruido/fisiopatología , Metaloproteinasa 9 de la Matriz/metabolismo , Animales , Corteza Auditiva/metabolismo , Corteza Auditiva/fisiopatología , Femenino , Parvalbúminas/metabolismo , Lectinas de Plantas/metabolismo , Ratas Sprague-Dawley , Receptores N-Acetilglucosamina/metabolismoRESUMEN
Ischemic heart disease, especially myocardial infarction (MI), is the leading cause of death worldwide. Apoptotic mechanisms are thought to play a significant role in cardiomyocyte death after MI. Increased production of heat shock proteins (Hsps) in cardiomyocytes is a normal response to promote tolerance and to reduce cell damage. Hsp27 is considered to be a therapeutic option for the treatment of ischemic heart disease due to its protective effects on hypoxia-induced apoptosis. Despite its antiapoptotic effects, the lack of strategies to deliver Hsp27 to the heart tissue in vivo limits its clinical applicability. In this study, we utilized an antibody against the angiotensin II type 1 (AT1) receptor, which is expressed immediately after ischemia/reperfusion in the heart of MI rats. To achieve cardiomyocyte-targeted Hsp27 delivery after ischemia/reperfusion, we employed the immunoglobulin-binding dimer ZZ, a modified domain of protein A, in conjunction with the AT1 receptor antibody. Using the AT1 receptor antibody, we achieved systemic delivery of ZZ-TAT-GFP fusion protein into the heart of MI rats. This approach enabled selective delivery of Hsp27 to cardiomyocytes, rescued cells from apoptosis, reduced the area of fibrosis, and improved cardiac function in the rat MI model, thus suggesting its applicability as a cardiomyocyte-targeted protein delivery system to inhibit apoptosis induced by ischemic injury.
Asunto(s)
Proteínas de Choque Térmico HSP27/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/terapia , Miocitos Cardíacos/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Animales , Anticuerpos Monoclonales , Línea Celular Tumoral , Femenino , Proteínas de Choque Térmico HSP27/genética , Humanos , Infarto del Miocardio/genética , Ratas , Receptor de Angiotensina Tipo 1/genéticaRESUMEN
Previous studies have described the effects of zingerone (ZO) on cisplatin (CXP)-induced injury to the kidneys, liver, and other organs but not to the cochlea. This study aimed to investigate the effects of ZO on CXP-induced ototoxicity. Eight-week-old Sprague-Dawley rats were used and divided into a control group, a CXP group, and a CXP + ZO group. Rats in the CXP group received 5 mg/kg/day CXP intraperitoneally for five days. Rats in the CXP + ZO group received 5 mg/kg/day CXP intraperitoneally for five days and 50 mg/kg/day ZO intraperitoneally for seven days. Auditory brainstem response thresholds (ABRTs) were measured before (day 0) and after (day 10) drug administration. Cochlear histology was examined using hematoxylin and eosin (H&E) staining and cochlear whole mounts. The expression levels of cytochrome P450 (CYP)1A1, CYP1B1, inducible nitric oxide synthase (iNOS), nuclear factor kappa B (NFκB), tumor necrosis factor alpha (TNFα), and interleukin 6 (IL6) were estimated using quantitative reverse transcription-polymerase chain reaction. The expression levels of heme oxygenase 1 (HO1) and caspase 3 were analyzed via Western blotting. The auditory thresholds at 4, 8, and 16 kHz were attenuated in the CXP + ZO group compared with the CXP group. The mRNA expression levels of CYP1A1, CYP1B1, iNOS, NFκB, TNFα, and IL6 were lower in the CXP + ZO group than in the CXP group. The protein expression levels of HO1 and caspase 3 were lower in the CXP + ZO group than in the CXP group. Cotreatment with ZO exerted otoprotective effects against CXP-induced cochlear injury via antioxidative and anti-inflammatory activities involving CYPs, iNOS, NFκB, and TNFα.
Asunto(s)
Cisplatino/efectos adversos , Guayacol/análogos & derivados , Ototoxicidad/tratamiento farmacológico , Sustancias Protectoras/uso terapéutico , Animales , Umbral Auditivo/efectos de los fármacos , Cóclea/efectos de los fármacos , Cóclea/metabolismo , Cóclea/patología , Cóclea/fisiopatología , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Guayacol/farmacología , Guayacol/uso terapéutico , Ototoxicidad/genética , Ototoxicidad/fisiopatología , Sustancias Protectoras/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-DawleyRESUMEN
Premature ovarian failure (POF) is defined as loss of ovarian function in women less than 40 years of age. The causes of POF are diverse and include environmental factors. Di-2-ethylhexyl phthalate (DEHP) is one factor that may cause POF. The ubiquitin-proteasome system maintains intracellular balance by promoting or inhibiting protein degradation. To investigate the differential expressions of deubiquitinating enzyme (DUB) genes in patients with POF, we developed two in vitro POF models by treating A2780 or OVCAR5 with DEHP. Using these models, a multiplex RT-PCR system for DUB genes was applied to identify biomarkers by comparing expression patterns and DUB mRNA levels; multiplex RT-PCR results were validated by qRT-PCR and Western blotting analyses. Observed differential expression levels of several DUB genes including USP12, COPS5, ATXN3L, USP49, and USP34 in A2780 and OVCAR5 cells at the mRNA and protein levels suggest that they should be investigated as potential biomarkers of POF.
Asunto(s)
Enzimas Desubicuitinizantes/genética , Dietilhexil Ftalato/farmacología , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas/tratamiento farmacológico , Ovario/efectos de los fármacos , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Adulto , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Neoplasias Ováricas/genética , Insuficiencia Ovárica Primaria/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Mensajero/metabolismoRESUMEN
Transforming growth factor-ß (TGF-ß) is a multifunctional cytokine that is known to modulate various aspects of endothelial cell (EC) biology. Retinal pigment epithelium (RPE) is important for regulating angiogenesis of choriocapillaris and one of the main cell sources of TGF-ß secretion, particularly TGF-ß2. However, it is largely unclear whether and how TGF-ß2 affects angiogenic responses of ECs. In the current study, we demonstrated that TGF-ß2 reduces vascular endothelial growth factor receptor-2 (VEGFR-2) expression in ECs and thereby inhibits vascular endothelial growth factor (VEGF) signaling and VEGF-induced angiogenic responses such as EC migration and tube formation. We also demonstrated that the reduction of VEGFR-2 expression by TGF-ß2 is due to the suppression of JNK signaling. In coculture of RPE cells and ECs, RPE cells decreased VEGFR-2 levels in ECs and EC migration. In addition, we showed that TGF-ß2 derived from RPE cells is involved in the reduction of VEGFR-2 expression and inhibition of EC migration. These results suggest that TGF-ß2 plays an important role in inhibiting the angiogenic responses of ECs during the interaction between RPE cells and ECs and that angiogenic responses of ECs may be amplified by a decrease in TGF-ß2 expression in RPE cells under pathologic conditions.
Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica , Comunicación Paracrina , Epitelio Pigmentado de la Retina/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Movimiento Celular , Células Cultivadas , Técnicas de Cocultivo , Regulación hacia Abajo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Fosforilación , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Vías Secretoras , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genéticaRESUMEN
The regulation of endothelial cell (EC) permeability is critical for the physiological homeostasis of blood vessels and tissues. The elevation of pro-inflammatory cytokines is highly associated with lesions, such as the increased vascular permeability of diabetic retinas. We have previously reported that interleukin-6 (IL-6) increases EC permeability through the downregulation of tight junction protein expression. Angiopoietin 1 (Ang1) has an anti-permeability function, but the effect of Ang1 on vascular permeability induced by inflammatory cytokines is unclear. In the present study, we investigated the effect of Ang1 on IL-6-induced EC permeability and its underlying molecular mechanisms. We demonstrated that Ang1 inhibited the IL-6-induced increase in EC permeability by inhibiting the reductions in the levels of tight junction protein ZO-1 and occludin, which was related to the decrease in vascular endothelial growth factor (VEGF) secretion through the inhibition of STAT3 activation by Ang1. Mechanistically, Ang1 induced the dissociation of the tyrosine phosphatase SHP-1 from the Tie2 receptor and increased the binding of SHP-1 to JAK1, JAK2, and STAT3, which are IL-6 downstream signaling proteins. We conclude that SHP-1 plays an important role in the Ang1-induced inhibition of JAK/STAT3 signaling. These results provide evidence for a potential beneficial role of Ang1 in suppressing the vascular permeability induced by the pro-inflammatory cytokine IL-6 in diabetic retinopathy.
Asunto(s)
Angiopoyetina 1/metabolismo , Células Endoteliales/metabolismo , Interleucina-6/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Células Cultivadas , Humanos , Interleucina-6/metabolismo , PermeabilidadRESUMEN
Recent studies suggest an alternative pathway of lipid breakdown called lipophagy, which delivers lipid droplets (LDs) to lysosomes for degradation of LDs. However, molecular mechanisms regulating lipophagy are still largely unknown. In this study, we evaluated the effect of oleic acid (OA) on lipophagy in cells. We found that OA treatment results in accumulation of p62 and LC3-II proteins and reduces red fluorescence in cells stably expressing mCherry-GFP-LC3. In addition, OA inhibits the co-localization of LC3 with LAMP1 under serum-deprived condition, suggesting that OA blocks autophagosome-lysosome fusion. In the cells with ATG5 or ULK1 gene deletion, LDs did not increase upon OA treatment more than in wild type cells. However, cell starvation following OA removal resulted in reduced lipid accumulation by lipophagy and recovery of autophagy flux, suggesting that the specific condition of OA treatment and cell starvation are important for lipophagy flux activity.
Asunto(s)
Autofagia/efectos de los fármacos , Lipólisis/efectos de los fármacos , Lisosomas/efectos de los fármacos , Ácido Oléico/farmacología , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Línea Celular , Células Hep G2 , Humanos , Gotas Lipídicas/metabolismo , Lisosomas/metabolismo , RatonesRESUMEN
BACKGROUND: Protein kinase C iota (PKCι) and protein kinase C zeta (PKCζ) are two atypical protein kinase (aPKC) enzymes that contribute to cell proliferation and cancer development. The Hippo/YAP pathway is commonly disrupted and upregulated in cancers. Herein, the expression patterns and clinical relevance of PKCι and PKCζ are evaluated in relation to YAP, a downstream effector of Hippo, in lung adenocarcinoma (LAC). The protein and mRNA expression levels of PKCι, PKCζ, YAP, and their phosphorylated forms, namely p-PKCι, p-PKCζ and p-YAP, are evaluated in relation to clinicopathological factors, including patient survival. METHODS: A total of 200 primary LAC tissue samples were examined by immunohistochemistry for PKCι, p-PKCι, PKCζ, p-PKCζ, YAP, and p-YAP protein expression. Sixty pairs of LAC and non-neoplastic lung tissue samples were assessed for PRKCI, PRKCZ, and YAP mRNA levels. PKCι, p-PKCι, PKCζ, and p-PKCζ protein expression were evaluated by Western blot analysis in the PC9 and PC9/GR LAC cell lines with YAP modulation. RESULTS: LAC demonstrated cytoplasmic PKCι, p-PKCι, PKCζ, and p-PKCζ immunostaining patterns. Positive aPKC protein expressions were related with poor patient survival. Especially, increased p-PKCι protein expression was significantly correlated with higher pathological stage and shortened overall survival. YAP overexpression contributes phosphorylation of PKCι and PKCζ protein expression in the LAC cell line. CONCLUSIONS: PKCι and PKCζ are related to YAP in LAC. PKCι and PKCζ play distinct roles in LAC; specifically, p-PKCι overexpression is suggested to underlie factors that indicate a poor prognosis.