Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 141(22): 2738-2755, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36857629

RESUMEN

Primary resistance to tyrosine kinase inhibitors (TKIs) is a significant barrier to optimal outcomes in chronic myeloid leukemia (CML), but factors contributing to response heterogeneity remain unclear. Using single-cell RNA (scRNA) sequencing, we identified 8 statistically significant features in pretreatment bone marrow, which correlated with either sensitivity (major molecular response or MMR) or extreme resistance to imatinib (eventual blast crisis [BC] transformation). Employing machine-learning, we identified leukemic stem cell (LSC) and natural killer (NK) cell gene expression profiles predicting imatinib response with >80% accuracy, including no false positives for predicting BC. A canonical erythroid-specifying (TAL1/KLF1/GATA1) regulon was a hallmark of LSCs from patients with MMR and was associated with erythroid progenitor [ERP] expansion in vivo (P < .05), and a 2- to 10-fold (6.3-fold in group A vs 1.09-fold in group C) erythroid over myeloid bias in vitro. Notably, ERPs demonstrated exquisite TKI sensitivity compared with myeloid progenitors (P < .001). These LSC features were lost with progressive resistance, and MYC- and IRF1-driven inflammatory regulons were evident in patients who progressed to transformation. Patients with MMR also exhibited a 56-fold expansion (P < .01) of a normally rare subset of hyperfunctional adaptive-like NK cells, which diminished with progressive resistance, whereas patients destined for BC accumulated inhibitory NKG2A+ NK cells favoring NK cell tolerance. Finally, we developed antibody panels to validate our scRNA-seq findings. These panels may be useful for prospective studies of primary resistance, and in assessing the contribution of predetermined vs acquired factors in TKI response heterogeneity.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Inhibidores de Proteínas Quinasas , Humanos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Estudios Prospectivos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Crisis Blástica , Resistencia a Antineoplásicos/genética
2.
Blood ; 135(26): 2337-2353, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32157296

RESUMEN

Targeted therapies against the BCR-ABL1 kinase have revolutionized treatment of chronic phase (CP) chronic myeloid leukemia (CML). In contrast, management of blast crisis (BC) CML remains challenging because BC cells acquire complex molecular alterations that confer stemness features to progenitor populations and resistance to BCR-ABL1 tyrosine kinase inhibitors. Comprehensive models of BC transformation have proved elusive because of the rarity and genetic heterogeneity of BC, but are important for developing biomarkers predicting BC progression and effective therapies. To better understand BC, we performed an integrated multiomics analysis of 74 CP and BC samples using whole-genome and exome sequencing, transcriptome and methylome profiling, and chromatin immunoprecipitation followed by high-throughput sequencing. Employing pathway-based analysis, we found the BC genome was significantly enriched for mutations affecting components of the polycomb repressive complex (PRC) pathway. While transcriptomically, BC progenitors were enriched and depleted for PRC1- and PRC2-related gene sets respectively. By integrating our data sets, we determined that BC progenitors undergo PRC-driven epigenetic reprogramming toward a convergent transcriptomic state. Specifically, PRC2 directs BC DNA hypermethylation, which in turn silences key genes involved in myeloid differentiation and tumor suppressor function via so-called epigenetic switching, whereas PRC1 represses an overlapping and distinct set of genes, including novel BC tumor suppressors. On the basis of these observations, we developed an integrated model of BC that facilitated the identification of combinatorial therapies capable of reversing BC reprogramming (decitabine+PRC1 inhibitors), novel PRC-silenced tumor suppressor genes (NR4A2), and gene expression signatures predictive of disease progression and drug resistance in CP.


Asunto(s)
Crisis Blástica/genética , Regulación Leucémica de la Expresión Génica/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Complejo Represivo Polycomb 1/fisiología , Complejo Represivo Polycomb 2/fisiología , Diferenciación Celular , Inmunoprecipitación de Cromatina , Metilación de ADN , Conjuntos de Datos como Asunto , Proteína Potenciadora del Homólogo Zeste 2/fisiología , Dosificación de Gen , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Mutación , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 2/genética , Transcriptoma , Secuenciación del Exoma , Secuenciación Completa del Genoma
3.
Exp Cell Res ; 366(2): 181-191, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29574021

RESUMEN

Hypoxia causes dramatic changes in gene expression profiles, and the mechanism of hypoxia-inducible transcription has been analyzed for use as a model system of stress-inducible gene regulation. In this study, changes in chromatin organization in promoters of hypoxia-inducible genes were investigated during hypoxia-reoxygenation conditions. Most of the hypoxia-inducible gene promoters were hypersensitive to DNase I under both normal and hypoxic conditions, and our data indicate an immediate recruitment of transcription factors under hypoxic conditions. In some of the hypoxia-inducible promoters, nucleosome-free DNA regions (NFRs) were established in parallel with hypoxia-induced transcription. We also show that the hypoxia-inducible formation of NFRs requires that hypoxia-inducible transcription factors (HIFs) bind to the promoters together with the transcriptional coactivator CBP. Within 1 h after the hypoxia exposure was ended (reoxygenation), HIF complexes were dissociated from the promoter regions. Within 24 h of reoxygenation, the hypoxia-induced transcription returned to basal levels and the nucleosome structure was reassembled in the hypoxia-inducible NFRs. Nucleosome reassembly required the function of the transcriptional coregulator SIN3A. Thus, reversible changes in nucleosome organization mediated by transcription factors are notable features of stress-inducible gene regulation.


Asunto(s)
Carcinoma Hepatocelular/genética , Regulación Neoplásica de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/fisiopatología , Neuroblastoma/genética , Nucleosomas/fisiología , Regiones Promotoras Genéticas , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Ensamble y Desensamble de Cromatina , Perfilación de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neuroblastoma/metabolismo , Neuroblastoma/patología , Células Tumorales Cultivadas
4.
Exp Cell Res ; 352(2): 412-419, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28238835

RESUMEN

The carotid body (CB) is the key sensing organ for physiological oxygen levels in the body. Under conditions of low oxygen (hypoxia), the CB plays crucial roles in signaling to the cardiorespiratory center in the medulla oblongata for the restoration of oxygen homeostasis. How hypoxia regulates gene expression in the human CB remains poorly understood. While limited information on transcriptional regulation in animal CBs is available, the identity and impact of important post-transcriptional regulators such as non-coding RNAs, and in particular miRNAs are not known. Here we show using ex vivo experiments that indeed a number of miRNAs are differentially regulated in surgically removed human CB slices when acute hypoxic conditions were applied. Analysis of the hypoxia-regulated miRNAs shows that they target biological pathways with upregulation of functions related to cell proliferation and immune response and downregulation of cell differentiation and cell death functions. Comparative analysis of the human CB miRNAome with the global miRNA expression patterns of a large number of different human tissues showed that the CB miRNAome had a unique profile which reflects its highly specialized functional status. Nevertheless, the human CB miRNAome is most closely related to the miRNA expression pattern of brain tissues indicating that they may have the most similar developmental origins.


Asunto(s)
Cuerpo Carotídeo/metabolismo , Hipoxia/metabolismo , MicroARNs/genética , Oxígeno/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Hipoxia de la Célula , Células Cultivadas , Humanos , Hipoxia/genética , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad
5.
Adv Exp Med Biol ; 1071: 25-33, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30357730

RESUMEN

How hypoxia regulates gene expression in the human carotid body (CB) remains poorly understood. While limited information on transcriptional regulation in animal CBs is available, the impact of important post-transcriptional regulators, such as non-coding RNAs, and in particular miRNAs is not known. Here we show using ex vivo experiments that indeed a number of miRNAs are differentially regulated in surgically removed human CB slices when acute hypoxic conditions were applied. Analysis of the hypoxia-regulated miRNAs shows that they target biological pathways with upregulation of functions related to cell proliferation and immune response and downregulation of cell differentiation and cell death functions. Comparative analysis of the human CB miRNAome with the global miRNA expression patterns of a large number of different human tissues showed that the CB miRNAome had a unique profile which reflects its highly specialized functional status. Nevertheless, the human CB miRNAome is most closely related to the miRNA expression pattern of brain tissues indicating that they may have the most similar developmental origins.


Asunto(s)
Cuerpo Carotídeo/fisiología , Hipoxia , MicroARNs/genética , Regulación de la Expresión Génica , Humanos , Técnicas In Vitro
6.
Blood ; 123(21): 3316-26, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24705490

RESUMEN

C-abl oncogene 1, nonreceptor tyrosine kinase (ABL1) kinase inhibitors such as imatinib mesylate (imatinib) are effective in managing chronic myeloid leukemia (CML) but incapable of eliminating leukemia stem cells (LSCs), suggesting that kinase-independent pathways support LSC survival. Given that the bone marrow (BM) hypoxic microenvironment supports hematopoietic stem cells, we investigated whether hypoxia similarly contributes to LSC persistence. Importantly, we found that although breakpoint cluster region (BCR)-ABL1 kinase remained effectively inhibited by imatinib under hypoxia, apoptosis became partially suppressed. Furthermore, hypoxia enhanced the clonogenicity of CML cells, as well as their efficiency in repopulating immunodeficient mice, both in the presence and absence of imatinib. Hypoxia-inducible factor 1 α (HIF1-α), which is the master regulator of the hypoxia transcriptional response, is expressed in the BM specimens of CML individuals. In vitro, HIF1-α is stabilized during hypoxia, and its expression and transcriptional activity can be partially attenuated by concurrent imatinib treatment. Expression analysis demonstrates at the whole-transcriptome level that hypoxia and imatinib regulate distinct subsets of genes. Functionally, knockdown of HIF1-α abolished the enhanced clonogenicity during hypoxia. Taken together, our results suggest that in the hypoxic microenvironment, HIF1-α signaling supports LSC persistence independent of BCR-ABL1 kinase activity. Thus, targeting HIF1-α and its pathway components may be therapeutically important for the complete eradication of LSCs.


Asunto(s)
Benzamidas/farmacología , Hipoxia de la Célula , Resistencia a Antineoplásicos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Células Madre Neoplásicas/patología , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Regulación Leucémica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Factor 1 Inducible por Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo , Mesilato de Imatinib , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Ratones , Ratones SCID , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Oxígeno/metabolismo , Células Tumorales Cultivadas
7.
Nat Rev Genet ; 10(12): 821-32, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19884889

RESUMEN

The sensing of oxygen levels and maintenance of oxygen homeostasis is crucial for cells. The hypoxic-sensitive regulation of gene expression allows information about the oxygen status to be converted into appropriate cellular responses. Although there is a core transcriptional pathway, the signalling cascade can be modified to allow diversity and specificity in the transcriptional output. In this Review, we discuss recent advances in our understanding of the mechanisms and factors that contribute to the observed diversity and specificity. A deeper knowledge about how hypoxic signalling is tuned will further our understanding of the cellular hypoxic response in normal physiology and how it becomes derailed in disease.


Asunto(s)
Hipoxia de la Célula , Regulación de la Expresión Génica , Transcripción Genética , Animales , Humanos , Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias/metabolismo , Oxígeno/metabolismo
8.
PLoS Genet ; 7(6): e1002130, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21731500

RESUMEN

Nodal and Activin are morphogens of the TGFbeta superfamily of signaling molecules that direct differential cell fate decisions in a dose- and distance-dependent manner. During early embryonic development the Nodal/Activin pathway is responsible for the specification of mesoderm, endoderm, node, and mesendoderm. In contradiction to this drive towards cellular differentiation, the pathway also plays important roles in the maintenance of self-renewal and pluripotency in embryonic and epiblast stem cells. The molecular basis behind stem cell interpretation of Nodal/Activin signaling gradients and the undertaking of disparate cell fate decisions remains poorly understood. Here, we show that any perturbation of endogenous signaling levels in mouse embryonic stem cells leads to their exit from self-renewal towards divergent differentiation programs. Increasing Nodal signals above basal levels by direct stimulation with Activin promotes differentiation towards the mesendodermal lineages while repression of signaling with the specific Nodal/Activin receptor inhibitor SB431542 induces trophectodermal differentiation. To address how quantitative Nodal/Activin signals are translated qualitatively into distinct cell fates decisions, we performed chromatin immunoprecipitation of phospho-Smad2, the primary downstream transcriptional factor of the Nodal/Activin pathway, followed by massively parallel sequencing, and show that phospho-Smad2 binds to and regulates distinct subsets of target genes in a dose-dependent manner. Crucially, Nodal/Activin signaling directly controls the Oct4 master regulator of pluripotency by graded phospho-Smad2 binding in the promoter region. Hence stem cells interpret and carry out differential Nodal/Activin signaling instructions via a corresponding gradient of Smad2 phosphorylation that selectively titrates self-renewal against alternative differentiation programs by direct regulation of distinct target gene subsets and Oct4 expression.


Asunto(s)
Células Madre Embrionarias/citología , Estratos Germinativos/citología , Proteína Nodal/metabolismo , Transducción de Señal , Proteína Smad2/metabolismo , Receptores de Activinas/antagonistas & inhibidores , Activinas/farmacología , Animales , Benzamidas/farmacología , Diferenciación Celular , Células Cultivadas , Dimetilsulfóxido/farmacología , Dioxoles/farmacología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/metabolismo , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Proteína Smad2/genética , Activación Transcripcional
9.
Biochem Biophys Res Commun ; 441(2): 499-506, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24383088

RESUMEN

GLI-similar 1 (GLIS1) is important for the reprogramming of fibroblasts into induced pluripotent stem cells (iPSCs). However, the molecular mechanisms of regulation of GLIS1 expression remain unclear. We have therefore examined GLIS1 expression in various cancer cell lines and demonstrated that GLIS1 expression was dramatically increased under hypoxic conditions. Importantly, GLIS1 expression was significantly attenuated in VHL-overexpressing renal cell carcinoma cells compared to the VHL-deficient parent control. Moreover, promoter analysis demonstrated that GLIS1 transcription was regulated by hypoxia through a hypoxia-inducible factors (HIFs)-dependent mechanism. Co-transfection experiments revealed that HIF-2α had greater potency on the GLIS1 promoter activation than HIF-1α. Subsequent studies using wild-type and mutant HIF-2α demonstrated that DNA binding activity was not necessary but TADs were critical for GLIS1 induction. Finally, co-transfection experiments indicated that HIF-2α cooperated with AP-1 family members in upregulating GLIS1 transcription. These results suggest that the hypoxic signaling pathway may play a pivotal role in regulating the reprogramming factor GLIS1, via non-canonical mechanisms involving partner transcription factor rather than by direct HIF transactivation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Hipoxia de la Célula/genética , Línea Celular Tumoral , Humanos , Factor 1 Inducible por Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Factor de Transcripción AP-1/metabolismo
10.
Epigenetics ; 18(1): 2222245, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37300822

RESUMEN

The histone H3K27 demethylase, UTX/KDM6A, plays a critical role in the early development of vertebrates, and mutations are frequently found in various cancers. Several studies on developmental and cancer biology have focused on preferential transcriptional regulation by UTX independently of its H3K27 demethylase catalytic activity. Here, we analysed gene expression profiles of wild-type (WT) UTX and a catalytic activity-defective mutant in 786-O and HCT116 cells and confirmed that catalytic activity-dependent and -independent regulation contributes to the expression of most of the target genes. Indeed, the catalytic activity-defective mutant indeed suppressed colony formation similar to the WT in our assay system. However, the expression of several genes was significantly dependent on the catalytic activity of UTX in a cell type-specific manner, which could account for the inherent variation in the transcriptional landscape of various cancer types. The promoter/enhancer regions of the catalytic activity-dependent genes identified here were found to be preferentially modified with H3K4me1 and less with H3K27me3 than those of the independent genes. These findings, combined with previous reports, highlight not only the understanding of determinants for the catalytic activity dependency but also the development and application of pharmaceutical agents targeting the H3K27 or H3K4 modifications.


Asunto(s)
Histona Demetilasas , Histonas , Neoplasias , Humanos , Dominio Catalítico , Metilación de ADN , Genes Supresores de Tumor , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histonas/genética , Histonas/metabolismo , Neoplasias/genética , Línea Celular Tumoral
11.
Mol Pharmacol ; 82(6): 1082-93, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22936816

RESUMEN

The aryl hydrocarbon receptor (AhR) is a signal-regulated transcription factor, which is canonically activated by the direct binding of xenobiotics. In addition, switching cells from adherent to suspension culture also activates the AhR, representing a nonxenobiotic, physiological activation of AhR signaling. Here, we show that the AhR is recruited to target gene enhancers in both ligand [isopropyl-2-(1,3-dithietane-2-ylidene)-2-[N-(4-methylthiazol-2-yl)carbamoyl]acetate (YH439)]-treated and suspension cells, suggesting a common mechanism of target gene induction between these two routes of AhR activation. However, gene expression profiles critically differ between xenobiotic- and suspension-activated AhR signaling. Por and Cldnd1 were regulated predominantly by ligand treatments, whereas, in contrast, ApoER2 and Ganc were regulated predominantly by the suspension condition. Classic xenobiotic-metabolizing AhR targets such as Cyp1a1, Cyp1b1, and Nqo1 were regulated by both ligand and suspension conditions. Temporal expression patterns of AhR target genes were also found to vary, with examples of transient activation, transient repression, or sustained alterations in expression. Furthermore, sequence analysis coupled with chromatin immunoprecipitation assays and reporter gene analysis identified a functional xenobiotic response element (XRE) in the intron 1 of the mouse Tiparp gene, which was also bound by hypoxia-inducible factor-1α during hypoxia and features a concatemer of four XRE cores (GCGTG). Our data suggest that this XRE concatemer site concurrently regulates the expression of both the Tiparp gene and its cis antisense noncoding RNA after ligand- or suspension-induced AhR activation. This work provides novel insights into how AhR signaling drives different transcriptional programs via the ligand versus suspension modes of activation.


Asunto(s)
Adhesión Celular/genética , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Activación Transcripcional/genética , Xenobióticos/farmacología , Animales , Adhesión Celular/efectos de los fármacos , Línea Celular , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Expresión Génica/efectos de los fármacos , Células HEK293 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Ligandos , Ratones , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Transcriptoma/efectos de los fármacos
12.
Oncogene ; 41(48): 5160-5175, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36271030

RESUMEN

Acute myeloid leukaemia (AML) is a rapidly fatal blood cancer that is characterised by the accumulation of immature myeloid cells in the blood and bone marrow as a result of blocked differentiation. Methods which identify master transcriptional regulators of AML subtype-specific leukaemia cell states and their combinations could be critical for discovering novel differentiation-inducing therapies. In this proof-of-concept study, we demonstrate a novel utility of the Mogrify® algorithm in identifying combinations of transcription factors (TFs) and drugs, which recapitulate granulocytic differentiation of the NB4 acute promyelocytic leukaemia (APL) cell line, using two different approaches. In the first approach, Connectivity Map (CMAP) analysis of these TFs and their target networks outperformed standard approaches, retrieving ATRA as the top hit. We identify dimaprit and mebendazole as a drug combination which induces myeloid differentiation. In the second approach, we show that genetic manipulation of specific Mogrify®-identified TFs (MYC and IRF1) leads to co-operative induction of APL differentiation, as does pharmacological targeting of these TFs using currently available compounds. We also show that loss of IRF1 blunts ATRA-mediated differentiation, and that MYC represses IRF1 expression through recruitment of PML-RARα, the driver fusion oncoprotein in APL, to the IRF1 promoter. Finally, we demonstrate that these drug combinations can also induce differentiation of primary patient-derived APL cells, and highlight the potential of targeting MYC and IRF1 in high-risk APL. Thus, these results suggest that Mogrify® could be used for drug discovery or repositioning in leukaemia differentiation therapy for other subtypes of leukaemia or cancers.


Asunto(s)
Leucemia Mieloide Aguda , Leucemia Promielocítica Aguda , Humanos , Tretinoina/farmacología , Tretinoina/uso terapéutico , Farmacología en Red , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Diferenciación Celular/genética , Factores de Transcripción/genética
13.
J Biol Chem ; 285(51): 40252-65, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-20940306

RESUMEN

Terminal differentiation of mammalian erythroid progenitors involves 4-5 cell divisions and induction of many erythroid important genes followed by chromatin and nuclear condensation and enucleation. The protein levels of c-Myc (Myc) are reduced dramatically during late stage erythroid maturation, coinciding with cell cycle arrest in G(1) phase and enucleation, suggesting possible roles for c-Myc in either or both of these processes. Here we demonstrate that ectopic Myc expression affects terminal erythroid maturation in a dose-dependent manner. Expression of Myc at physiological levels did not affect erythroid differentiation or cell cycle shutdown but specifically blocked erythroid nuclear condensation and enucleation. Continued Myc expression prevented deacetylation of several lysine residues in histones H3 and H4 that are normally deacetylated during erythroid maturation. The histone acetyltransferase Gcn5 was up-regulated by Myc, and ectopic Gcn5 expression partially blocked enucleation and inhibited the late stage erythroid nuclear condensation and histone deacetylation. When overexpressed at levels higher than the physiological range, Myc blocked erythroid differentiation, and the cells continued to proliferate in cytokine-free, serum-containing culture medium with an early erythroblast morphology. Gene expression analysis demonstrated the dysregulation of erythropoietin signaling pathway and the up-regulation of several positive regulators of G(1)-S cell cycle checkpoint by supraphysiological levels of Myc. These results reveal an important dose-dependent function of Myc in regulating terminal maturation in mammalian erythroid cells.


Asunto(s)
Diferenciación Celular/fisiología , Eritroblastos/metabolismo , Fase G1/fisiología , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Fase S/fisiología , Animales , Eritroblastos/citología , Dosificación de Gen , Expresión Génica , Histonas/genética , Histonas/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción p300-CBP/biosíntesis , Factores de Transcripción p300-CBP/genética
14.
Stem Cells ; 28(2): 191-200, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19937756

RESUMEN

Embryonic stem (ES) cells continuously decide whether to maintain pluripotency or differentiate. While exogenous leukemia inhibitory factor and BMP4 perpetuate a pluripotent state, less is known about the factors initiating differentiation. We show that heparan sulfate (HS) proteoglycans are critical coreceptors for signals inducing ES cell differentiation. Genetic targeting of NDST1 and NDST2, two enzymes required for N-sulfation of proteoglycans, blocked differentiation. This phenotype was rescued by HS presented in trans or by soluble heparin. NaClO(3) (-), which reduces sulfation of proteoglycans, potently blocked differentiation of wild-type cells. Mechanistically, N-sulfation was identified to be critical for functional autocrine fibroblast growth factor 4 (FGF4) signaling. Microarray analysis identified the pluripotency maintaining transcription factors Nanog, KLF2/4/8, Tbx3, and Tcf3 to be negatively regulated, whereas markers of differentiation such as Gbx2, Dnmt3b, FGF5, and Brachyury were induced by sulfation-dependent FGF receptor (FGFR) signaling. We show that several of these genes are heterogeneously expressed in ES cells, and that targeting of heparan sulfation or FGFR-signaling facilitated a homogenous Nanog/KLF4/Tbx3 positive ES cell state. This finding suggests that the recently discovered heterogeneous state of ES cells is regulated by HS-dependent FGFR signaling. Similarly, culturing blastocysts with NaClO(3) (-) eliminated GATA6-positive primitive endoderm progenitors generating a homogenous Nanog-positive inner cell mass. Functionally, reduction of sulfation robustly improved de novo ES cell derivation efficiency. We conclude that N-sulfated HS is required for FGF4 signaling to maintain ES cells primed for differentiation in a heterogeneous state. Inhibiting this pathway facilitates a more naïve ground state.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Heparitina Sulfato/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Animales , Western Blotting , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular Tumoral , Cloratos/farmacología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Proteínas de Homeodominio/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología , Sulfotransferasas/genética , Sulfotransferasas/metabolismo
15.
Exp Cell Res ; 316(9): 1610-24, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20034489

RESUMEN

Interaction between key signaling mechanisms is important to generate the diversity in signaling output required for proper control of cellular differentiation and function, although the molecular manifestations of such cross-talk are only partially understood. Notch signaling and the cellular response to hypoxia intersect at different points in the signaling cascades, and in this report we analyze the consequences of this cross-talk at the transcriptome level. Mouse ES cells were subjected to various combinations of hypoxia and/or activated Notch signaling, and the transcriptome changes could be grouped into different categories, reflecting various modes of hypoxia and Notch signaling integration. Two principal categories of novel Notch- and hypoxia-induced genes were identified: (i) a larger set of Notch or hypoxic target genes which were induced by one pathway and not significantly affected by the activity status of the other pathway and (ii) a smaller set of genes co-regulated by Notch and hypoxia. In the latter category, we identified genes that were induced by hypoxia and the expression of which was enhanced by active Notch signaling and another group of genes that were induced by Notch and hypoxia independently. Several of the hypoxia- and Notch-induced genes were found to be upregulated in various forms of cancer. Identification of genes co-regulated by the two pathways may provide a molecular platform to better understand the intersection between the two signaling cascades in normal development and cancer.


Asunto(s)
Biomarcadores/metabolismo , Células Madre Embrionarias/fisiología , Perfilación de la Expresión Génica , Hipoxia , Receptores Notch/metabolismo , Transducción de Señal , Animales , Western Blotting , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Células Madre Embrionarias/citología , Femenino , Humanos , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Notch/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tasa de Supervivencia
16.
Sci Rep ; 11(1): 4538, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33633164

RESUMEN

UTX/KDM6A encodes a major histone H3 lysine 27 (H3K27) demethylase, and is frequently mutated in various types of human cancers. Although UTX appears to play a crucial role in oncogenesis, the mechanisms involved are still largely unknown. Here we show that a specific pharmacological inhibitor of H3K27 demethylases, GSK-J4, induces the expression of transcription activating factor 4 (ATF4) protein as well as the ATF4 target genes (e.g. PCK2, CHOP, REDD1, CHAC1 and TRIB3). ATF4 induction by GSK-J4 was due to neither transcriptional nor post-translational regulation. In support of this view, the ATF4 induction was almost exclusively dependent on the heme-regulated eIF2α kinase (HRI) in mouse embryonic fibroblasts (MEFs). Gene expression profiles with UTX disruption by CRISPR-Cas9 editing and the following stable re-expression of UTX showed that UTX specifically suppresses the expression of the ATF4 target genes, suggesting that UTX inhibition is at least partially responsible for the ATF4 induction. Apoptosis induction by GSK-J4 was partially and cell-type specifically correlated with the activation of ATF4-CHOP. These findings highlight that the anti-cancer drug candidate GSK-J4 strongly induces ATF4 and its target genes via HRI activation and raise a possibility that UTX might modulate cancer formation by regulating the HRI-ATF4 axis.


Asunto(s)
Factor de Transcripción Activador 4/agonistas , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/genética , eIF-2 Quinasa/metabolismo , Animales , Apoptosis , Benzazepinas/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Unión Proteica , Pirimidinas/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos
17.
PLoS Biol ; 5(3): e67, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17341133

RESUMEN

Regulation of transforming growth factor-beta (TGF-beta) signaling is critical in vertebrate development, as several members of the TGF-beta family have been shown to act as morphogens, controlling a variety of cell fate decisions depending on concentration. Little is known about the role of intracellular regulation of the TGF-beta pathway in development. E3 ubiquitin ligases target specific protein substrates for proteasome-mediated degradation, and several are implicated in signaling. We have shown that Arkadia, a nuclear RING-domain E3 ubiquitin ligase, is essential for a subset of Nodal functions in the embryo, but the molecular mechanism of its action in embryonic cells had not been addressed. Here, we find that Arkadia facilitates Nodal signaling broadly in the embryo, and that it is indispensable for cell fates that depend on maximum signaling. Loss of Arkadia in embryonic cells causes nuclear accumulation of phospho-Smad2/3 (P-Smad2/3), the effectors of Nodal signaling; however, these must be repressed or hypoactive as the expression of their direct target genes is reduced or lost. Molecular and functional analysis shows that Arkadia interacts with and ubiquitinates P-Smad2/3 causing their degradation, and that this is via the same domains required for enhancing their activity. Consistent with this dual function, introduction of Arkadia in homozygous null (-/-) embryonic stem cells activates the accumulated and hypoactive P-Smad2/3 at the expense of their abundance. Arkadia-/- cells, like Smad2-/- cells, cannot form foregut and prechordal plate in chimeras, confirming this functional interaction in vivo. As Arkadia overexpression never represses, and in some cells enhances signaling, the degradation of P-Smad2/3 by Arkadia cannot occur prior to their activation in the nucleus. Therefore, Arkadia provides a mechanism for signaling termination at the end of the cascade by coupling degradation of P-Smad2/3 with the activation of target gene transcription. This mechanism can account for achieving efficient and maximum Nodal signaling during embryogenesis and for rapid resetting of target gene promoters allowing cells to respond to dynamic changes in extracellular signals.


Asunto(s)
Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Ubiquitina/fisiología , Animales , Secuencia de Bases , Quimera , Cartilla de ADN , Ratones , Ubiquitina-Proteína Ligasas
18.
Leukemia ; 34(7): 1787-1798, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32051529

RESUMEN

Patients with chronic myeloid leukemia (CML) who are treated with tyrosine kinase inhibitors (TKIs) experience significant heterogeneity regarding depth and speed of responses. Factors intrinsic and extrinsic to CML cells contribute to response heterogeneity and TKI resistance. Among extrinsic factors, cytokine-mediated TKI resistance has been demonstrated in CML progenitors, but the underlying mechanisms remain obscure. Using RNA-sequencing, we identified differentially expressed splicing factors in primary CD34+ chronic phase (CP) CML progenitors and controls. We found SRSF1 expression to be increased as a result of both BCR-ABL1- and cytokine-mediated signaling. SRSF1 overexpression conferred cytokine independence to untransformed hematopoietic cells and impaired imatinib sensitivity in CML cells, while SRSF1 depletion in CD34+ CP CML cells prevented the ability of extrinsic cytokines to decrease imatinib sensitivity. Mechanistically, PRKCH and PLCH1 were upregulated by elevated SRSF1 levels, and contributed to impaired imatinib sensitivity. Importantly, very high SRSF1 levels in the bone marrow of CML patients at presentation correlated with poorer clinical TKI responses. In summary, we find SRSF1 levels to be maintained in CD34+ CP CML progenitors by cytokines despite effective BCR-ABL1 inhibition, and that elevated levels promote impaired imatinib responses. Together, our data support an SRSF1/PRKCH/PLCH1 axis in contributing to cytokine-induced impaired imatinib sensitivity in CML.


Asunto(s)
Médula Ósea/patología , Citocinas/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Mesilato de Imatinib/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Células Madre Neoplásicas/patología , Factores de Empalme Serina-Arginina/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Pronóstico , Inhibidores de Proteínas Quinasas/farmacología , Factores de Empalme Serina-Arginina/genética , Células Tumorales Cultivadas
19.
Sci Rep ; 8(1): 11239, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30030449

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

20.
PLoS One ; 13(10): e0205254, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30307989

RESUMEN

Cancer cells, including in chronic myeloid leukemia (CML), depend on the hypoxic response to persist in hosts and evade therapy. Accordingly, there is significant interest in drugging cancer-specific hypoxic responses. However, a major challenge in leukemia is identifying differential and druggable hypoxic responses between leukemic and normal cells. Previously, we found that arginase 2 (ARG2), an enzyme of the urea cycle, is overexpressed in CML but not normal progenitors. ARG2 is a target of the hypoxia inducible factors (HIF1-α and HIF2-α), and is required for the generation of polyamines which are required for cell growth. We therefore explored if the clinically-tested arginase inhibitor Nω-hydroxy-nor-arginine (nor-NOHA) would be effective against leukemic cells under hypoxic conditions. Remarkably, nor-NOHA effectively induced apoptosis in ARG2-expressing cells under hypoxia but not normoxia. Co-treatment with nor-NOHA overcame hypoxia-mediated resistance towards BCR-ABL1 kinase inhibitors. While nor-NOHA itself is promising in targeting the leukemia hypoxic response, we unexpectedly found that its anti-leukemic activity was independent of ARG2 inhibition. Genetic ablation of ARG2 using CRISPR/Cas9 had no effect on the viability of leukemic cells and their sensitivity towards nor-NOHA. This discrepancy was further evidenced by the distinct effects of ARG2 knockouts and nor-NOHA on cellular respiration. In conclusion, we show that nor-NOHA has significant but off-target anti-leukemic activity among ARG2-expressing hypoxic cells. Since nor-NOHA has been employed in clinical trials, and is widely used in studies on endothelial dysfunction, immunosuppression and metabolism, the diverse biological effects of nor-NOHA must be cautiously evaluated before attributing its activity to ARG inhibition.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Arginasa/antagonistas & inhibidores , Arginina/análogos & derivados , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Arginasa/genética , Arginasa/metabolismo , Arginina/farmacología , Arginina/uso terapéutico , Sistemas CRISPR-Cas/genética , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Pruebas de Enzimas , Estudios de Factibilidad , Técnicas de Inactivación de Genes , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Cultivo Primario de Células , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA