Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2401120, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031107

RESUMEN

Defective layered bismuth oxychloride (BiOCl) exhibits excellent photocatalytic activities in water purification and environmental remediation. Herein, in situ single-molecule fluorescence microscopy is used to spatially resolve the photocatalytic heterogeneity and quantify the photoredox activities on individual structural features of BiOCl. The BiOCl nanoplates with respective dominant {001} and {010} facets (BOC-001 and BOC-010) are fabricated through tuning the pH of the solution. The corner position of BOC-001 exhibits the highest photo-oxidation turnover rate of 262.7 ± 30.8 s-1 µm-2, which is 2.1 and 65.7 times of those of edges and basal planes, respectively. A similar trend is also observed on BOC-010, which can be explained by the heterogeneous distribution of defects at each structure. Besides, BOC-001 shows a higher photoredox activity than BOC-010 at corners and edges. This can be attributed to the superior charge separation ability, active high-index facets of BOC-001, and its co-exposure of anisotropic facets steering the charge flow. Therefore, this work provides an effective strategy to understand the facet-dependent properties of single-crystalline materials at nanometer resolution. The quantification of site-specific photoredox activities on BiOCl nanoplates sheds more light on the design and optimization of 2D materials at the single-molecule level.

2.
Small ; 20(13): e2307057, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37972278

RESUMEN

Understanding the underlying catalytic mechanisms with nanometer resolution is of critical importance to the rational design of 1D heterogeneous catalysts. However, a fundamental investigation of photocatalytic activities and kinetics at their individual sites is still challenging. Herein, in situ single-molecule fluorescence microscopy is employed to study the site-specific catalytic activities and dynamics on 1D-1D heterostructure for the first time. For carbon nanotube (CNT)/CdS nanorod composites, it is found that the CdS end with heterojunction exhibits the highest catalytic conversion rate constant of resazurin photoreduction, which is 30%, 7%, and 19% higher than those of the middle segment and the bare end of CdS, and the CNT end with heterojunction, respectively. A similar trend of adsorption abilities is observed in these structures. Such phenomena can be attributed to the different content of defects in these structures. Regarding the dissociation behaviors, the dissociation rate constants of all structures exhibit an opposite trend to those of adsorption and conversion. The direct and indirect dissociation are found to be predominant on CdS and CNT, respectively. Such investigation provides a deep insight into the understanding of site-specific properties on 1D heterogeneous catalysts and helps construct the "structure-dynamics" correlations at the nanoscale.

3.
Small ; 20(24): e2309983, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38174596

RESUMEN

Plasmon-mediated catalysis utilizing hybrid photocatalytic ensembles promises effective light-to-chemical transformation, but current approaches suffer from weak electromagnetic field enhancements from polycrystalline and isotropic plasmonic nanoparticles as well as poor utilization of precious co-catalyst. Here, efficient plasmon-mediated catalysis is achieved by introducing a unique catalyst-on-hotspot nanoarchitecture obtained through the strategic positioning of co-photocatalyst onto plasmonic hotspots to concentrate light energy directly at the point-of-reaction. Using environmental remediation as a proof-of-concept application, the catalyst-on-hotspot design (edge-AgOcta@Cu2O) enhances photocatalytic advanced oxidation processes to achieve superior organic-pollutant degradation at ≈81% albeit having lesser Cu2O co-photocatalyst than the fully deposited design (full-AgOcta@Cu2O). Mass-normalized rate constants of edge-AgOcta@Cu2O reveal up to 20-fold and 3-fold more efficient utilization of Cu2O and Ag nanoparticles, respectively, compared to full-AgOcta@Cu2O and standalone catalysts. Moreover, this design also exhibits catalytic performance >4-fold better than emerging hybrid photocatalytic platforms. Mechanistic studies unveil that the light-concentrating effect facilitated by the dense electromagnetic hotspots is crucial to promote the generation and utilization of energetic photocarriers for enhanced catalysis. By enabling the plasmonic focusing of light onto co-photocatalyst at the single-particle level, the unprecedented design offers valuable insights in enhancing light-driven chemical reactions and realizing efficient energy/catalyst utilizations for diverse chemical, environmental, and energy applications.

4.
Angew Chem Int Ed Engl ; 63(16): e202401277, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38351496

RESUMEN

Integrating plasmonic nanoparticles with photonic crystals holds immense potential to enhance green hydrogen photosynthesis by amplifying localized electromagnetic field through generating surface plasmons and slow photons. Current plasmonic photonic designs primarily employ semiconductor-based structural backbone deposited with plasmonic nanoparticles. However, the competition between various optical phenomena in these ensembles hinders effective field enhancement rather than facilitating it. This limitation creates a formidable performance bottleneck that retards hydrogen evolution. Herein, we enhance plasmonic catalysis for efficient hydrogen evolution by effectively harmonizing plasmonic and photonic effects. This is achieved by using inert SiO2 opal as a non-photoabsorbing photonic framework. By aligning the excitation wavelengths of surface plasmons and slow photons, our optimized plasmonic photonic crystals demonstrates a remarkable H2 evolution rate of 560 mmol h-1 gAg -1, surpassing bare plasmonic Ag nanoparticles by >106-fold and other high-performance photocatalytic designs by 280-fold. Mechanistic studies highlight the pivotal role of the non-photoabsorbing photonic backbone in facilitating effective light confinement through the photonic effect. This in turn boosts the plasmonic field for enhanced photocatalytic H2 evolution, even without needing additional co-catalysts. Our work offers valuable insights for future design of electromagnetically hot plasmonic catalysts to achieve efficient light-to-chemical transformations in diverse energy, chemical, and environmental applications.

5.
Angew Chem Int Ed Engl ; 63(8): e202317751, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38179729

RESUMEN

Efficient green hydrogen production through electrocatalytic water splitting serves as a powerful catalyst for realizing a carbon-free hydrogen economy. However, current electrocatalytic designs face challenges such as poor hydrogen evolution reaction (HER) performance (Tafel slope, 100-140 mV dec-1 ) because water molecules are thermodynamically trapped within their extensive hydrogen bonding network. Herein, we drive efficient HER by manipulating the local water microenvironment near the electrocatalyst. This is achieved by functionalizing the nanoelectrocatalyst's surface with a monolayer of chaotropic molecules to chemically weaken water-water interactions directly at the point-of-catalysis. Notably, our chaotropic design demonstrates a superior Tafel slope (77 mV dec-1 ) and the lowest overpotential (0.3 V at 10 mA cm-2 ECSA ), surpassing its kosmotropic counterparts (which reinforces the water molecular network) and previously reported electrocatalytic designs by up to ≈2-fold and ≈3-fold, respectively. Comprehensive mechanistic investigations highlight the critical role of chaotropic surface chemistry in disrupting the water intermolecular network, thereby releasing free/weakly bound water molecules that strongly interact with the electrocatalyst to boost HER. Our study provides a unique molecular approach that can be readily integrated with emerging electrocatalytic materials to rapidly advance the electrosynthesis of green hydrogen, holding immense promise for sustainable chemical and energy applications.

6.
Nano Lett ; 22(12): 4654-4660, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35653432

RESUMEN

Photocorrosion of cuprous oxide (Cu2O) has notably limited its application as an efficient photocatalyst. We report a facile approach to visualize in situ formation of copper and oxygen vacancies on the Cu2O surface under ambient condition. By imaging photoexcited single Cu2O particles, the resultant photoluminescence generated at Cu2O surface enable effective localization of copper and oxygen vacancies. Single particle photoluminescence imaging showed substantial heterogeneity in the rate of defect formation at different facets with the truncated corners achieving the fastest initial rate of photooxidation before subsequently changing to the face and edge sites as the photocorrosion proceeds. The generation of copper or oxygen vacancy is proportional to the photoexcitation power, while pH-dependent studies rationalized alkaline conditions for the formation of copper vacancy. Reaction in an electron-hole scavenger system showed that photooxidation and photoreduction will simultaneously occur, yet heterogeneously on the surface of Cu2O, with rate of copper vacancy formation being fastest.


Asunto(s)
Cobre , Microscopía , Catálisis , Cobre/química , Oxígeno
7.
Angew Chem Int Ed Engl ; 62(7): e202216562, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36504182

RESUMEN

Plasmonic catalysis promises green ammonia synthesis but is limited by the need for co-catalysts and poor performances due to weak electromagnetic field enhancement. Here, we use two-dimensional plasmonic superlattices with dense electromagnetic hotspots to boost ambient nitrogen-to-ammonia photoconversion without needing co-catalyst. By organizing Ag octahedra into a square superlattice to concentrate light, the ammonia formation is enhanced by ≈15-fold and 4-fold over hexagonal superlattice and disorganized array, respectively. Our unique catalyst achieves superior ammonia formation rate and apparent quantum yield up to ≈15-fold and ≈103 -fold, respectively, better than traditional designs. Mechanistic investigations reveal the abundance of intense plasmonic hotspots is crucial to promote hot electron generation and transfer for nitrogen reduction. Our work offers valuable insights to design electromagnetically hot plasmonic catalysts for diverse chemical and energy applications.

8.
Angew Chem Int Ed Engl ; 62(47): e202313695, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37830489

RESUMEN

The production of green hydrogen through photocatalytic water splitting is crucial for a sustainable hydrogen economy and chemical manufacturing. However, current approaches suffer from slow hydrogen production (<70 µmol ⋅ gcat -1 ⋅ h-1 ) due to the sluggish four-electrons oxygen evolution reaction (OER) and limited catalyst activity. Herein, we achieve efficient photocatalytic water splitting by exploiting a multifunctional interface between a nano-photocatalyst and metal-organic framework (MOF) layer. The functional interface plays two critical roles: (1) enriching electron density directly on photocatalyst surface to promote catalytic activity, and (2) delocalizing photogenerated holes into MOF to enhance OER. Our photocatalytic ensemble boosts hydrogen evolution by ≈100-fold over pristine photocatalyst and concurrently produces oxygen at ideal stoichiometric ratio, even without using sacrificial agents. Notably, this unique design attains superior hydrogen production (519 µmol ⋅ gcat -1 ⋅ h-1 ) and apparent quantum efficiency up to 13-fold and 8-fold better than emerging photocatalytic designs utilizing hole scavengers. Comprehensive investigations underscore the vital role of the interfacial design in generating high-energy photoelectrons on surface-degenerate photocatalyst to thermodynamically drive hydrogen evolution, while leveraging the nanoporous MOF scaffold as an effective photohole sink to enhance OER. Our interfacial approach creates vast opportunities for designing next-generation, multifunctional photocatalytic ensembles using reticular chemistry with diverse energy and environmental applications.

9.
Nanoscale ; 15(7): 3449-3460, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36722928

RESUMEN

Graphitic carbon nitride (g-C3N4) has attracted extensive research attention in recent years due to its unique layered structure, facile synthetic route, visible-light-responsive nature, and excellent photocatalytic performance. However, an insightful investigation of site-specific catalytic activities and kinetics on g-C3N4 is still warranted. Here, we fabricated ultrathin g-C3N4 nanosheets through thermal exfoliation. The optimized sample exhibits a high specific surface area of 307.35 m2 g-1 and a remarkable H2 generation activity of 2008 µmol h-1 g-1 with an apparent quantum efficiency of 4.62% at λ = 420 nm. Single-molecule fluorescence microscopy was applied for the first time to spatially resolve the reaction heterogeneities with nanometer precision (∼10 nm). The catalytic kinetics (i.e., reactant adsorption, conversion, and product dissociation) and temporal activity fluctuations were in situ quantified at individual structural features (i.e., wrinkles, edges, and basal planes) of g-C3N4. It was found that the wrinkle and edge exhibited superior photocatalytic activity due to the intrinsic band modulation, which are 20 times and 14.8 times that of the basal plane, respectively. Moreover, due to the steric effect, the basal plane showed the highest adsorption constant and the lowest direct dissociation constant. Density functional theory (DFT) simulations unveiled the adsorption energies of reactant and product molecules on each structure of g-C3N4, which support our experimental results. Such investigation would shed more light on the fundamental understanding of site-specific catalytic dynamics on g-C3N4, which benefits the rational design of 2D layered materials for efficient solar-to-chemical energy conversion.

10.
Chem Commun (Camb) ; 59(26): 3918-3921, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36919710

RESUMEN

We report the utilization of single-molecule fluorescence microscopy to in situ quantify the photo-oxidation reaction kinetics on g-C3N4. The wrinkle structure shows the highest reactivity and direct dissociation rate. The basal plane exhibits the highest affinity to reactants and products and indirect dissociation rate constant, followed by edges and wrinkles.

11.
Nanoscale ; 14(14): 5612-5624, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35348161

RESUMEN

Construction of heterostructures is an effective way to improve photo-induced charge separation and photocatalytic performance. Among various structures, type II and direct Z-scheme heterojunctions with distinct charge separation mechanisms are the two typical representatives attracting much research attention. Here we prepared type II and Z-scheme CdS/g-C3N4 nanocomposites by thermal treatment and self-assembly chemisorption methods, respectively. High-resolution microscopy techniques including (scanning) transmission electron microscopy (TEM/STEM) and super-resolution fluorescence microscopy (SRM) were used to investigate the charge distribution and flow mechanism. The charge tracking results reveal that the nanocomposite prepared by thermal treatment has a type II heterostructure with charges flowing in the opposite direction, while the self-assembly sample possesses a Z-scheme structure. It was found that the type II system exhibited the lowest charge migration resistance and the best charge separation ability and stability of photoactivity, leading to the highest H2 generation rate of 2410 µmol h-1 g-1. The SRM technique was applied for the first time to map the reactive sites of type II and Z-scheme structures at nanometer resolution. The photoactive species (i.e., e- and h+) were found to be preferentially distributed at the two end segments of CdS nanorods and the edge boundaries of g-C3N4. Therefore, our findings shed more light on the charge distribution and photocatalytic heterogeneity of composite materials at the nanoscale. Such results would provide guidance on optimizing nanocomposite properties and help to design better photocatalysts for efficient solar-to-chemical energy conversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA