Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Mol Sci ; 22(20)2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34681588

RESUMEN

The red or purple color of radish (Raphanus sativus L.) taproots is due to anthocyanins, which have nutritional and aesthetic value, as well as antioxidant properties. Moreover, the varied patterns and levels of anthocyanin accumulation in radish roots make them an interesting system for studying the transcriptional regulation of anthocyanin biosynthesis. The R2R3 MYB transcription factor RsMYB1 is a key positive regulator of anthocyanin biosynthesis in radish. Here, we isolated an allele of RsMYB1, named RsMYB1Short, in radish cultivars with white taproots. The RsMYB1Short allele carried a 4 bp insertion in the first exon causing a frame-shift mutation of RsMYB1, generating a truncated protein with only a partial R2 domain at the N-terminus. Unlike RsMYB1Full, RsMYB1Short was localized to the nucleus and the cytoplasm and failed to interact with their cognate partner RsTT8. Transient expression of genomic or cDNA sequences for RsMYB1Short in radish cotyledons failed to induce anthocyanin accumulation, but that for RsMYB1Full activated it. Additionally, RsMYB1Short showed the lost ability to induce pigment accumulation and to enhance the transcript level of anthocyanin biosynthetic genes, while RsMYB1Full promoted both processes when co-expressed with RsTT8 in tobacco leaves. As the result of the transient assay, co-expressing RsTT8 and RsMYB1Full, but not RsMYB1Short, also enhanced the promoter activity of RsCHS and RsDFR. We designed a molecular marker for RsMYB1 genotyping, and revealed that the RsMYB1Short allele is common in white radish cultivars, underscoring the importance of variation at the RsMYB1 locus in anthocyanin biosynthesis in the radish taproot. Together, these results indicate that the nonsense mutation of RsMYB1 generated the truncated protein, RsMYB1Short, that had the loss of ability to regulate anthocyanin biosynthesis. Our findings highlight that the frame shift mutation of RsMYB1 plays a key role in anthocyanin biosynthesis in the radish taproot.


Asunto(s)
Antocianinas/biosíntesis , Proteínas de Plantas/genética , Raphanus/metabolismo , Factores de Transcripción/genética , Alelos , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , Mutación del Sistema de Lectura , Genotipo , Filogenia , Pigmentación , Hojas de la Planta/metabolismo , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas , Raphanus/química , Alineación de Secuencia , Nicotiana/metabolismo , Factores de Transcripción/clasificación , Factores de Transcripción/metabolismo
2.
Theor Appl Genet ; 131(1): 183-191, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29032401

RESUMEN

KEY MESSAGE: The genomic region cosegregating with the genic male-sterile ms 1 gene of Capsicum annuum L. was delimited to a region of 869.9 kb on chromosome 5 through fine mapping analysis. A strong candidate gene, CA05g06780, a homolog of the Arabidopsis MALE STERILITY 1 gene that controls pollen development, was identified in this region. Genic male sterility caused by the ms 1 gene has been used for the economically efficient production of massive hybrid seeds in paprika (Capsicum annuum L.), a colored bell-type sweet pepper. Previously, a CAPS marker, PmsM1-CAPS, located about 2-3 cM from the ms 1 locus, was reported. In this study, we constructed a fine map near the ms 1 locus using high-resolution melting (HRM) markers in an F2 population consisting of 1118 individual plants, which segregated into 867 male-fertile and 251 male-sterile plants. A total of 12 HRM markers linked to the ms 1 locus were developed from 53 primer sets targeting intraspecific SNPs derived by comparing genome-wide sequences obtained by next-generation resequencing analysis. Using this approach, we narrowed down the region cosegregating with the ms 1 gene to 869.9 kb of sequence. Gene prediction analysis revealed 11 open reading frames in this region. A strong candidate gene, CA05g06780, was identified; this gene is a homolog of the Arabidopsis MALE STERILITY 1 (MS1) gene, which encodes a PHD-type transcription factor that regulates pollen and tapetum development. Sequence comparison analysis suggested that the CA05g06780 gene is the strongest candidate for the ms 1 gene of paprika. To summarize, we developed a cosegregated marker, 32187928-HRM, for marker-assisted selection and identified a strong candidate for the ms 1 gene.


Asunto(s)
Capsicum/genética , Genes de Plantas , Infertilidad Vegetal/genética , Secuencia de Aminoácidos , Mapeo Cromosómico , Ligamiento Genético , Marcadores Genéticos , Sistemas de Lectura Abierta
3.
Plants (Basel) ; 13(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38794415

RESUMEN

This study utilized a diverse Capsicum accessions (5658) sourced from various species and geographical regions, deposited at the National Agrobiodiversity Center, Genebank. We employed 19 SNP markers through a Fluidigm genotyping system and screened these accessions against eight prevalent diseases of pepper. This study revealed accessions resistant to individual diseases as well as those exhibiting resistance to multiple diseases, including bacterial spot, anthracnose, powdery mildew, phytophthora root rot, and potyvirus. The C. chacoense accessions were identified as resistant materials against bacterial spot, anthracnose, powdery mildew, and phytophthora root rot, underscoring the robust natural defense mechanisms inherent in the wild Capsicum species and its potential uses as sources of resistance for breeding. C. baccatum species also demonstrated to be a promising source of resistance to major pepper diseases. Generally, disease-resistant germplasm has been identified from various Capsicum species. Originating from diverse locations such as Argentina, Bolivia, and the United Kingdom, these accessions consistently demonstrated resistance, indicating the widespread prevalence of disease-resistant traits across varied environments. Additionally, we selected ten pepper accessions based on their resistance to multiple diseases, including CMV, Phytophthora root rot, potyviruses, and TSWV, sourced from diverse geographical regions like Hungary, Peru, the United States, and the Netherlands. This comprehensive analysis provides valuable insights into disease resistance in Capsicum, crucial for fostering sustainable agricultural practices and advancing crop improvement through breeding strategies.

4.
Genes (Basel) ; 14(10)2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37895247

RESUMEN

Perilla is a key component of Korean food. It contains several plant-specialized metabolites that provide medical benefits. In response to an increased interest in healthy supplement food from the public, people are focusing on the properties of Perilla. Nevertheless, unlike rice and soybeans, there are few studies based on molecular genetics on Perilla, so it is difficult to systematically study the molecular breed. The wild Perilla, Perilla citriodora 'Jeju17', was identified a decade ago on the Korean island of Jeju. Using short-reads, long-reads, and Hi-C, a chromosome-scale genome spanning 676 Mbp, with high contiguity, was assembled. Aligning the 'Jeju17' genome to the 'PC002' Chinese species revealed significant collinearity with respect to the total length. A total of 31,769 coding sequences were predicted, among which 3331 were 'Jeju17'-specific. Gene enrichment of the species-specific gene repertoire highlighted environment adaptation, fatty acid metabolism, and plant-specialized metabolite biosynthesis. Using a homology-based approach, genes involved in fatty acid and lipid triacylglycerol biosynthesis were identified. A total of 22 fatty acid desaturases were found and comprehensively characterized. Expression of the FAD genes in 'Jeju17' was examined at the seed level, and hormone signaling factors were identified. The results showed that the expression of FAD genes in 'Jeju17' at the seed level was high 25 days after flowering, and their responses of hormones and stress were mainly associated with hormone signal transduction and abiotic stress via cis-elements patterns. This study presents a chromosome-level genome assembly of P. citriodora 'Jeju17', the first wild Perilla to be sequenced from the Korean island of Jeju. The analyses provided can be useful in designing ALA-enhanced Perilla genotypes in the future.


Asunto(s)
Perilla , Humanos , Perilla/genética , Perilla/metabolismo , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Fitomejoramiento , Hormonas , República de Corea
5.
Bioengineered ; 13(6): 14646-14666, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35891620

RESUMEN

Genome-editing tools for the development of traits to tolerate abiotic and biotic adversaries are the recently devised breeding techniques revolutionizing molecular breeding by addressing the issues of rapidness and precision. To that end, disease resistance development by disrupting disease susceptibility genes (S genes) to intervene in the biological mechanism of pathogenicity has significantly improved the techniques of molecular breeding. Despite the achievements in genome-editing aimed at the intervention of the function of susceptibility determinants or gene regulatory elements, off-target effects associated with yield-related traits are still the main setbacks. The challenges are attributed to the complexity of the inheritance of traits controlled by pleiotropic genes. Therefore, a more rigorous genome-editing tool with ultra-precision and efficiency for the development of broad-spectrum and durable disease resistance applied to staple crop plants is of critical importance in molecular breeding programs. The main objective of this article is to review the most impressive progresses achieved in resistance breeding against the main diseases of three Solanaceae crops (potato, Solanum tuberosum; tomato, Solanum lycopersicum and pepper, Capsicum annuum) using genome-editing by disrupting the sequences of S genes, their promoters, or pathogen genes. In this paper, we discussed the complexity and applicability of genome-editing tools, summarized the main disease of Solanaceae crops, and compiled the recent reports on disease resistance developed by S-gene silencing and their off-target effects. Moreover, GO count and gene annotation were made for pooled S-genes from biological databases. Achievements and prospects of S-gene-based next-generation breeding technologies are also discussed.


Most S genes are membrane ­anchored and are involved in infection and pre-penetration processS gene-editing is less likely to cause an off-target effectGene-editing has been considered a more acceptable engineering toolEditing S genes either from the pathogen or host ends has opened new possibilities.


Asunto(s)
Resistencia a la Enfermedad , Solanaceae , Sistemas CRISPR-Cas/genética , Productos Agrícolas/genética , Resistencia a la Enfermedad/genética , Edición Génica/métodos , Genoma de Planta/genética , Fitomejoramiento/métodos , Plantas Modificadas Genéticamente/genética , Solanaceae/genética , Verduras
6.
Plants (Basel) ; 11(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35736702

RESUMEN

Bacterial wilt caused by the ß-proteobacterium Ralstonia solanacearum is one of the most destructive soil-borne pathogens in peppers (Capsicum annuum L.) worldwide. Cultivated pepper fields in Korea face a continuous spread of this pathogen due to global warming. The most efficient and sustainable strategy for controlling bacterial wilt is to develop resistant pepper varieties. Resistance, which is quantitatively inherited, occurs differentially depending on R. solanacearum isolates. Therefore, in this study, we aimed to identify resistance quantitative trait loci (QTLs) in two F2 populations derived from self-pollination of a highly resistant pepper cultivar 'Konesian hot' using a moderately pathogenic 'HS' isolate and a highly pathogenic 'HWA' isolate of R. solanacearum for inoculation, via genotyping-by-sequencing analysis. QTL analysis revealed five QTLs, Bwr6w-7.2, Bwr6w-8.1, Bwr6w-9.1, Bwr6w-9.2, and Bwr6w-10.1, conferring resistance to the 'HS' isolate with R2 values of 13.05, 12.67, 15.07, 10.46, and 9.69%, respectively, and three QTLs, Bwr6w-5.1, Bwr6w-6.1, and Bwr6w-7.1, resistant to the 'HWA' isolate with phenotypic variances of 19.67, 16.50, and 12.56%, respectively. Additionally, six high-resolution melting (HRM) markers closely linked to the QTLs were developed. In all the markers, the mean disease index of the paternal genotype was significantly lower than that of the maternal genotype. The QTLs and HRM markers are expected to be useful for the development of pepper varieties with high resistance to bacterial wilt.

7.
Plants (Basel) ; 11(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35567213

RESUMEN

Perilla, also termed as purple mint, Chinese basil, or Perilla mint, is a flavoring herb widely used in East Asia. Both crude oil and essential oil are employed for consumption as well as industrial purposes. Fatty acids (FAs) biosynthesis and oil body assemblies in Perilla have been extensively investigated over the last three decades. Recent advances have been made in order to reveal the enzymes involved in the fatty acid biosynthesis in Perilla. Among those fatty acids, alpha-linolenic acid retained the attention of scientists mainly due to its medicinal and nutraceutical properties. Lipids synthesis in Perilla exhibited similarities with Arabidopsis thaliana lipids' pathway. The homologous coding genes for polyunsaturated fatty acid desaturases, transcription factors, and major acyl-related enzymes have been found in Perilla via de novo transcriptome profiling, genome-wide association study, and in silico whole-genome screening. The identified genes covered de novo fatty acid synthesis, acyl-CoA dependent Kennedy pathway, acyl-CoA independent pathway, Triacylglycerols (TAGs) assembly, and acyl editing of phosphatidylcholine. In addition to the enzymes, transcription factors including WRINKLED, FUSCA3, LEAFY COTYLEDON1, and ABSCISIC ACID INSENSITIVE3 have been suggested. Meanwhile, the epigenome aspect impacting the transcriptional regulation of FAs is still unclear and might require more attention from the scientific community. This review mainly outlines the identification of the key gene master players involved in Perilla FAs biosynthesis and TAGs assembly that have been identified in recent years. With the recent advances in genomics resources regarding this orphan crop, we provided an updated overview of the recent contributions into the comprehension of the genetic background of fatty acid biosynthesis. The provided resources can be useful for further usage in oil-bioengineering and the design of alpha-linolenic acid-boosted Perilla genotypes in the future.

8.
Front Plant Sci ; 13: 902464, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35668797

RESUMEN

One of the most serious pepper diseases is Phytophthora blight, which is caused by Phytophthora capsici. It is crucial to assess the resistance of pepper genetic resources to Phytophthora blight, understand the genetic resistances, and develop markers for selecting resistant pepper materials in breeding programs. In this study, the resistance of 342 pepper accessions to P. capsici was evaluated. The disease severity score method was used to evaluate the phenotypic responses of pepper accessions inoculated with the KCP7 isolate. A genome-wide association study (GWAS) was performed to identify single nucleotide polymorphisms (SNPs) linked to P. capsici (isolate KCP7) resistance. The pepper population was genotyped using the genotype-by-sequencing (GBS) method, and 45,481 SNPs were obtained. A GWAS analysis was performed using resistance evaluation data and SNP markers. Significantly associated SNPs for P. capsici resistance at 4 weeks after inoculation of the GWAS pepper population were selected. These SNPs for Phytophthora blight resistance were found on all chromosomes except Chr.05, Chr.09, and Chr.11. One of the SNPs found on Chr.02 was converted into a high-resolution melting (HRM) marker, and another marker (QTL5-1) from the previous study was applied to pepper accessions and breeding lines for validation and comparison. This SNP marker was selected because the resistance phenotype and the HRM marker genotype matched well. The selected SNP was named Chr02-1126 and was located at 112 Mb on Chr.02. The Chr02-1126 marker predicted P. capsici resistance with 78.5% accuracy, while the QTL5-1 marker predicted resistance with 80.2% accuracy. Along with the marker for major quantitative traits loci (QTLs) on Chr.05, this Chr02-1126 marker could be used to accurately predict Phytophthora blight resistance in pepper genetic resources. Therefore, this study will assist in the selection of resistant pepper plants in order to breed new phytophthora blight-resistant varieties.

9.
Materials (Basel) ; 14(11)2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34067408

RESUMEN

Ground reinforcement is a method used to reduce the damage caused by earthquakes. Usually, cement-based reinforcement methods are used because they are inexpensive and show excellent performance. Recently, however, reinforcement methods using eco-friendly materials have been proposed due to environmental issues. In this study, the cement reinforcement method and the biopolymer reinforcement method using sodium alginate were compared. The dynamic properties of the reinforced ground, including shear modulus and damping ratio, were measured through a resonant-column test. Also, the viscosity of sodium alginate solution, which is a non-Newtonian fluid, was also explored and found to increase with concentration. The maximum shear modulus and minimum damping ratio increased, and the linear range of the shear modulus curve decreased, when cement and sodium alginate solution were mixed. Addition of biopolymer showed similar reinforcing effect in a lesser amount of additive compared to the cement-reinforced ground, but the effect decreased above a certain viscosity because the biopolymer solution was not homogeneously distributed. This was examined through a shear-failure-mode test.

10.
Metabolites ; 11(10)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34677364

RESUMEN

Metabolomics and in vitro α-glucosidase inhibitory (AGI) activities of pepper leaves were used to identify bioactive compounds and select genotypes for the management of type 2 diabetes mellitus (T2DM). Targeted metabolite analysis using UPLC-DAD-QToF-MS was employed and identified compounds that belong to flavone and hydroxycinnamic acid derivatives from extracts of pepper leaves. A total of 21 metabolites were detected from 155 samples and identified based on MS fragmentations, retention time, UV absorbance, and previous reports. Apigenin-O-(malonyl) hexoside, luteolin-O-(malonyl) hexoside, and chrysoeriol-O-(malonyl) hexoside were identified for the first time from pepper leaves. Pepper genotypes showed a huge variation in their inhibitory activity against α-glucosidase enzyme(AGE) ranging from 17% to 79%. Genotype GP38 with inhibitory activity of 79% was found to be more potent than the positive control acarbose (70.8%.). Orthogonal partial least square (OPLS) analyses were conducted for the prediction of the AGI activities of pepper leaves based on their metabolite composition. Compounds that contributed the most to the bioactivity prediction model (VIP >1.5), showed a strong inhibitory potency. Caffeoyl-putrescine was found to show a stronger inhibitory potency (IC50 = 145 µM) compared to acarbose (IC50 = 197 µM). The chemometric procedure combined with high-throughput AGI screening was effective in selecting polyphenols of pepper leaf for T2DM management.

11.
Plants (Basel) ; 10(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800297

RESUMEN

Watermelon (Citrulluslanatus) is an economically important fruit crop worldwide. Gummy stem blight (GSB) is one of the most damaging diseases encountered during watermelon cultivation. In the present study, we identified quantitative trait loci (QTLs) associated with GSB resistance in an F2 population derived from a cross between maternal-susceptible line '920533' (C. lanatus) and the paternal-resistant line 'PI 189225' (C. amarus). The resistance of 178 F2 plants was assessed by two different evaluation methods, including leaf lesion (LL) and stem blight (SB). To analyze the QTLs associated with GSB resistance, a linkage map was constructed covering a total genetic distance of 1070.2 cM. QTL analysis detected three QTLs associated with GSB resistance on chromosome 8 and 6. Among them, two QTLs, qLL8.1 and qSB8.1 on chromosome 8 identified as major QTLs, explaining 10.5 and 10.0% of the phenotypic variations localizing at same area and sharing the same top markers for both LL and SB traits, respectively. A minor QTL, qSB6.1, explains 9.7% of phenotypic variations detected on chromosome 6 only for the SB trait. High-throughput markers were developed and validated for the selection of resistant QTLs using watermelon accessions, and commercial cultivars. Four potential candidate genes were predicted associated with GSB resistance based on the physical location of flanking markers on chromosome 8. These findings will be helpful for the development of watermelon cultivars resistant to GSB.

12.
Plants (Basel) ; 10(11)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34834630

RESUMEN

Onion (2n = 2x = 16) has been a nutritional, medicinal and economically valuable vegetable crop all over the world since ancient times. To accelerate the molecular breeding in onion, genetic linkage maps are prerequisite. However, construction of genetic linkage maps of onion remains relatively rudimentary due to a large genome (about 16.3 Gbp) as well as biennial life cycle, cross-pollinated nature, and high inbreeding depression. In this study, we constructed single nucleotide polymorphism (SNP)-based genetic linkage map of onion in an F2 segregating population derived from a cross between the doubled haploid line '16P118' and inbred line 'Sweet Green' through genotyping by sequencing (GBS). A total of 207.3 Gbp of raw sequences were generated using an Illumina HiSeq X system, and 24,341 SNPs were identified with the criteria based on three minimum depths, lower than 30% missing rate, and more than 5% minor allele frequency. As a result, an onion genetic linkage map consisting of 216 GBS-based SNPs were constructed comprising eight linkage groups spanning a genetic length of 827.0 cM. Furthermore, we identified the quantitative trait loci (QTLs) for the sucrose, glucose, fructose, and total sugar content across the onion genome. We identified a total of four QTLs associated with sucrose (qSC4.1), glucose (qGC5.1), fructose (qFC5.1), and total sugar content (qTSC5.1) explaining the phenotypic variation (R2%) ranging from 6.07-11.47%. This map and QTL information will contribute to develop the molecular markers to breed the cultivars with high sugar content in onion.

13.
Plants (Basel) ; 9(5)2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32408580

RESUMEN

Anthocyanins, the pigmented flavonoids responsible for red and blue colors in horticultural products, promote human health by preventing cancers and lowering the risk of cardiovascular disease. Red onions contain several cyanidin- and peonidin-based anthocyanins. In this study, we constructed a single-nucleotide polymorphism (SNP)-based genetic linkage map in an F2 segregating population derived from a cross between the inbred line 'SP3B' (yellow bulb) and the doubled haploid line 'H6' (red bulb) to identify quantitative trait loci (QTLs) for total anthocyanin content of onion bulbs using a genotyping-by-sequencing (GBS) analysis based on a reference gene set. A total of 101.9 Gbp of raw sequences were generated using an Illumina HiSeq 2500 system and a total of 1625 SNP loci were identified with the criteria of three minimum depths, lower than 30% missing rate, and more than 5% minor allele frequency. As a result, an onion genetic linkage map consisting of 319 GBS-based SNP loci and 34 high-resolution melting (HRM) markers was constructed with eight linkage groups and a total genetic distance of 881.4 cM. In addition, the linkage groups were assigned to corresponding chromosomes by comparison with the reference genetic map OH1×5225 through marker development based on common transcripts. The analysis revealed one major QTL, qAS7.1, for anthocyanin synthesis and two significant QTLs, qAC4.1 and qAC4.2, for anthocyanin content. The QTL qAS7.1, located on chromosome 7 with a phenotypic variation of 87.61%, may be a dihydroflavonol 4-reductase (DFR) gene that determines whether the bulb color is red or yellow. The QTLs qAC4.1 and qAC4.2 are separately positioned on chromosome 4 with R2 values of 19.43% and 26.28%, respectively. This map and QTL information will contribute to marker development and breeding for high anthocyanin content in bulb onion.

14.
Genes (Basel) ; 11(10)2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977701

RESUMEN

Diabetes mellitus, a group of metabolic disorders characterized by hyperglycemia, is one of the most serious and common diseases around the world and is associated with major complications such as diabetic neuropathy, retinopathy, and cardiovascular diseases. A widely used treatment for non-insulin-dependent diabetes is α-glucosidase inhibitors (AGIs) such as acarbose, which hinders hydrolytic cleavage of disaccharides and retard glucose absorption. The ability to inhibit α-glucosidase activity has been reported in leaf and fruit of pepper (Capsicum annuum L.). In this study, we aimed to identify quantitative trait loci (QTLs) controlling α-glucosidase inhibitory activity (AGI activity) in pepper leaf and fruit using enzyme assay and genotyping-by-sequencing (GBS) analysis. The AGI activity at three stages of leaf and one stage of fruit development was analyzed by 96 F2 individuals. GBS analysis identified 17,427 SNPs that were subjected to pepper genetic linkage map construction. The map, consisting of 763 SNPs, contained 12 linkage groups with a total genetic distance of 2379 cM. QTL analysis revealed seven QTLs (qAGI1.1, qAGI11.1, qAGI5.1, qAGI9.1, qAGI12.1, qAGI5.2, and qAGI12.2) controlling AGI activity in pepper leaf and fruit. The QTLs for AGI activity varied by plant age and organ. This QTL information is expected to provide a significant contribution to developing pepper varieties with high AGI activity.


Asunto(s)
Acarbosa/farmacología , Capsicum/genética , Frutas/genética , Hojas de la Planta/genética , Proteínas de Plantas/antagonistas & inhibidores , Sitios de Carácter Cuantitativo , alfa-Glucosidasas/química , Capsicum/efectos de los fármacos , Capsicum/enzimología , Capsicum/crecimiento & desarrollo , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Frutas/efectos de los fármacos , Frutas/enzimología , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Ligamiento Genético , Genotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , alfa-Glucosidasas/genética , alfa-Glucosidasas/metabolismo
15.
Biomed Res Int ; 2019: 1093186, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30719438

RESUMEN

The soil-borne pathogen Phytophthora capsici causes severe destruction of Capsicum spp. Resistance in Capsicum against P. capsici is controlled by numerous minor quantitative trait loci (QTLs) and a consistent major QTL on chromosome 5. Molecular markers on Capsicum chromosome 5 have been developed to identify the predominant genetic contributor to resistance but have achieved little success. In this study, previously reported molecular markers were used to reanalyze the major QTL region on chromosome 5 (6.2 Mbp to 139.2 Mbp). Candidate resistance gene analogs (RGAs) were identified in the extended major QTL region including 14 nucleotide binding site leucine-rich repeats, 3 receptor-like kinases, and 1 receptor-like protein. Sequence comparison of the candidate RGAs was performed between two Capsicum germplasms that are resistant and susceptible, respectively, to P. capsici. 11 novel RGA-based markers were developed through high-resolution melting analysis which were closely linked to the major QTL for P. capsici resistance. Among the markers, CaNB-5480 showed the highest cosegregation rate at 86.9% and can be applied to genotyping of the germplasms that were not amenable by previous markers. With combination of three markers such as CaNB-5480, CaRP-5130 and CaNB-5330 increased genotyping accuracy for 61 Capsicum accessions. These could be useful to facilitate high-throughput germplasm screening and further characterize resistance genes against P. capsici in pepper.


Asunto(s)
Capsicum/genética , Marcadores Genéticos/genética , Familia de Multigenes/genética , Sitios de Unión/genética , Cromosomas de las Plantas/genética , Técnicas de Genotipaje/métodos , Phytophthora/patogenicidad , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo/genética
16.
Plants (Basel) ; 9(1)2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31861279

RESUMEN

Type-2 diabetes mellitus is one of the most prevalent metabolic diseases in the world, and is characterized by hyperglycemia (i.e., high levels of glucose in the blood). Alpha-glucosidases are enzymes in the digestive tract that hydrolyze carbohydrates into glucose. One strategy that has been developed to treat type-2 diabetes is inhibition of the activity of alpha-glucosidases using synthetic drugs. However, these inhibitors are usually associated with gastrointestinal side effects. Therefore, the development of inhibitors from natural products offers an alternative option for the control of hyperglycemia. In recent years, various studies have been conducted to identify alpha-glucosidases inhibitors from natural sources such as plants, and many candidates have transpired to be secondary metabolites including alkaloids, flavonoids, phenols, and terpenoids. In this review, we focus on the alpha-glucosidases inhibitors found in common vegetable crops and the major classes of phytochemicals responsible for the inhibitory activity, and also as potential/natural drug candidates for the treatment of type-2 diabetes mellitus. In addition, possible breeding strategies for production of improved vegetable crops with higher content of the inhibitors are also described.

17.
Genome Biol ; 18(1): 210, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29089032

RESUMEN

BACKGROUND: Transposable elements are major evolutionary forces which can cause new genome structure and species diversification. The role of transposable elements in the expansion of nucleotide-binding and leucine-rich-repeat proteins (NLRs), the major disease-resistance gene families, has been unexplored in plants. RESULTS: We report two high-quality de novo genomes (Capsicum baccatum and C. chinense) and an improved reference genome (C. annuum) for peppers. Dynamic genome rearrangements involving translocations among chromosomes 3, 5, and 9 were detected in comparison between C. baccatum and the two other peppers. The amplification of athila LTR-retrotransposons, members of the gypsy superfamily, led to genome expansion in C. baccatum. In-depth genome-wide comparison of genes and repeats unveiled that the copy numbers of NLRs were greatly increased by LTR-retrotransposon-mediated retroduplication. Moreover, retroduplicated NLRs are abundant across the angiosperms and, in most cases, are lineage-specific. CONCLUSIONS: Our study reveals that retroduplication has played key roles for the massive emergence of NLR genes including functional disease-resistance genes in pepper plants.


Asunto(s)
Capsicum/genética , Resistencia a la Enfermedad/genética , Evolución Molecular , Duplicación de Gen , Genes de Plantas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Retroelementos/genética , Cromosomas de las Plantas/genética , Especiación Genética , Anotación de Secuencia Molecular , Familia de Multigenes , Proteínas NLR/genética , Sistemas de Lectura Abierta/genética , Filogenia , Estándares de Referencia , Análisis de Secuencia de ARN , Especificidad de la Especie , Secuencias Repetidas Terminales/genética
18.
Mitochondrial DNA B Resour ; 1(1): 164-165, 2016 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33644333

RESUMEN

Capsicum chinense is one of the domesticated pepper species and well known for its distinctive pungency. The complete chloroplast genome sequence of C. chinense was generated by de novo assembly using next generation sequencing data. The chloroplast genome is 156 807 bp long, containing large single-copy region of 87 290 bp and small single-copy region of 17 911 bp separated by a pair of inverted repeats of 25 803 bp. A total of 113 genes were predicted including 79 protein-coding genes, 30 tRNA genes and four rRNA genes. Phylogenomic analysis revealed that C. chinense chloroplast genome was most closely related to Capsicum annuum var. glabriusculum (American bird pepper), a wild progenitor of C. annuum.

19.
Theor Appl Genet ; 117(3): 383-9, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18465115

RESUMEN

Cytoplasmic male sterility (CMS) in chili pepper is restored by one major dominant nuclear gene, restorer-of-fertility (Rf), together with some modifier genes and is also affected by temperature. As a result, male fertility was identified as having several phenotypes. That identified and used in the present study allowed partial restoration of fertility, producing plants that simultaneously produce normal and aborted pollen grains, with most grains stuck to the anther wall, even after dehiscence, resulting in low seed set per fruit. The trait was visible only in the presence of Paterson's sterile cytoplasm and was controlled by a recessive nuclear gene, partial restoration (pr). A CAPS marker, PR-CAPS, closely linked to the trait, has been developed by Lee et al. (2008). In this study, linkage analysis was performed in 205 F(2) individuals derived from the 'Buja' Korean commercial F(1) chili pepper variety using the PR-CAPS marker and the three Rf-linked markers (OPP13-CAPS, AFRF8-CAPS, and CRF-SCAR) previously reported. Consequently, we found that these four markers were tightly linked. This result means that the pr gene might be tightly linked to the Rf locus or the third allele of Rf locus. The sequence diversity of the pr- and Rf-linked markers was also analyzed. The internal sequences of OPP13-CAPS (1,180 bp) and PR-CAPS (640 bp) markers in 91 Korean inbred lines were clearly divided into three haplotypes. According to the sequencing results, a new PR-CAPS (MseI or SphI digestion) marker was designed to distinguish the three haplotypes. This marker will be useful for marker-assisted selection to develop new maintainers and restorers in commercial hybrid pepper breeding using CMS.


Asunto(s)
Capsicum/genética , Citoplasma/genética , Genes de Plantas , Ligamiento Genético , Infertilidad Vegetal/genética , Secuencia de Bases , Mapeo Cromosómico , Marcadores Genéticos , Haplotipos , Datos de Secuencia Molecular , Polimorfismo Genético , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA