Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(13): e23792, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38953555

RESUMEN

Age-related macular degeneration (AMD) is a common cause of vision loss. The aggressive form of AMD is associated with ocular neovascularization and subretinal fibrosis, representing a responsive outcome against neovascularization mediated by epithelial-mesenchymal transition of retinal pigment epithelium (RPE) cells. A failure of the current treatment (anti-vascular endothelial growth factor therapy) has also been attributed to the progression of subretinal fibrosis. Hypoxia-inducible factors (HIFs) increase gene expressions to promote fibrosis and neovascularization. HIFs act as a central pathway in the pathogenesis of AMD. HIF inhibitors may suppress ocular neovascularization. Nonetheless, further investigation is required to unravel the aspects of subretinal fibrosis. In this study, we used RPE-specific HIFs or von Hippel-Lindau (VHL, a regulator of HIFs) conditional knockout (cKO) mice, along with pharmacological HIF inhibitors, to demonstrate the suppression of subretinal fibrosis. Fibrosis was suppressed by treatments of HIF inhibitors, and similar suppressive effects were detected in RPE-specific Hif1a/Hif2a- and Hif1a-cKO mice. Promotive effects were observed in RPE-specific Vhl-cKO mice, where fibrosis-mediated pathologic processes were evident. Marine products' extracts and their component taurine suppressed fibrosis as HIF inhibitors. Our study shows critical roles of HIFs in the progression of fibrosis, linking them to the potential development of therapeutics for AMD.


Asunto(s)
Fibrosis , Ratones Noqueados , Epitelio Pigmentado de la Retina , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau , Animales , Ratones , Fibrosis/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Degeneración Macular/metabolismo , Degeneración Macular/patología , Degeneración Macular/tratamiento farmacológico , Retina/metabolismo , Retina/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Ratones Endogámicos C57BL
2.
Graefes Arch Clin Exp Ophthalmol ; 262(3): 689-700, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37335334

RESUMEN

PURPOSE: The burden of ocular diseases has been gradually increasing worldwide. Various factors are suggested for the development and progression of ocular diseases, such as ocular inflammation, oxidative stress, and complex metabolic dysregulation. Thus, managing ocular diseases requires the modulation of pathologic signaling pathways through many mechanisms. Nicotinamide mononucleotide (NMN) is a bioactive molecule naturally found in life forms. NMN is a direct precursor of the important molecule nicotinamide adenine dinucleotide (NAD+), an essential co-enzyme required for enormous cellular functions in most life forms. While the recent experimental evidence of NMN treatment in various metabolic diseases has been well-reviewed, NMN treatment in ocular diseases has not been comprehensively summarized yet. In this regard, we aimed to focus on the therapeutic roles of NMN treatment in various ocular diseases with recent advances. METHODS: How we came to our current opinion with a recent summary was described based on our own recent reports as well as a search of the related literature. RESULTS: We found that NMN treatment might be available for the prevention of and protection from various experimental ocular diseases, as NMN treatment modulated ocular inflammation, oxidative stress, and complex metabolic dysregulation in murine models for eye diseases such as ischemic retinopathy, corneal defect, glaucoma, and age-related macular degeneration. CONCLUSION: Our current review suggests and discusses new modes of actions of NMN for the prevention of and protection from various ocular diseases and can urge future research to obtain more solid evidence on a potential future NMN treatment in ocular diseases at the preclinical stages.


Asunto(s)
Glaucoma , Degeneración Macular , Humanos , Animales , Ratones , Mononucleótido de Nicotinamida , Ojo , Inflamación
3.
Int J Mol Sci ; 25(10)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38791541

RESUMEN

Appropriate nutrients are essential for cellular function. Dietary components can alter the risk of systemic metabolic diseases, including cardiovascular diseases, cancer, diabetes, and obesity, and can also affect retinal diseases, including age-related macular degeneration, diabetic retinopathy, and glaucoma. Dietary nutrients have been assessed for the prevention or treatment of retinal ischemic diseases and the diseases of aging. In this article, we review clinical and experimental evidence concerning the potential of some nutritional supplements to prevent or treat retinal ischemic diseases and provide further insights into the therapeutic effects of nutritional supplementation on retinopathies. We will review the roles of nutrients in preventing or protecting against retinal ischemic diseases.


Asunto(s)
Antiinflamatorios , Antioxidantes , Suplementos Dietéticos , Enfermedades de la Retina , Humanos , Antioxidantes/uso terapéutico , Antioxidantes/administración & dosificación , Enfermedades de la Retina/dietoterapia , Enfermedades de la Retina/terapia , Antiinflamatorios/uso terapéutico , Antiinflamatorios/administración & dosificación , Animales , Isquemia/terapia , Isquemia/dietoterapia
4.
Int J Mol Sci ; 25(18)2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39337623

RESUMEN

Hypoxia-inducible factors (HIFs) are transcriptional factors that function as strong regulators of oxygen homeostasis and cellular metabolisms. The maintenance of cellular oxygen levels is critical as either insufficient or excessive oxygen affects development and physiologic and pathologic conditions. In the eye, retinas have a high metabolic demand for oxygen. Retinal ischemia can cause visual impairment in various sight-threating disorders including age-related macular degeneration, diabetic retinopathy, and some types of glaucoma. Therefore, understanding the potential roles of HIFs in the retina is highly important for managing disease development and progression. This review focuses on the physiologic and pathologic roles of HIFs as regulators of oxygen homeostasis and cellular metabolism in the retina, drawing on recent evidence. Our summary will promote comprehensive approaches to targeting HIFs for therapeutic purposes in retinal diseases.


Asunto(s)
Enfermedades de la Retina , Humanos , Enfermedades de la Retina/metabolismo , Animales , Retina/metabolismo , Retina/patología , Oxígeno/metabolismo , Factor 1 Inducible por Hipoxia/metabolismo , Retinopatía Diabética/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hipoxia/metabolismo
5.
Exp Eye Res ; 228: 109414, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36764596

RESUMEN

The prevalence of myopia has been steadily increasing for several decades, and this condition can cause extensive medical and economic issues in society. Exposure to violet light (VL), a short wavelength (360-400 nm) of visible light from sunlight, has been suggested as an effective preventive and suppressive treatments for the development and progression of myopia. However, the clinical application of VL remains unclear. In this study, we aimed to investigate the preventive and suppressive effects of VL on myopia progression. Various transmittances of VL (40%, 70%, and 100%) were tested in C57BL/6J mice with lens-induced myopia (LIM). Changes in the refractive error, axial length, and choroid thickness during the 3-week LIM were measured. The myopic shift in refractive error and difference in axial length between the 0 and -30 diopter lens was lessened in a transmission-dependent manner. Choroidal thinning, which was observed in myopic conditions, was suppressed by VL exposure and affected by its transmission. The results suggest that myopia progression can be managed using VL transmittance. Therefore, these factors should be considered for the prevention and treatment of myopia.


Asunto(s)
Cristalino , Miopía , Animales , Ratones , Ratones Endogámicos C57BL , Miopía/prevención & control , Luz , Coroides , Longitud Axial del Ojo
6.
FASEB J ; 36(9): e22497, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35969144

RESUMEN

Retinal ischemia-reperfusion (I/R) injury is a common cause of visual impairment. To date, no effective treatment is available for retinal I/R injury. In addition, the precise pathological mechanisms still need to be established. Recently, pemafibrate, a peroxisome proliferator-activated receptor α (PPARα) modulator, was shown to be a promising drug for retinal ischemia. However, the role of pemafibrate in preventing retinal I/R injury has not been documented. Here, we investigated how retinal degeneration occurs in a mouse model of retinal I/R injury by elevation of intraocular pressure and examined whether pemafibrate could be beneficial against retinal degeneration. Adult mice were orally administered pemafibrate (0.5 mg/kg/day) for 4 days, followed by retinal I/R injury. The mice were continuously administered pemafibrate once every day until the end of the experiments. Retinal functional changes were measured using electroretinography. Retina, liver, and serum samples were used for western blotting, quantitative PCR, immunohistochemistry, or enzyme linked immunosorbent assay. Retinal degeneration induced by retinal inflammation was prevented by pemafibrate administration. Pemafibrate administration increased the hepatic PPARα target gene expression and serum levels of fibroblast growth factor 21, a neuroprotective molecule in the eye. The expression of hypoxia-response and pro-and anti-apoptotic/inflammatory genes increased in the retina following retinal I/R injury; however, these changes were modulated by pemafibrate administration. In conclusion, pemafibrate is a promising preventive drug for ischemic retinopathies.


Asunto(s)
Daño por Reperfusión , Degeneración Retiniana , Animales , Benzoxazoles , Butiratos , Modelos Animales de Enfermedad , Isquemia , Ratones , PPAR alfa/metabolismo , Daño por Reperfusión/complicaciones , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo
7.
FASEB J ; 35(8): e21829, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34314069

RESUMEN

Retinal ischemia is a leading cause of irreversible blindness worldwide. Inner retinal dysfunction including loss of retinal ganglion cells is encountered in a number of retinal ischemic disorders. We previously reported administration of two different hypoxia-inducible factor (HIF) inhibitors exerted neuroprotective effects in a murine model of retinal ischemia/reperfusion (I/R) which mimics these disorders, as inner retinal degeneration could be involved in pathological HIF induction. However, this notion needs further investigation. Therefore, in this study, we attempted to use retina-specific Hif-1α conditional knockout (cKO) mice to uncover this notion more clearly under the same condition. Hif-1α cKO mice showed inner retinal neurodegeneration to a lesser extent than control mice. Hif-1α depletion in a murine 661W retinal cell line reduced cell death under pseudohypoxic and hypoxic conditions. Among hypoxia-related genes, the expression of BCL2 19 kDa protein-interacting protein 3 (Bnip3) was substantially upregulated in the inner retinal layer after retinal I/R. In this regard, we further examined Bnip3 depletion in retinal neurons in vitro and in vivo and found the similar neuroprotective effects. Our results support the notion that the HIF-1α/BNIP3 pathway may have a critical role in inner retinal neurodegeneration, which can be linked with the development of new promising therapeutics for inner retinal ischemic disorders.


Asunto(s)
Hipoxia de la Célula , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Proteínas de la Membrana/fisiología , Proteínas Mitocondriales/fisiología , Neuroprotección , Retina , Degeneración Retiniana/metabolismo , Animales , Línea Celular , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Retina/metabolismo , Retina/patología
8.
Int J Mol Sci ; 23(9)2022 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-35563640

RESUMEN

Ocular ischemic syndrome (OIS) is one of the severe ocular disorders occurring from stenosis or occlusion of the carotid arteries. As the ophthalmic artery is derived from the branch of the carotid artery, stenosis or occlusion of the carotid arteries could induce chronic ocular hypoperfusion, finally leading to the development of OIS. To date, the pathophysiology of OIS is still not clearly unraveled. To better explore the pathophysiology of OIS, several experimental models have been developed in rats and mice. Surgical occlusion or stenosis of common carotid arteries or internal carotid arteries was conducted bilaterally or unilaterally for model development. In this regard, final ischemic outcomes in the eye varied depending on the surgical procedure, even though similar findings on ocular hypoperfusion could be observed. In the current review, we provide an overview of the pathophysiology of OIS from various experimental models, as well as several clinical cases. Moreover, we cover the status of current therapies for OIS along with promising preclinical treatments with recent advances. Our review will enable more comprehensive therapeutic approaches to prevent the development and/or progression of OIS.


Asunto(s)
Estenosis Carotídea , Oftalmopatías , Animales , Estenosis Carotídea/complicaciones , Constricción Patológica , Ojo/irrigación sanguínea , Isquemia/terapia , Ratones , Modelos Teóricos , Arteria Oftálmica/fisiología , Ratas
9.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36232528

RESUMEN

Retinal ischemia/reperfusion (I/R) injury can cause severe vision impairment. Retinal I/R injury is associated with pathological increases in reactive oxygen species and inflammation, resulting in retinal neuronal cell death. To date, effective therapies have not been developed. Nicotinamide mononucleotide (NMN), a key nicotinamide adenine dinucleotide (NAD+) intermediate, has been shown to exert neuroprotection for retinal diseases. However, it remains unclear whether NMN can prevent retinal I/R injury. Thus, we aimed to determine whether NMN therapy is useful for retinal I/R injury-induced retinal degeneration. One day after NMN intraperitoneal (IP) injection, adult mice were subjected to retinal I/R injury. Then, the mice were injected with NMN once every day for three days. Electroretinography and immunohistochemistry were used to measure retinal functional alterations and retinal inflammation, respectively. The protective effect of NMN administration was further examined using a retinal cell line, 661W, under CoCl2-induced oxidative stress conditions. NMN IP injection significantly suppressed retinal functional damage, as well as inflammation. NMN treatment showed protective effects against oxidative stress-induced cell death. The antioxidant pathway (Nrf2 and Hmox-1) was activated by NMN treatment. In conclusion, NMN could be a promising preventive neuroprotective drug for ischemic retinopathy.


Asunto(s)
Fármacos Neuroprotectores , Daño por Reperfusión , Animales , Antioxidantes , Modelos Animales de Enfermedad , Inflamación , Isquemia , Ratones , NAD/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Mononucleótido de Nicotinamida/farmacología , Mononucleótido de Nicotinamida/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/complicaciones , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control
10.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499037

RESUMEN

Cardiovascular abnormality-mediated retinal ischemia causes severe visual impairment. Retinal ischemia is involved in enormous pathological processes including oxidative stress, reactive gliosis, and retinal functional deficits. Thus, maintaining retinal function by modulating those pathological processes may prevent or protect against vision loss. Over the decades, nicotinamide mononucleotide (NMN), a crucial nicotinamide adenine dinucleotide (NAD+) intermediate, has been nominated as a promising therapeutic target in retinal diseases. Nonetheless, a protective effect of NMN has not been examined in cardiovascular diseases-induced retinal ischemia. In our study, we aimed to investigate its promising effect of NMN in the ischemic retina of a murine model of carotid artery occlusion. After surgical unilateral common carotid artery occlusion (UCCAO) in adult male C57BL/6 mice, NMN (500 mg/kg/day) was intraperitoneally injected to mice every day until the end of experiments. Electroretinography and biomolecular assays were utilized to measure ocular functional and further molecular alterations in the retina. We found that UCCAO-induced retinal dysfunction was suppressed, pathological gliosis was reduced, retinal NAD+ levels were preserved, and the expression of an antioxidant molecule (nuclear factor erythroid-2-related factor 2; Nrf2) was upregulated by consecutive administration of NMN. Our present outcomes first suggest a promising NMN therapy for the suppression of cardiovascular diseases-mediated retinal ischemic dysfunction.


Asunto(s)
Arteriopatías Oclusivas , Enfermedades Cardiovasculares , Ratones , Animales , Masculino , Mononucleótido de Nicotinamida/farmacología , Mononucleótido de Nicotinamida/uso terapéutico , NAD/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Gliosis , Isquemia , Arterias Carótidas/metabolismo
11.
Molecules ; 27(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36558053

RESUMEN

Two compounds 1 and 2 were isolated from the culture broth of Lepista luscina. This is the first time that compound 1 was isolated from a natural source. The structure of compound 1 was identified via 1D and 2D NMR and HRESIMS data. Compounds 1 and 2 along with 8-nitrotryptanthrin (4) were evaluated for their biological activities using the A549 lung cancer cell line. As a result, 1 and 2 inhibited the expression of Axl and immune checkpoint molecules. In addition, compounds 1, 2 and 4 were tested for HIF inhibitory activity. Compound 2 demonstrated statistically significant HIF inhibitory effects on NIH3T3 cells and 1 and 2 against ARPE19 cells.


Asunto(s)
Proteínas de Punto de Control Inmunitario , Neoplasias Pulmonares , Animales , Ratones , Humanos , Células 3T3 NIH , Neoplasias Pulmonares/metabolismo , Células A549 , Subunidad alfa del Factor 1 Inducible por Hipoxia , Línea Celular Tumoral
12.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34502311

RESUMEN

Cardiovascular diseases lead to retinal ischemia, one of the leading causes of blindness. Retinal ischemia triggers pathological retinal glial responses and functional deficits. Therefore, maintaining retinal neuronal activities and modulating pathological gliosis may prevent loss of vision. Previously, pemafibrate, a selective peroxisome proliferator-activated receptor alpha modulator, was nominated as a promising drug in retinal ischemia. However, a protective role of pemafibrate remains untouched in cardiovascular diseases-mediated retinal ischemia. Therefore, we aimed to unravel systemic and retinal alterations by treating pemafibrate in a new murine model of retinal ischemia caused by cardiovascular diseases. Adult C57BL/6 mice were orally administered pemafibrate (0.5 mg/kg) for 4 days, followed by unilateral common carotid artery occlusion (UCCAO). After UCCAO, pemafibrate was continuously supplied to mice until the end of experiments. Retinal function (a-and b-waves and the oscillatory potentials) was measured using electroretinography on day 5 and 12 after UCCAO. Moreover, the retina, liver, and serum were subjected to qPCR, immunohistochemistry, or ELISA analysis. We found that pemafibrate enhanced liver function, elevated serum levels of fibroblast growth factor 21 (FGF21), one of the neuroprotective molecules in the eye, and protected against UCCAO-induced retinal dysfunction, observed with modulation of retinal gliosis and preservation of oscillatory potentials. Our current data suggest a promising pemafibrate therapy for the suppression of retinal dysfunction in cardiovascular diseases.


Asunto(s)
Arteriopatías Oclusivas/complicaciones , Benzoxazoles/farmacología , Butiratos/farmacología , Arteria Carótida Común/fisiopatología , Enfermedades de la Retina/prevención & control , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades de la Retina/etiología , Enfermedades de la Retina/patología
13.
Exp Eye Res ; 201: 108275, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32991884

RESUMEN

Retina, one of the highest oxygen demanding tissues, is vulnerable to vascular insufficiencies, and various ocular vascular disorders can cause chronic retinal ischemia. To investigate the pathophysiology, rodent models developed by bilateral common carotid artery occlusion (BCCAO) have been utilized. However, mice lack posterior communicating arteries in the circle of Willis and cannot endure the brain ischemia induced by the bilateral occlusion. A mouse model to better reflect the localized ischemic stress in the retina without affecting the brain is still needed. Here, we established a mouse model of ischemic injury by permanent unilateral common carotid artery occlusion (UCCAO). Adult male mice were subjected to UCCAO, and changes in the ipsilateral retina were examined in comparison with the contralateral retina. Delayed perfusion was observed in the ipsilateral retina right after the occlusion and was not recovered later on. Common features of retinal ischemia were observed: hypoxia-inducible factor (HIF) stabilization; upregulation of hypoxia-responsive genes; altered levels of cytokines and chemokines. Activation of astrocytes and Müller cells in the inner retina was detected at day 2, and thinning of the inner retinal layer became significant at week 10. Together, our model can simulate retinal ischemia with morphological and molecular changes. It can be utilized to investigate pathophysiology of ischemic retinopathies.


Asunto(s)
Estenosis Carotídea/complicaciones , Isquemia/fisiopatología , Flujo Sanguíneo Regional/fisiología , Retina/fisiopatología , Enfermedades de la Retina/fisiopatología , Vasos Retinianos/fisiopatología , Animales , Modelos Animales de Enfermedad , Isquemia/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Retina/patología , Enfermedades de la Retina/etiología
14.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255657

RESUMEN

Pathological neovascularization in the eye is a leading cause of blindness in all age groups from retinopathy of prematurity (ROP) in children to age-related macular degeneration (AMD) in the elderly. Inhibiting neovascularization via antivascular endothelial growth factor (VEGF) drugs has been used for the effective treatment. However, anti-VEGF therapies may cause development of chorioretinal atrophy as they affect a physiological amount of VEGF essential for retinal homeostasis. Furthermore, anti-VEGF therapies are still ineffective in some cases, especially in patients with AMD. Hypoxia-inducible factor (HIF) is a strong regulator of VEGF induction under hypoxic and other stress conditions. Our previous reports have indicated that HIF is associated with pathological retinal neovascularization in murine models of ROP and AMD, and HIF inhibition suppresses neovascularization by reducing an abnormal increase in VEGF expression. Along with this, we attempted to find novel effective HIF inhibitors from natural foods of our daily lives. Food ingredients were screened for prospective HIF inhibitors in ocular cell lines of 661W and ARPE-19, and a murine AMD model was utilized for examining suppressive effects of the ingredients on retinal neovascularization. As a result, rice bran and its component, vitamin B6 showed inhibitory effects on HIF activation and suppressed VEGF mRNA induction under a CoCl2-induced pseudo-hypoxic condition. Dietary supplement of these significantly suppressed retinal neovascularization in the AMD model. These data suggest that rice bran could have promising therapeutic values in the management of pathological ocular neovascularization.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Degeneración Macular/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/genética , Vitamina B 6/farmacología , Anciano , Animales , Cobalto/toxicidad , Modelos Animales de Enfermedad , Humanos , Hipoxia/inducido químicamente , Hipoxia/tratamiento farmacológico , Hipoxia/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Recién Nacido , Degeneración Macular/genética , Degeneración Macular/patología , Ratones , Neovascularización Patológica/inducido químicamente , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Oryza/química , Retina/efectos de los fármacos , Retina/patología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/patología , Aceite de Salvado de Arroz/química , Aceite de Salvado de Arroz/farmacología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Vitamina B 6/genética
15.
Int J Mol Sci ; 21(17)2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32872333

RESUMEN

Diabetic retinopathy (DR) is one of the leading causes of blindness globally. Retinal neuronal abnormalities occur in the early stage in DR. Therefore, maintaining retinal neuronal activity in DR may prevent vision loss. Previously, pemafibrate, a novel selective peroxisome proliferator-activated receptor alpha modulator, was suggested as a promising drug in hypertriglyceridemia. However, the role of pemafibrate remains obscure in DR. Therefore, we aimed to unravel systemic and retinal changes by pemafibrate in diabetes. Adult mice were intraperitoneally injected with streptozotocin (STZ) to induce diabetes. After STZ injection, diet supplemented with pemafibrate was given to STZ-induced diabetic mice for 12 weeks. During the experiment period, body weight and blood glucose levels were examined. Electroretinography was performed to check the retinal neural function. After sacrifice, the retina, liver, and blood samples were subjected to molecular analyses. We found pemafibrate mildly improved blood glucose level as well as lipid metabolism, boosted liver function, increased serum fibroblast growth factor21 level, restored retinal functional deficits, and increased retinal synaptophysin protein expression in STZ-induced diabetic mice. Our present data suggest a promising pemafibrate therapy for the prevention of early DR by improving systemic metabolism and protecting retinal function.


Asunto(s)
Benzoxazoles/administración & dosificación , Butiratos/administración & dosificación , Diabetes Mellitus Experimental/tratamiento farmacológico , Retinopatía Diabética/prevención & control , Retina/fisiopatología , Animales , Benzoxazoles/farmacología , Glucemia , Peso Corporal/efectos de los fármacos , Butiratos/farmacología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/fisiopatología , Retinopatía Diabética/fisiopatología , Modelos Animales de Enfermedad , Electrorretinografía , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos , Pruebas de Función Hepática , Masculino , Ratones , Estreptozocina , Sinaptofisina/metabolismo , Resultado del Tratamiento
16.
Korean J Parasitol ; 58(4): 413-419, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32871635

RESUMEN

Eosinophilia occurs commonly in many diseases including allergic diseases and helminthic infections. Toxocariasis has been suggested as one cause of eosinophilia. The present study was undertaken to examine the prevalence of toxocariasis in patients with eosinophilia and to identify the risk factors for toxocariasis. This prospective cohort study recruited a total of 81 patients with eosinophilia (34 males and 47 females) who visited the outpatient clinic at Seoul National University Hospital from January 2017 to February 2018 and agreed to participate in this study. The prevalence of toxocariasis was examined by T. canis-specific ELISA, and the various risk factors for toxocariasis were evaluated by a questionnaire survey. Among 81 patients with eosinophilia, 18 were positive for anti-T. canis antibodies (22.2%); 88.9% were male (16/18) and 11.1% were female (2/18). Multivariate statistical analysis revealed that males (OR 21.876, 95% CI: 1.667-287.144) with a history of consuming the raw meat or livers of animals (OR 5.899, 95% CI: 1.004-34.669) and a heavy alcohol-drinking habit (OR 8.767, 95% CI: 1.018-75.497) were at higher risk of toxocariasis in patients with eosinophilia. Toxocariasis should be considered a potential cause of eosinophilia when the patient has a history of eating the raw meat or livers of animals in Korea. A single course of albendazole is recommended to reduce the migration of Toxocara larvae in serologically positive cases with eosinophilia.


Asunto(s)
Eosinofilia/etiología , Toxocariasis/complicaciones , Toxocariasis/epidemiología , Alcoholismo , Animales , Anticuerpos Antihelmínticos/sangre , Biomarcadores/sangre , Estudios de Cohortes , Ensayo de Inmunoadsorción Enzimática , Eosinofilia/epidemiología , Conducta Alimentaria , Femenino , Humanos , Masculino , Carne/efectos adversos , Prevalencia , Estudios Prospectivos , República de Corea/epidemiología , Factores de Riesgo , Encuestas y Cuestionarios , Toxocara canis/inmunología , Toxocariasis/diagnóstico , Toxocariasis/parasitología
17.
Histol Histopathol ; : 18756, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38738342

RESUMEN

Retinal ischemia is a fundamental pathologic condition associated with retinal vascular occlusion, glaucoma, diabetic retinopathy, age-related macular degeneration, and other eye diseases. Extensive inflammation, redox imbalance, apoptosis, and abnormal vascular formation in retinal ischemia could lead to visual impairments. Developing or finding effective treatments is urgently needed to protect the eye against retinal ischemia and related damage. To address the demand, we have searched for promising therapeutic molecular targets in the eye (e.g., hypoxia-inducible factor [HIF], peroxisome proliferator-activated receptor-alpha [PPARα], and nicotinamide adenine dinucleotide [NAD+]), and found that modulations of each molecular target might protect the eye against retinal ischemic damage in terms of complex pathologic mechanisms. In the current article, we review and update the therapeutic evidence of modulation of HIF, PPARα, or NAD+ and discuss future directions for developing promising drugs based on these molecular targets. This summary urges research to obtain more solid evidence of each molecular target in retinal ischemic diseases.

18.
Sci Rep ; 14(1): 16129, 2024 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997397

RESUMEN

The choroid, a vascularized tissue situated between the retina and the sclera, plays a crucial role in maintaining ocular homeostasis. Despite its significance, research on choroidal abnormalities and the establishment of effective in vitro models have been limited. In this study, we developed an in vitro choroid model through the co-culture of human induced pluripotent stem cells (hiPSC)-derived endothelial cells (ECs) and mouse choroidal fibroblasts (msCFs) with hiPSC-derived retinal pigment epithelial (RPE) cells via a permeable membrane. This model, inclusive of ECs, CFs, and RPE cells, exhibited similarities with in vivo choroidal vessels, as confirmed through immunohistochemistry of extracellular matrix markers and vascular-related markers, as well as choroid angiogenesis sprouting assay analysis. The effectiveness of our in vitro model was demonstrated in assessing vascular changes induced by drugs targeting vasoregulation. Our model offers a valuable tool for gaining insights into the pathological mechanisms underlying choroid development and the progression of choroidal vascular diseases.


Asunto(s)
Coroides , Técnicas de Cocultivo , Células Endoteliales , Células Madre Pluripotentes Inducidas , Epitelio Pigmentado de la Retina , Coroides/irrigación sanguínea , Coroides/metabolismo , Animales , Humanos , Ratones , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Endoteliales/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/citología , Fibroblastos/metabolismo , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/patología , Células Cultivadas
19.
PLoS One ; 19(3): e0300045, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38536853

RESUMEN

Photoreceptor cell death can cause progressive and irreversible visual impairments. Still, effective therapies on retinal neuroprotection are not available. Hypoxia-inducible factors (HIFs) are transcriptional factors which strongly regulate angiogenesis, erythropoiesis, intracellular metabolism, and programed cell death under a hypoxic or an abnormal metabolic oxidative stress condition. Therefore, we aimed to unravel that inhibition of HIFs could prevent disease progression in photoreceptor cell death, as recent studies showed that HIFs might be pathologic factors in retinal diseases. Adult male balb/cAJcl (8 weeks old; BALB/c) were used to investigate preventive effects of a novel HIF inhibitor halofuginone (HF) on a murine model of light-induced retinopathy. After intraperitoneal injections of phosphate-buffered saline (PBS) or HF (0.4 mg/kg in PBS) for 5 days, male BALB/c mice were subjected to a dark-adaption to being exposed to a white LED light source at an intensity of 3,000 lux for 1 hour in order to induce light-induced retinal damage. After extensive light exposure, retinal damage was evaluated using electroretinography (ERG), optical coherence tomography (OCT), and TUNEL assay. Light-induced retinal dysfunction was suppressed by HF administration. The amplitudes of scotopic a-wave and b-wave as well as that of photopic b-wave were preserved in the HF-administered retina. Outer retinal thinning after extensive light exposure was suppressed by HF administration. Based on the TUNEL assay, cell death in the outer retina was seen after light exposure. However, its cell death was not detected in the HF-administered retina. Halofuginone was found to exert preventive effects on light-induced outer retinal cell death.


Asunto(s)
Piperidinas , Quinazolinonas , Degeneración Retiniana , Ratones , Masculino , Animales , Degeneración Retiniana/tratamiento farmacológico , Degeneración Retiniana/etiología , Degeneración Retiniana/prevención & control , Modelos Animales de Enfermedad , Retina/patología , Electrorretinografía
20.
J Clin Med ; 13(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38792319

RESUMEN

Myopia is a common refractive error that affects a large proportion of the population. Recent studies have revealed that alterations in choroidal thickness (ChT) and choroidal blood flow (ChBF) play important roles in the progression of myopia. Reduced ChBF could affect scleral cellular matrix remodeling, which leads to axial elongation and further myopia progression. As ChT and ChBF could be used as potential biomarkers for the progression of myopia, several recent myopia treatments have targeted alterations in ChT and ChBF. Our review provides a comprehensive overview of the recent literature review on the relationship between ChBF and myopia. We also highlight the importance of ChT and ChBF in the progression of myopia and the potential of ChT as an important biomarker for myopia progression. This summary has significant implications for the development of novel strategies for preventing and treating myopia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA