Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 45(9): 7417-7431, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37754253

RESUMEN

Despite the ongoing clinical trials and the introduction of novel treatments over the past few decades, ovarian cancer remains one of the most fatal malignancies in women worldwide. Platinum- and paclitaxel-based chemotherapy is effective in treating the majority of patients with ovarian cancer. However, more than 70% of patients experience recurrence and eventually develop chemoresistance. To improve clinical outcomes in patients with ovarian cancer, novel technologies must be developed for identifying molecular alterations following drug-based treatment of ovarian cancer. Recently, extracellular vesicles (EVs) have gained prominence as the mediators of tumor progression. In this study, we used mass spectrometry to identify the changes in EV protein signatures due to different chemotherapeutic agents used for treating ovarian cancer. By examining these alterations, we identified the specific protein induction patterns of cisplatin alone, paclitaxel alone, and a combination of cisplatin and paclitaxel. Specifically, we found that drug sensitivity was correlated with the expression levels of ANXA5, CD81, and RAB5C in patients receiving cisplatin with paclitaxel. Our findings suggest that chemotherapy-induced changes in EV protein signatures are crucial for the progression of ovarian cancer.

2.
Funct Integr Genomics ; 22(5): 1057-1072, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35851932

RESUMEN

As lung cancer remains the leading cause of cancer deaths globally, characterizing the tumor molecular profiles is crucial to tailoring treatments for individuals at advanced stages. Cancer cells exhibit strong dependence on iron for their proliferation, and several iron-regulatory proteins have been proposed as either oncogenes or tumor suppressive genes. This study aims to evaluate the prospective therapeutic and prognostic values of the sideroflexin (SFXN) gene family, whose functions involve mitochondrial iron metabolism, in lung adenocarcinoma (LUAD). Differential expression analysis using TIMER and UALCAN tools was first employed to compare SFXNs expression levels between normal and LUAD tissues. Next, SFXNs' prognostic values, biological significance, and potential as immunotherapy candidates were examined from GEPIA, cBioPortal, MetaCore, Cytoscape, and TIMER databases. It was found that all members of SFXN family, except SFXN3, were differentially expressed in LUAD compared to normal samples and within different stages of LUAD. Survival analysis then revealed SFXN1 to be related to worse overall survival outcome in patients with LUAD. Furthermore, several correlations between expression of SFXN1 and immune infiltration cells were discovered. To conclude, our study provides evidence of SFXN family gene's relevance to the prognosis and immunotherapeutic targets of LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoterapia , Hierro/metabolismo , Proteínas Reguladoras del Hierro/genética , Proteínas Reguladoras del Hierro/metabolismo , Neoplasias Pulmonares/patología
3.
Curr Issues Mol Biol ; 43(1)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925358

RESUMEN

Colorectal cancer (CRC) has the fourth-highest incidence of all cancer types, and its incidence has steadily increased in the last decade. The general transcription factor III (GTF3) family, comprising GTF3A, GTF3B, GTF3C1, and GTFC2, were stated to be linked with the expansion of different types of cancers; however, their messenger (m)RNA expressions and prognostic values in colorectal cancer need to be further investigated. To study the transcriptomic expression levels of GTF3 gene members in colorectal cancer in both cancerous tissues and cell lines, we first performed high-throughput screening using the Oncomine, GEPIA, and CCLE databases. We then applied the Prognoscan database to query correlations of their mRNA expressions with the disease-specific survival (DSS), overall survival (OS), and disease-free survival (DFS) status of the colorectal cancer patient. Furthermore, proteomics expressions of GTF3 family members in clinical colorectal cancer specimens were also examined using the Human Protein Atlas. Finally, genomic alterations of GTF3 family gene expressions in colorectal cancer and their signal transduction pathways were studied using cBioPortal, ClueGO, CluePedia, and MetaCore platform. Our findings revealed that GTF3 family members' expressions were significantly correlated with the cell cycle, oxidative stress, WNT/ß-catenin signaling, Rho GTPases, and G-protein-coupled receptors (GPCRs). Clinically, high GTF3A and GTF3B expressions were significantly correlated with poor prognoses in colorectal cancer patients. Collectively, our study declares that GTF3A was overexpressed in cancer tissues and cell lines, particularly colorectal cancer, and it could possibly step in as a potential prognostic biomarker.


Asunto(s)
Neoplasias Colorrectales/patología , Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica , Proteínas Musculares/genética , Proteínas Nucleares/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Transactivadores/genética , Vía de Señalización Wnt , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , División Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Bases de Datos Genéticas , Bases de Datos de Proteínas , Humanos , Proteínas Musculares/metabolismo , Proteínas Nucleares/metabolismo , Pronóstico , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Transactivadores/metabolismo
4.
Biochem Biophys Res Commun ; 533(4): 1477-1483, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33333713

RESUMEN

Development of the mammalian central nervous system is an important process, which is accomplished through precise regulations of many different genes. Zinc finger protein 179 (Znf179) is one of the essential genes that plays a critical role in neuronal differentiation. In our previous study, Znf179 knockout mice displayed brain malformation and impaired brain functions. We have also previously shown that Znf179 involves in cell cycle regulation, but the regulatory mechanism of Znf179 expression is not yet fully characterized. Herein, we identified that Purα is an essential factor for the promotor activity of Znf179. We also showed concurrent expression of Znf179 and Purα during neuronal differentiation. We also found that overexpression of Purα increased Znf179 expression in neuronal differentiated P19 cells. Through its direct binding to Znf179, as shown using DAPA, Purα upregulates Znf179 expression, suggesting that Purα is important for the regulation of Znf179 expression during neuronal differentiation. Our data indicated that Purα is involved in the transcriptional regulation of Znf179 gene during neuronal differentiation, and is indispensable during the brain development.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología , Animales , Proteínas de Unión al ADN/metabolismo , Luciferasas/genética , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Regiones Promotoras Genéticas , Transcripción Genética
5.
Int J Med Sci ; 17(18): 3112-3124, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33173433

RESUMEN

Breast cancer is the most common cancer type in females, and exploring the mechanisms of disease progression is playing a crucial role in the development of potential therapeutics. Pituitary tumor-transforming gene (PTTG) family members are well documented to be involved in cell-cycle regulation and mitosis, and contribute to cancer development by their involvement in cellular transformation in several tumor types. The critical roles of PTTG family members as crucial transcription factors in diverse types of cancers are recognized, but how they regulate breast cancer development still remains mostly unknown. Meanwhile, a holistic genetic analysis exploring whether PTTG family members regulate breast cancer progression via the cell cycle as well as the energy metabolism-related network is lacking. To comprehensively understand the messenger RNA expression profiles of PTTG proteins in breast cancer, we herein conducted a high-throughput screening approach by integrating information from various databases such as Oncomine, Kaplan-Meier Plotter, Metacore, ClueGo, and CluePedia. These useful databases and tools provide expression profiles and functional analyses. The present findings revealed that PTTG1 and PTTG3 are two important genes with high expressions in breast cancer relative to normal breast cells, implying their unique roles in breast cancer progression. Results of our coexpression analysis demonstrated that PTTG family genes were positively correlated with thiamine triphosphate (TTP), deoxycytidine triphosphate (dCTP) metabolic, glycolysis, gluconeogenesis, and cell-cycle related pathways. Meanwhile, through Cytoscape analyzed indicated that in addition to the metastasis markers AURKA, AURKB, and NDC80, many of the kinesin superfamily (KIF) members including KIFC1, KIF2C, KIF4A, KIF14, KIF20A, KIF23, were also correlated with PTTG family transcript expression. Finally, we revealed that high levels of PTTG1 and PTTG3 transcription predicted poor survival, which provided useful insights into prospective research of cancer associated with the PTTG family. Therefore, these members of the PTTG family would serve as distinct and essential prognostic biomarkers in breast cancer.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Recurrencia Local de Neoplasia/epidemiología , Securina/genética , Mama/patología , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Conjuntos de Datos como Asunto , Supervivencia sin Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Recurrencia Local de Neoplasia/genética , Oncogenes , Pronóstico
6.
Molecules ; 25(17)2020 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-32842685

RESUMEN

Distant metastatic colorectal cancer (CRC) is present in approximately 25% of patients at initial diagnosis, and eventually half of CRC patients will develop metastatic disease. The 5-year survival rate for patients with metastatic CRC is a mere 12.5%; thus, there is an urgent need to investigate the molecular mechanisms of cancer progression in CRC. High expression of human high-mobility group A2 (HMGA2) is related to tumor progression, a poor prognosis, and a poor response to therapy for CRC. Therefore, HMGA2 is an attractive target for cancer therapy. In this study, we identified aspirin and sulindac sulfide as novel potential inhibitors of HMGA2 using a genome-wide mRNA signature-based approach. In addition, aspirin and sulindac sulfide induced cytotoxicity of CRC cells stably expressing HMGA2 by inhibiting cell proliferation and migration. Moreover, a gene set enrichment analysis (GSEA) revealed that gene sets related to inflammation were positively correlated with HMGA2 and that the main molecular function of these genes was categorized as a G-protein-coupled receptor (GPCR) activity event. Collectively, this is the first study to report that aspirin and sulindac sulfide are novel potential inhibitors of HMGA2, which can induce cytotoxicity of CRC cells stably expressing HMGA2 by inhibiting cell proliferation and migration through influencing inflammatory-response genes, the majority of which are involved in GPCR signaling.


Asunto(s)
Aspirina/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Citotoxinas/farmacología , Proteína HMGA2/antagonistas & inhibidores , Proteínas de Neoplasias/antagonistas & inhibidores , Sulindac/análogos & derivados , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Proteína HMGA2/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Sulindac/farmacología
7.
Biochem Biophys Res Commun ; 512(3): 629-634, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30914194

RESUMEN

During brain development, the expression of promyelocytic leukemia zinc finger (Plzf) in neural stem cells is precisely controlled to maintain the balance between neural stem cell self-renewal and differentiation. However, the mechanism underlying transcriptional regulation of Plzf in neural stem cell is still unclear. Herein, using P19 embryonal carcinoma cells as a model, we observed that Plzf expression was induced in the P19-derived embryonic bodies, which enrich neural stem-like cell populations, as demonstrated by the expression of neural stem cell markers, Nestin and Sox2. We then characterized the Plzf promoter and identified two E2f1 binding sites (-755/-751 and -53/-49, the transcription start site was designated as +1) are important for the activation of Plzf promoter. Finally, we found that the induction of Plzf in the neural stem-like cells derived from pluripotent P19 cells is decrease by E2f1 knockdown. Taken together, we conclude that E2f1 is an important transcription factor that regulates Plzf transcription and may involve in maintaining the self-renewal ability of neural stem cells.


Asunto(s)
Factor de Transcripción E2F1/metabolismo , Células Madre de Carcinoma Embrionario/patología , Regulación Neoplásica de la Expresión Génica , Células-Madre Neurales/patología , Proteína de la Leucemia Promielocítica con Dedos de Zinc/genética , Animales , Línea Celular Tumoral , Células Madre de Carcinoma Embrionario/metabolismo , Ratones , Células-Madre Neurales/metabolismo , Neurogénesis , Regiones Promotoras Genéticas , Dedos de Zinc
8.
Int J Mol Sci ; 20(16)2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31394742

RESUMEN

Colorectal cancer (CRC) is a heterogeneous disease resulting from the combined influence of many genetic factors. This complexity has caused the molecular characterization of CRC to remain uncharacterized, with a lack of clear gene markers associated with CRC and the prognosis of this disease. Thus, highly sensitive tumor markers for the detection of CRC are the most essential determinants of survival. In this study, we examined the simultaneous downregulation of the mRNA levels of six metallothionein (MT) genes in CRC cell lines and public CRC datasets for the first time. In addition, we detected downregulation of these six MT mRNAs' levels in 30 pairs of tumor (T) and adjacent non-tumor (N) CRC specimens. In order to understand the potential prognostic relevance of these six MT genes and CRC, we presented a four-gene signature to evaluate the prognosis of CRC patients. Further discovery suggested that the four-gene signature (MT1F, MT1G, MT1L, and MT1X) predicted survival better than any combination of two-, three-, four-, five-, or six-gene models. In conclusion, this study is the first to report that simultaneous downregulation of six MT mRNAs' levels in CRC patients, and their aberrant expression together, accurately predicted CRC patients' outcomes.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Perfilación de la Expresión Génica , Metalotioneína/genética , Transcriptoma , Biomarcadores de Tumor , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Metalotioneína/metabolismo , Pronóstico , ARN Mensajero/genética
9.
Int J Mol Sci ; 20(9)2019 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-31060254

RESUMEN

Acrylamide (AA) and glycidamide (GA) can be produced in carbohydrate-rich food when heated at a high temperature, which can induce a malignant transformation. It has been demonstrated that GA is more mutagenic than AA. It has been shown that the proliferation rate of some cancer cells are increased by treatment with GA; however, the exact genes that are induced by GA in most cancer cells are not clear. In the present study, we demonstrated that GA promotes the growth of prostate cancer cells through induced protein expression of the cell cycle regulator. In addition, we also found that GA promoted the migratory ability of prostate cancer cells through induced epithelial-to-mesenchymal transition (EMT)-associated protein expression. In order to understand the potential prognostic relevance of GA-mediated regulators of the cell cycle and EMT, we present a three-gene signature to evaluate the prognosis of prostate cancer patients. Further investigations suggested that the three-gene signature (CDK4, TWIST1 and SNAI2) predicted the chances of survival better than any of the three genes alone for the first time. In conclusion, we suggested that the three-gene signature model can act as marker of GA exposure. Hence, this multi-gene panel may serve as a promising outcome predictor and potential therapeutic target in prostate cancer patients.


Asunto(s)
Proteínas de Ciclo Celular/genética , Transición Epitelial-Mesenquimal/genética , Compuestos Epoxi/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Biomarcadores de Tumor , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Supervivencia Celular/genética , Perfilación de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Masculino , Pronóstico , Neoplasias de la Próstata/mortalidad , Neoplasias de la Próstata/patología , Transducción de Señal , Transcriptoma
10.
J Biomed Sci ; 25(1): 76, 2018 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-30404641

RESUMEN

BACKGROUND: The brain predominantly expressed RING finger protein, Znf179, is known to be important for embryonic neuronal differentiation during brain development. Downregulation of Znf179 has been observed in motor neurons of adult mouse models for amyotrophic lateral sclerosis (ALS), yet the molecular function of Znf179 in neurodegeneration has never been previously described. Znf179 contains the classical C3HC4 RING finger domain, and numerous proteins containing C3HC4 RING finger domain act as E3 ubiquitin ligases. Hence, we are interested to identify whether Znf179 possesses E3 ligase activity and its role in ALS neuropathy. METHODS: We used in vivo and in vitro ubiquitination assay to examine the E3 ligase autoubiquitination activity of Znf179 and its effect on 26S proteasome activity. To search for the candidate substrates of Znf179, we immunoprecipitated Znf179 and subjected to mass spectrometry (MS) analysis to identify its interacting proteins. We found that ALS/ FTLD-U (frontotemporal lobar degeneration (FTLD) with ubiquitin inclusions)-related neurodegenerative TDP-43 protein is the E3 ligase substrate of Znf179. To further clarify the role of E3 ubiquitin ligase Znf179 in neurodegenerative TDP-43-UBI (ubiquitinated inclusions) (+) proteinopathy, the effect of Znf179-mediated TDP-43 polyubiquitination on TDP-43 protein stability, aggregate formation and nucleus/cytoplasm mislocalization were evaluated in vitro cell culture system and in vivo animal model. RESULTS: Here we report that Znf179 is a RING E3 ubiquitin ligase which possesses autoubiquitination feature and regulates 26S proteasome activity through modulating the protein expression levels of 19S/20S proteasome subunits. Our immunoprecipitation assay and MS analysis results revealed that the neuropathological TDP-43 protein is one of its E3 ligase substrate. Znf179 interactes with TDP-43 protein and mediates polyubiquitination of TDP-43 in vitro and in vivo. In neurodegenerative TDP-43 proteinopathy, we found that Znf179-mediated polyubiquitination of TDP-43 accelerates its protein turnover rate and attenuates insoluble pathologic TDP-43 aggregates, while knockout of Znf179 in mouse brain results in accumulation of insoluble TDP-43 and cytosolic TDP-43 inclusions in cortex, hippocampus and midbrain regions. CONCLUSIONS: Here we unveil the important role for the novel E3 ligase Znf179 in TDP-43-mediated neuropathy, and provide a potential therapeutic strategy for combating ALS/ FTLD-U neurodegenerative pathologies.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Ubiquitina-Proteína Ligasas/metabolismo
11.
Biochim Biophys Acta ; 1853(10 Pt A): 2261-72, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25982393

RESUMEN

There is a wide range of drugs and combinations under investigation and/or approved over the last decade to treat colorectal cancer (CRC), but the 5-year survival rate remains poor at stages II-IV. Therefore, new, more-efficient drugs still need to be developed that will hopefully be included in first-line therapy or overcome resistance when it appears, as part of second- or third-line treatments in the near future. In this study, we revealed that heat shock protein 90 (Hsp90) inhibitors have high therapeutic potential in CRC according to combinative analysis of NCBI's Gene Expression Omnibus (GEO) repository and chemical genomic database of Connectivity Map (CMap). We found that second generation Hsp90 inhibitor, NVP-AUY922, significantly downregulated the activities of a broad spectrum of kinases involved in regulating cell growth arrest and death of NVP-AUY922-sensitive CRC cells. To overcome NVP-AUY922-induced upregulation of survivin expression which causes drug insensitivity, we found that combining berberine (BBR), a herbal medicine with potency in inhibiting survivin expression, with NVP-AUY922 resulted in synergistic antiproliferative effects for NVP-AUY922-sensitive and -insensitive CRC cells. Furthermore, we demonstrated that treatment of NVP-AUY922-insensitive CRC cells with the combination of NVP-AUY922 and BBR caused cell growth arrest through inhibiting CDK4 expression and induction of microRNA-296-5p (miR-296-5p)-mediated suppression of Pin1-ß-catenin-cyclin D1 signaling pathway. Finally, we found that the expression level of Hsp90 in tumor tissues of CRC was positively correlated with CDK4 and Pin1 expression levels. Taken together, these results indicate that combination of NVP-AUY922 and BBR therapy can inhibit multiple oncogenic signaling pathways of CRC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Berberina/farmacología , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Isoxazoles/farmacología , MicroARNs/biosíntesis , MicroARNs/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética , Resorcinoles/farmacología , Transducción de Señal/genética
12.
J Cell Sci ; 127(Pt 14): 3024-38, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24860144

RESUMEN

TDP-43 (also known as TARDBP) is a pathological signature protein of neurodegenerative diseases, with TDP-43 proteinopathies including frontotemporal lobar degeneration (FTLD)-TDP and amyotrophic lateral sclerosis (ALS)-TDP. These TDP-43 proteinopathies are characterized by cytoplasmic insoluble TDP-43-positive aggregates in the diseased cells, the formation of which requires the seeding of TDP-25 fragment generated by caspase cleavage of TDP-43. We have investigated the metabolism and mis-metabolism of TDP-43 in cultured cells and found that endogenous and exogenously overexpressed TDP-43 is degraded not only by the ubiquitin proteasome system (UPS) and macroautophagy, but also by the chaperone-mediated autophagy (CMA) mediated through an interaction between Hsc70 (also known as HSPA8) and ubiquitylated TDP-43. Furthermore, proteolytic cleavage of TDP-43 by caspase(s) is a necessary intermediate step for degradation of the majority of the TDP-43 protein, with the TDP-25 and TDP-35 fragments being the main substrates. Finally, we have determined the threshold level of the TDP-25 fragment that is necessary for formation of the cytosolic TDP-43-positive aggregates in cells containing the full-length TDP-43 at an elevated level close to that found in patients with TDP-43 proteinopathies. A comprehensive model of the metabolism and mis-metabolism of TDP-43 in relation to these findings is presented.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteinopatías TDP-43/metabolismo , Línea Celular Tumoral , Células HEK293 , Humanos , Enfermedades Neurodegenerativas/genética , Proteolisis , Proteinopatías TDP-43/genética , Transfección
13.
Biochem Biophys Res Commun ; 478(2): 873-80, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27530925

RESUMEN

The nucleolus is the cellular site of ribosomal (r)DNA transcription and ribosome biogenesis. The 58-kDa microspherule protein (MSP58) is a nucleolar protein involved in rDNA transcription and cell proliferation. However, regulation of MSP58-mediated rDNA transcription remains unknown. Using a yeast two-hybrid system with MSP58 as bait, we isolated complementary (c)DNA encoding Rad50-interacting protein 1 (RINT-1), as a MSP58-binding protein. RINT-1 was implicated in the cell cycle checkpoint, membrane trafficking, Golgi apparatus and centrosome dynamic integrity, and telomere length control. Both in vitro and in vivo interaction assays showed that MSP58 directly interacts with RINT-1. Interestingly, microscopic studies revealed the co-localization of MSP58, RINT-1, and the upstream binding factor (UBF), a rRNA transcription factor, in the nucleolus. We showed that ectopic expression of MSP58 or RINT-1 resulted in decreased rRNA expression and rDNA promoter activity, whereas knockdown of MSP58 or RINT-1 by siRNA exerted the opposite effect. Coexpression of MSP58 and RINT-1 robustly decreased rRNA synthesis compared to overexpression of either protein alone, whereas depletion of RINT-1 from MSP58-transfected cells enhanced rRNA synthesis. We also found that MSP58, RINT-1, and the UBF were associated with the rDNA promoter using a chromatin immunoprecipitation assay. Because aberrant ribosome biogenesis contributes to neoplastic transformation, our results revealed a novel protein complex involved in the regulation of rRNA gene expression, suggesting a role for MSP58 and RINT-1 in cancer development.


Asunto(s)
Proteínas de Ciclo Celular/genética , ADN Ribosómico/genética , Fibroblastos/metabolismo , Proteínas Nucleares/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , ARN Ribosómico/genética , Proteínas de Unión al ARN/genética , Transcripción Genética , Proteínas de Ciclo Celular/metabolismo , Fraccionamiento Celular , Línea Celular Tumoral , Nucléolo Celular/metabolismo , Citosol/metabolismo , ADN Ribosómico/metabolismo , Fibroblastos/citología , Regulación de la Expresión Génica , Humanos , Proteínas Nucleares/metabolismo , Biogénesis de Organelos , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , ARN Ribosómico/biosíntesis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Técnicas del Sistema de Dos Híbridos
14.
J Biomed Sci ; 23(1): 72, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27769241

RESUMEN

BACKGROUND: In the central nervous system regions of the sporadic and familial FTLD and ALS patients, TDP-43 has been identified as the major component of UBIs inclusions which is abnormally hyperphosphorylated, ubiquitinated, and cleaved into C-terminal fragments to form detergent-insoluble aggregates. So far, the effective drugs for FTLD and ALS neurodegenerative diseases are yet to be developed. Autophagy has been demonstrated as the major metabolism route of the pathological TDP-43 inclusions, hence activation of autophagy is a potential therapeutic strategy for TDP-43 pathogenesis in FTLD and ALS. Berberine, a traditional herbal medicine, is an inhibitor of mTOR signal and an activator for autophagy. Berberine has been implicated in several kinds of diseases, including the neuronal-related pathogenesis, such as Parkinson's, Huntington's and Alzheimer's diseases. However, the therapeutic effect of berberine on FTLD or ALS pathology has never been investigated. RESULTS: Here we studied the molecular mechanism of berberine in cell culture model with TDP-43 proteinopathies, and found that berberine is able to reverse the processing of insoluble TDP-43 aggregates formation through deregulation of mTOR/p70S6K signal and activation of autophagic degradation pathway. And inhibition of autophagy by specific autophagosome inhibitor, 3-MA, reverses the effect of berberine on reducing the accumulation of insoluble TDP-43 and aggregates formation. These results gave us the notion that inhibition of autophagy by 3-MA reverses the effect of berberine on TDP-43 pathogenesis, and activation of mTOR-regulated autophagy plays an important role in berberine-mediated therapeutic effect on TDP-43 proteinopathies. CONCLUSION: We supported an important notion that the traditional herb berberine is a potential alternative therapy for TDP-43-related neuropathology. Here we demonstrated that berberine is able to reverse the processing of insoluble TDP-43 aggregates formation through deregulation of mTOR/p70S6K signal and activation of autophagic degradation pathway. mTOR-autophagy signals plays an important role in berberine-mediated autophagic clearance of TDP-43 aggregates. Exploring the detailed mechanism of berberine on TDP-43 proteinopathy provides a better understanding for the therapeutic development in FTLD and ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/terapia , Berberina/uso terapéutico , Degeneración Lobar Frontotemporal/terapia , Proteinopatías TDP-43/terapia , Esclerosis Amiotrófica Lateral/genética , Animales , Línea Celular Tumoral , Degeneración Lobar Frontotemporal/genética , Ratones , Proteinopatías TDP-43/genética
15.
Biochim Biophys Acta ; 1843(9): 2055-66, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24915000

RESUMEN

Upregulation of Pin1 was shown to advance the functioning of several oncogenic pathways. It was recently shown that Pin1 is potentially an excellent prognostic marker and can also serve as a novel therapeutic target for prostate cancer. However, the molecular mechanism of Pin1 overexpression in prostate cancer is still unclear. In the present study, we showed that the mRNA expression levels of Pin1 were not correlated with Pin1 protein levels in prostate cell lines which indicated that Pin1 may be regulated at the post-transcriptional level. A key player in post-transcriptional regulation is represented by microRNAs (miRNAs) that negatively regulate expressions of protein-coding genes at the post-transcriptional level. A bioinformatics analysis revealed that miR-296-5p has a conserved binding site in the Pin1 3'-untranslated region (UTR). A luciferase reporter assay demonstrated that the seed region of miR-296-5p directly interacts with the 3'-UTR of Pin1 mRNA. Moreover, miR-296-5p expression was found to be inversely correlated with Pin1 expression in prostate cancer cell lines and prostate cancer tissues. Furthermore, restoration of miR-296-5p or the knockdown of Pin1 had the same effect on the inhibition of the ability of cell proliferation and anchorage-independent growth of prostate cancer cell lines. Our results support miR-296-5p playing a tumor-suppressive role by targeting Pin1 and implicate potential effects of miR-296-5p on the prognosis and clinical application to prostate cancer therapy.


Asunto(s)
MicroARNs/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/genética , Regiones no Traducidas 3'/genética , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Masculino , MicroARNs/genética , Datos de Secuencia Molecular , Peptidilprolil Isomerasa de Interacción con NIMA , Isomerasa de Peptidilprolil/antagonistas & inhibidores , Isomerasa de Peptidilprolil/genética , Neoplasias de la Próstata/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba/genética
16.
J Cell Sci ; 126(Pt 21): 4862-72, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23970419

RESUMEN

Pin1 was the first prolyl isomerase identified that is involved in cell division. The mechanism by which Pin1 acts as a negative regulator of mitotic activity in G2 phase remains unclear. Here, we found that Aurora A can interact with and phosphorylate Pin1 at Ser16, which suppresses the G2/M function of Pin1 by disrupting its binding ability and mitotic entry. Our results also show that phosphorylation of Bora at Ser274 and Ser278 is crucial for binding of Pin1. Through the interaction, Pin1 can alter the cytoplasmic translocation of Bora and promote premature degradation by ß-TrCP, which results in a delay in mitotic entry. Together with the results that Pin1 protein levels do not significantly fluctuate during cell-cycle progression and Aurora A suppresses Pin1 G2/M function, our data demonstrate that a gain of Pin1 function can override the Aurora-A-mediated functional suppression of Pin1. Collectively, these results highlight the physiological significance of Aurora-A-mediated Pin1 Ser16 phosphorylation for mitotic entry and the suppression of Pin1 is functionally linked to the regulation of mitotic entry through the Aurora-A-Bora complex.


Asunto(s)
Aurora Quinasa A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células/citología , Fase G2 , Mitosis , Isomerasa de Peptidilprolil/metabolismo , Secuencias de Aminoácidos , Animales , Aurora Quinasa A/genética , Proteínas de Ciclo Celular/genética , Células/enzimología , Células/metabolismo , Regulación hacia Abajo , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Peptidilprolil Isomerasa de Interacción con NIMA , Isomerasa de Peptidilprolil/genética , Fosforilación , Unión Proteica
17.
Int J Med Sci ; 12(1): 63-71, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25552920

RESUMEN

BACKGROUND: Over 70% of cancer metastasis from prostate cancer develops bone metastases that are not sensitive to hormonal therapy, radiation therapy, or chemotherapy. The epithelial-to-mesenchymal transition (EMT) genetic program is implicated as a significant contributor to prostate cancer progression. As such, targeting the EMT represents an important therapeutic strategy for preventing or treating prostate cancer metastasis. Berberine is a natural alkaloid with significant antitumor activities against many types of cancer cells. In this study, we investigated the molecular mechanism by which berberine represses the metastatic potential of prostate cancer. METHODS: The effects of berberine on cell migration and invasion were determined by transwell migration assay and Matrigel invasion assay. Expressions of EMT-related genes were determined by an EMT PCR Array and a quantitative RT-PCR. The prognostic relevance of berberine's modulation of EMT-related genes in prostate cancer was evaluated using Kaplan-Meier survival analysis. RESULTS: Berberine exerted inhibitory effects on the migratory and invasive abilities of highly metastatic prostate cancer cells. These inhibitory effects of berberine resulted in significant repression of a panel of mesenchymal genes that regulate the developmental EMT. Among EMT-related genes downregulated by berberine, high BMP7, NODAL and Snail gene expressions of metastatic prostate cancer tissues were associated with shorter survival of prostate cancer patients and provide potential therapeutic interventions. CONCLUSIONS: We concluded that berberine should be developed as a pharmacological agent for use in combination with other anticancer drug for treating metastatic prostate cancer.


Asunto(s)
Berberina/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/farmacología , Berberina/administración & dosificación , Biomarcadores de Tumor/genética , Proteína Morfogenética Ósea 7/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Estimación de Kaplan-Meier , Masculino , Proteína Nodal/genética , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/mortalidad , Proteínas Wnt/genética
18.
BMC Mol Cell Biol ; 25(1): 2, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38172660

RESUMEN

BACKGROUND: Fas-associated factor 1 (FAF1) is a multidomain protein that interacts with diverse partners to affect numerous cellular processes. Previously, we discovered two Small Ubiquitin-like Modifier (SUMO)-interacting motifs (SIMs) within FAF1 that are crucial for transcriptional modulation of mineralocorticoid receptor. Recently, we identified Sin3A-associated protein 130 (SAP130), a putative sumoylated protein, as a candidate FAF1 interaction partner by yeast two-hybrid screening. However, it remained unclear whether SAP130 sumoylation might occur and functionally interact with FAF1. RESULTS: In this study, we first show that SAP130 can be modified by SUMO1 at Lys residues 794, 878 and 932 both in vitro and in vivo. Mutation of these three SUMO-accepting Lys residues to Ala had no impact on SAP130 association with Sin3A or its nuclear localization, but the mutations abrogated the association of SAP130 with the FAF1. The mutations also potentiated SAP130 trans-repression activity and attenuated SAP130-mediated promotion of cell growth. Additionally, SUMO1-modified SAP130 was less stable than unmodified SAP130. Transient transfection experiments further revealed that FAF1 mitigated the trans-repression and cell proliferation-promoting functions of SAP130, and promoted SAP130 degradation by enhancing its polyubiquitination in a sumoylation-dependent manner. CONCLUSIONS: Together, these results demonstrate that sumoylation of SAP130 regulates its biological functions and that FAF1 plays a crucial role in controlling the SUMO-dependent regulation of transcriptional activity and protein stability of SAP130.


Asunto(s)
Sumoilación , Factores de Transcripción , Factores de Transcripción/metabolismo , Ubiquitinación , Estabilidad Proteica
19.
Carcinogenesis ; 34(3): 530-8, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23188675

RESUMEN

Prostate cancer (PCa) is a leading cause of mortality and morbidity in men worldwide, and emerging evidence suggests that the CD44(high) prostate tumor-initiating cells (TICs) are associated with its poor prognosis. Although microRNAs are frequently dysregulated in human cancers, the influence of microRNAs on PCa malignancy and whether targeting TIC-associated microRNAs inhibit PCa progression remain unclear. In this study, we found that miR-320 is significantly downregulated in PCa. Overexpression of miR-320 in PCa cells decreases PCa tumorigenesis in vitro and in vivo. Global gene expression profiling of miR-320-overexpressing PCa cells reveals that downstream target genes of Wnt/ß-catenin pathway and cancer stem cell markers are significantly decreased. MicroRNA-320 inhibits ß-catenin expression by targeting the 3'-untranslated region of ß-catenin mRNA. The reduction of miR-320 associated with increased ß-catenin was also found in CD44(high) subpopulation of prostate cancer cells and clinical PCa specimens. Interestingly, knockdown of miR-320 significantly increases the cancer stem-like properties, such as tumorsphere formation, chemoresistance and tumorigenic abilities, although enriching the population of stem-like TICs among PCa cells. Furthermore, increased miR-320 expression in prostate stem-like TICs significantly suppresses stem cell-like properties of PCa cells. These results support that miR-320 is a key negative regulator in prostate TICs, and suggest developing miR-320 as a novel therapeutic agent may offer benefits for PCa treatment.


Asunto(s)
Regulación hacia Abajo , MicroARNs/fisiología , Células Madre Neoplásicas/metabolismo , Neoplasias de la Próstata/patología , Vía de Señalización Wnt , Regiones no Traducidas 3' , Animales , Línea Celular Tumoral , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genes Reporteros , Humanos , Luciferasas de Luciérnaga/biosíntesis , Luciferasas de Luciérnaga/genética , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , MicroARNs/genética , MicroARNs/metabolismo , Trasplante de Neoplasias , Análisis de Secuencia por Matrices de Oligonucleótidos , Neoplasias de la Próstata/metabolismo , Esferoides Celulares/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
20.
Cancers (Basel) ; 15(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37568715

RESUMEN

Glioblastoma (GBM) is one of the most progressive and prevalent cancers of the central nervous system. Identifying genetic markers is therefore crucial to predict prognosis and enhance treatment effectiveness in GBM. To this end, we obtained gene expression data of GBM from TCGA and GEO datasets and identified differentially expressed genes (DEGs), which were overlapped and used for survival analysis with univariate Cox regression. Next, the genes' biological significance and potential as immunotherapy candidates were examined using functional enrichment and immune infiltration analysis. Eight prognostic-related DEGs in GBM were identified, namely CRNDE, NRXN3, POPDC3, PTPRN, PTPRN2, SLC46A2, TIMP1, and TNFSF9. The derived risk model showed robustness in identifying patient subgroups with significantly poorer overall survival, as well as those with distinct GBM molecular subtypes and MGMT status. Furthermore, several correlations between the expression of the prognostic genes and immune infiltration cells were discovered. Overall, we propose a survival-derived risk score that can provide prognostic significance and guide therapeutic strategies for patients with GBM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA