Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.543
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 172(1-2): 68-80.e12, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29290469

RESUMEN

Signaling across cellular membranes, the 826 human G protein-coupled receptors (GPCRs) govern a wide range of vital physiological processes, making GPCRs prominent drug targets. X-ray crystallography provided GPCR molecular architectures, which also revealed the need for additional structural dynamics data to support drug development. Here, nuclear magnetic resonance (NMR) spectroscopy with the wild-type-like A2A adenosine receptor (A2AAR) in solution provides a comprehensive characterization of signaling-related structural dynamics. All six tryptophan indole and eight glycine backbone 15N-1H NMR signals in A2AAR were individually assigned. These NMR probes provided insight into the role of Asp522.50 as an allosteric link between the orthosteric drug binding site and the intracellular signaling surface, revealing strong interactions with the toggle switch Trp 2466.48, and delineated the structural response to variable efficacy of bound drugs across A2AAR. The present data support GPCR signaling based on dynamic interactions between two semi-independent subdomains connected by an allosteric switch at Asp522.50.


Asunto(s)
Regulación Alostérica , Receptor de Adenosina A2A/química , Transducción de Señal , Agonistas del Receptor de Adenosina A2/química , Agonistas del Receptor de Adenosina A2/farmacología , Sitio Alostérico , Animales , Simulación del Acoplamiento Molecular , Pichia , Unión Proteica , Receptor de Adenosina A2A/metabolismo , Células Sf9 , Spodoptera
2.
Cell ; 172(1-2): 55-67.e15, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29307491

RESUMEN

The κ-opioid receptor (KOP) mediates the actions of opioids with hallucinogenic, dysphoric, and analgesic activities. The design of KOP analgesics devoid of hallucinatory and dysphoric effects has been hindered by an incomplete structural and mechanistic understanding of KOP agonist actions. Here, we provide a crystal structure of human KOP in complex with the potent epoxymorphinan opioid agonist MP1104 and an active-state-stabilizing nanobody. Comparisons between inactive- and active-state opioid receptor structures reveal substantial conformational changes in the binding pocket and intracellular and extracellular regions. Extensive structural analysis and experimental validation illuminate key residues that propagate larger-scale structural rearrangements and transducer binding that, collectively, elucidate the structural determinants of KOP pharmacology, function, and biased signaling. These molecular insights promise to accelerate the structure-guided design of safer and more effective κ-opioid receptor therapeutics.


Asunto(s)
Simulación del Acoplamiento Molecular , Receptores Opioides kappa/química , Analgésicos/química , Analgésicos/farmacología , Animales , Sitios de Unión , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Morfinanos/química , Morfinanos/farmacología , Unión Proteica , Estabilidad Proteica , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/metabolismo , Células Sf9 , Spodoptera
3.
Cell ; 165(4): 867-81, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27133164

RESUMEN

Fanconi anemia (FA) pathway genes are important tumor suppressors whose best-characterized function is repair of damaged nuclear DNA. Here, we describe an essential role for FA genes in two forms of selective autophagy. Genetic deletion of Fancc blocks the autophagic clearance of viruses (virophagy) and increases susceptibility to lethal viral encephalitis. Fanconi anemia complementation group C (FANCC) protein interacts with Parkin, is required in vitro and in vivo for clearance of damaged mitochondria, and decreases mitochondrial reactive oxygen species (ROS) production and inflammasome activation. The mitophagy function of FANCC is genetically distinct from its role in genomic DNA damage repair. Moreover, additional genes in the FA pathway, including FANCA, FANCF, FANCL, FANCD2, BRCA1, and BRCA2, are required for mitophagy. Thus, members of the FA pathway represent a previously undescribed class of selective autophagy genes that function in immunity and organellar homeostasis. These findings have implications for understanding the pathogenesis of FA and cancers associated with mutations in FA genes.


Asunto(s)
Proteína del Grupo de Complementación C de la Anemia de Fanconi/metabolismo , Animales , Autofagia , Embrión de Mamíferos/citología , Proteína del Grupo de Complementación C de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Fibroblastos/metabolismo , Células HeLa , Herpesvirus Humano 1/metabolismo , Humanos , Inflamasomas/metabolismo , Ratones , Mitofagia , Especies Reactivas de Oxígeno/metabolismo , Virus Sindbis/metabolismo
4.
Cell ; 154(3): 518-29, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23911319

RESUMEN

Genes disrupted in schizophrenia may be revealed by de novo mutations in affected persons from otherwise healthy families. Furthermore, during normal brain development, genes are expressed in patterns specific to developmental stage and neuroanatomical structure. We identified de novo mutations in persons with schizophrenia and then mapped the responsible genes onto transcriptome profiles of normal human brain tissues from age 13 weeks gestation to adulthood. In the dorsolateral and ventrolateral prefrontal cortex during fetal development, genes harboring damaging de novo mutations in schizophrenia formed a network significantly enriched for transcriptional coexpression and protein interaction. The 50 genes in the network function in neuronal migration, synaptic transmission, signaling, transcriptional regulation, and transport. These results suggest that disruptions of fetal prefrontal cortical neurogenesis are critical to the pathophysiology of schizophrenia. These results also support the feasibility of integrating genomic and transcriptome analyses to map critical neurodevelopmental processes in time and space in the brain.


Asunto(s)
Redes Reguladoras de Genes , Mutación , Corteza Prefrontal/embriología , Mapas de Interacción de Proteínas , Esquizofrenia/genética , Esquizofrenia/metabolismo , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Análisis Mutacional de ADN , Bases de Datos Genéticas , Femenino , Humanos , Masculino , Neurogénesis , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/metabolismo , Esquizofrenia/fisiopatología , Transcripción Genética , Transcriptoma
5.
Mol Cell ; 80(1): 59-71.e4, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32818430

RESUMEN

Cardiac disease remains the leading cause of morbidity and mortality worldwide. The ß1-adrenergic receptor (ß1-AR) is a major regulator of cardiac functions and is downregulated in the majority of heart failure cases. A key physiological process is the activation of heterotrimeric G-protein Gs by ß1-ARs, leading to increased heart rate and contractility. Here, we use cryo-electron microscopy and functional studies to investigate the molecular mechanism by which ß1-AR activates Gs. We find that the tilting of α5-helix breaks a hydrogen bond between the sidechain of His373 in the C-terminal α5-helix and the backbone carbonyl of Arg38 in the N-terminal αN-helix of Gαs. Together with the disruption of another interacting network involving Gln59 in the α1-helix, Ala352 in the ß6-α5 loop, and Thr355 in the α5-helix, these conformational changes might lead to the deformation of the GDP-binding pocket. Our data provide molecular insights into the activation of G-proteins by G-protein-coupled receptors.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Isoproterenol/metabolismo , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/metabolismo , Animales , Sitios de Unión , Bovinos , Línea Celular , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína
6.
Mol Cell ; 76(3): 500-515.e8, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31422874

RESUMEN

Diet-induced obesity can be caused by impaired thermogenesis of beige adipocytes, the brown-like adipocytes in white adipose tissue (WAT). Promoting brown-like features in WAT has been an attractive therapeutic approach for obesity. However, the mechanism underlying beige adipocyte formation is largely unknown. N-α-acetyltransferase 10 protein (Naa10p) catalyzes N-α-acetylation of nascent proteins, and overexpression of human Naa10p is linked to cancer development. Here, we report that both conventional and adipose-specific Naa10p deletions in mice result in increased energy expenditure, thermogenesis, and beige adipocyte differentiation. Mechanistically, Naa10p acetylates the N terminus of Pgc1α, which prevents Pgc1α from interacting with Pparγ to activate key genes, such as Ucp1, involved in beige adipocyte function. Consistently, fat tissues of obese human individuals show higher NAA10 expression. Thus, Naa10p-mediated N-terminal acetylation of Pgc1α downregulates thermogenic gene expression, making inhibition of Naa10p enzymatic activity a potential strategy for treating obesity.


Asunto(s)
Adipocitos Beige/enzimología , Tejido Adiposo Beige/enzimología , Acetiltransferasa A N-Terminal/metabolismo , Acetiltransferasa E N-Terminal/metabolismo , Obesidad/enzimología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Procesamiento Proteico-Postraduccional , Termogénesis , Acetilación , Tejido Adiposo Beige/fisiopatología , Adiposidad , Adolescente , Adulto , Anciano , Animales , Estudios de Casos y Controles , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Metabolismo Energético , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Acetiltransferasa A N-Terminal/deficiencia , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa E N-Terminal/deficiencia , Acetiltransferasa E N-Terminal/genética , Células 3T3 NIH , Obesidad/genética , Obesidad/fisiopatología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Fenotipo , Transducción de Señal , Adulto Joven
7.
Cell ; 146(6): 969-79, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21906795

RESUMEN

Acetylation of histone and nonhistone proteins is an important posttranslational modification affecting many cellular processes. Here, we report that NuA4 acetylation of Sip2, a regulatory ß subunit of the Snf1 complex (yeast AMP-activated protein kinase), decreases as cells age. Sip2 acetylation, controlled by antagonizing NuA4 acetyltransferase and Rpd3 deacetylase, enhances interaction with Snf1, the catalytic subunit of Snf1 complex. Sip2-Snf1 interaction inhibits Snf1 activity, thus decreasing phosphorylation of a downstream target, Sch9 (homolog of Akt/S6K), and ultimately leading to slower growth but extended replicative life span. Sip2 acetylation mimetics are more resistant to oxidative stress. We further demonstrate that the anti-aging effect of Sip2 acetylation is independent of extrinsic nutrient availability and TORC1 activity. We propose a protein acetylation-phosphorylation cascade that regulates Sch9 activity, controls intrinsic aging, and extends replicative life span in yeast.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Transactivadores/metabolismo , Acetilación , Restricción Calórica , División Celular , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/metabolismo , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/enzimología , Factores de Transcripción/metabolismo
8.
Nature ; 582(7811): 240-245, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32499647

RESUMEN

Meta-analyses of genome-wide association studies (GWAS) have identified more than 240 loci that are associated with type 2 diabetes (T2D)1,2; however, most of these loci have been identified in analyses of individuals with European ancestry. Here, to examine T2D risk in East Asian individuals, we carried out a meta-analysis of GWAS data from 77,418 individuals with T2D and 356,122 healthy control individuals. In the main analysis, we identified 301 distinct association signals at 183 loci, and across T2D association models with and without consideration of body mass index and sex, we identified 61 loci that are newly implicated in predisposition to T2D. Common variants associated with T2D in both East Asian and European populations exhibited strongly correlated effect sizes. Previously undescribed associations include signals in or near GDAP1, PTF1A, SIX3, ALDH2, a microRNA cluster, and genes that affect the differentiation of muscle and adipose cells3. At another locus, expression quantitative trait loci at two overlapping T2D signals affect two genes-NKX6-3 and ANK1-in different tissues4-6. Association studies in diverse populations identify additional loci and elucidate disease-associated genes, biology, and pathways.


Asunto(s)
Pueblo Asiatico/genética , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Aldehído Deshidrogenasa Mitocondrial/genética , Alelos , Ancirinas/genética , Índice de Masa Corporal , Estudios de Casos y Controles , Europa (Continente)/etnología , Proteínas del Ojo/genética , Asia Oriental/etnología , Femenino , Estudio de Asociación del Genoma Completo , Proteínas de Homeodominio/genética , Humanos , Masculino , Proteínas del Tejido Nervioso/genética , ARN Mensajero/análisis , Factores de Transcripción/genética , Transcripción Genética , Proteína Homeobox SIX3
9.
Am J Hum Genet ; 109(2): 361-372, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35051358

RESUMEN

Nuclear deubiquitinase BAP1 (BRCA1-associated protein 1) is a core component of multiprotein complexes that promote transcription by reversing the ubiquitination of histone 2A (H2A). BAP1 is a tumor suppressor whose germline loss-of-function variants predispose to cancer. To our knowledge, there are very rare examples of different germline variants in the same gene causing either a neurodevelopmental disorder (NDD) or a tumor predisposition syndrome. Here, we report a series of 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic NDD. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. In T cells isolated from two affected children, H2A deubiquitination was impaired. In matching peripheral blood mononuclear cells, histone H3 K27 acetylation ChIP-seq indicated that these BAP1 variants induced genome-wide chromatin state alterations, with enrichment for regulatory regions surrounding genes of the ubiquitin-proteasome system (UPS). Altogether, these results define a clinical syndrome caused by rare germline missense BAP1 variants that alter chromatin remodeling through abnormal histone ubiquitination and lead to transcriptional dysregulation of developmental genes.


Asunto(s)
Proteína BRCA1/genética , Mutación de Línea Germinal , Mutación con Pérdida de Función , Mutación Missense , Trastornos del Neurodesarrollo/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética , Adolescente , Proteína BRCA1/inmunología , Niño , Preescolar , Cromatina/química , Cromatina/inmunología , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/inmunología , Familia , Femenino , Regulación de la Expresión Génica , Heterocigoto , Histonas/genética , Histonas/inmunología , Factor C1 de la Célula Huésped/genética , Factor C1 de la Célula Huésped/inmunología , Humanos , Lactante , Masculino , Trastornos del Neurodesarrollo/inmunología , Trastornos del Neurodesarrollo/patología , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/inmunología , Linfocitos T/inmunología , Linfocitos T/patología , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/inmunología , Ubiquitina/genética , Ubiquitina/inmunología , Ubiquitina Tiolesterasa/deficiencia , Ubiquitina Tiolesterasa/inmunología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/inmunología , Ubiquitinación
10.
Nature ; 566(7743): E6, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30670873

RESUMEN

In this Article, the top label in Fig. 5d should read 'DISH 3/16' instead of 'DISH 3/17'. This error has been corrected online.

11.
Pharmacol Rev ; 74(1): 238-270, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35017178

RESUMEN

GABAA receptors containing the α6 subunit are highly expressed in cerebellar granule cells and less abundantly in many other neuronal and peripheral tissues. Here, we for the first time summarize their importance for the functions of the cerebellum and the nervous system. The cerebellum is not only involved in motor control but also in cognitive, emotional, and social behaviors. α6ßγ2 GABAA receptors located at cerebellar Golgi cell/granule cell synapses enhance the precision of inputs required for cerebellar timing of motor activity and are thus involved in cognitive processing and adequate responses to our environment. Extrasynaptic α6ßδ GABAA receptors regulate the amount of information entering the cerebellum by their tonic inhibition of granule cells, and their optimal functioning enhances input filtering or contrast. The complex roles of the cerebellum in multiple brain functions can be compromised by genetic or neurodevelopmental causes that lead to a hypofunction of cerebellar α6-containing GABAA receptors. Animal models mimicking neuropsychiatric phenotypes suggest that compounds selectively activating or positively modulating cerebellar α6-containing GABAA receptors can alleviate essential tremor and motor disturbances in Angelman and Down syndrome as well as impaired prepulse inhibition in neuropsychiatric disorders and reduce migraine and trigeminal-related pain via α6-containing GABAA receptors in trigeminal ganglia. Genetic studies in humans suggest an association of the human GABAA receptor α6 subunit gene with stress-associated disorders. Animal studies support this conclusion. Neuroimaging and post-mortem studies in humans further support an involvement of α6-containing GABAA receptors in various neuropsychiatric disorders, pointing to a broad therapeutic potential of drugs modulating α6-containing GABAA receptors. SIGNIFICANCE STATEMENT: α6-Containing GABAA receptors are abundantly expressed in cerebellar granule cells, but their pathophysiological roles are widely unknown, and they are thus out of the mainstream of GABAA receptor research. Anatomical and electrophysiological evidence indicates that these receptors have a crucial function in neuronal circuits of the cerebellum and the nervous system, and experimental, genetic, post-mortem, and pharmacological studies indicate that selective modulation of these receptors offers therapeutic prospects for a variety of neuropsychiatric disorders and for stress and its consequences.


Asunto(s)
Cerebelo , Receptores de GABA-A , Animales , Cerebelo/metabolismo , Humanos , Neuronas/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico
12.
Int J Cancer ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924042

RESUMEN

Several life-prolonging therapies for metastatic castration-resistant prostate cancer (mCRPC) are available, including radium-223 dichloride (223Ra), which was approved based on phase 3 data demonstrating improved overall survival (OS) and a favorable safety profile. To date, real-world evidence for 223Ra use in Taiwan is from three studies of <50 patients. This observational study (NCT04232761) enrolled male patients with histologically/cytologically confirmed mCRPC with bone metastases from centers across Taiwan. 223Ra was prescribed as part of routine practice by investigators. Patients with prior 223Ra treatment were excluded. The primary objective was to assess 223Ra safety; secondary objectives evaluated efficacy parameters, including OS. Overall, 224 patients were enrolled. Most patients had an Eastern Cooperative Oncology Group performance status of 0/1 (79.0%) and ≤20 bone metastases (69.2%); no patients had visceral metastases. 223Ra was first- or second-line therapy in 23.2% and 47.7% of patients, respectively. The total proportion of patients who received 5-6 223Ra cycles was 68.8%; this proportion was greater with first-line use (84.3%) than second- (65.7%) or third-/fourth-line use (64.1%). More chemotherapy-naïve patients (61.9%) completed the 6-cycle 223Ra treatment than chemotherapy-exposed patients (56.7%). Any-grade treatment-emergent adverse events (TEAEs) and serious TEAEs occurred in 54.0% and 28.6% of patients, respectively, while 12% experienced 223Ra-related adverse events. Median OS was 15.7 months (95% confidence interval 12.13-19.51); patients receiving 5-6 223Ra injections and earlier 223Ra use had longer OS than those receiving fewer injections and later 223Ra use. 223Ra provides a well-tolerated and effective treatment for Taiwanese patients with mCRPC and bone metastases.

13.
Curr Issues Mol Biol ; 46(3): 2155-2165, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38534755

RESUMEN

An increased neutrophil-to-lymphocyte ratio (NLR) is a poor prognostic biomarker in various types of cancer, because it reflects the inhibition of lymphocytes in the circulation and tumors. In urologic cancers, upper tract urothelial carcinoma (UTUC) is known for its aggressive features and lack of T cell infiltration; however, the association between neutrophils and suppressed T lymphocytes in UTUC is largely unknown. In this study, we examined the relationship between UTUC-derived factors and tumor-associated neutrophils or T lymphocytes. The culture supernatant from UTUC tumor tissue modulated neutrophils to inhibit T cell proliferation. Among the dominant factors secreted by UTUC tumor tissue, apolipoprotein A1 (Apo-A1) exhibited a positive correlation with NLR. Moreover, tumor-infiltrating neutrophils were inversely correlated with tumor-infiltrating T cells. Elevated Apo-A1 levels in UTUC were also inversely associated with the population of tumor-infiltrating T cells. Our findings indicate that elevated Apo-A1 expression in UTUC correlates with tumor-associated neutrophils and T cells. This suggests a potential immunomodulatory effect on neutrophils and T cells within the tumor microenvironment, which may represent therapeutic targets for UTUC treatment.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38953837

RESUMEN

Metabolic reprogramming is recognized as a hallmark of cancer, enabling cancer cells to acquire essential biomolecules for cell growth, often characterized by upregulated glycolysis and/or fatty acid synthesis-related genes. The transcription factor forkhead box M1 (FOXM1) has been implicated in various cancers, contributing significantly to their development, including colorectal cancer (CRC), a major global health concern. Despite FOXM1's established role in cancer, its specific involvement in the Warburg effect and fatty acid biosynthesis in CRC remains unclear. We analyzed The Cancer Genome Atlas (TCGA) Colonic Adenocarcinoma and Rectal Adenocarcinoma (COADREAD) datasets to to derive the correlation of the expression levels between FOXM1 and multiple genes and the survival prognosis based on FOXM1 expression. Using two human CRC cell lines, HT29 and HCT116, we conducted RNAi or plasmid transfection procedures, followed by a series of assays, including RNA extraction, quantitative real-time polymerase chain reaction, Western blot analysis, cell metabolic assays, and immunofluorescence analysis. Higher expression levels of FOXM1 correlated with a poorer survival prognosis, and the expression of FOXM1 was positively correlated with glycolysis-related genes SLC2A1 and LDHA, de novo lipogenesis-related genes ACACA and FASN, and MYC. FOXM1 appeared to modulate AKT/mTOR signaling, the expression of c-Myc, proteins related to glycolysis and fatty acid biosynthesis, as well as extracellular acidification rate in HT29 and HCT116 cells. In summary, FOXM1 plays a regulatory role in glycolysis, fatty acid biosynthesis, and cellular energy consumption, thereby influencing CRC cell growth and patient prognosis.

15.
Curr Opin Oncol ; 36(4): 276-281, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38726812

RESUMEN

PURPOSE OF REVIEW: There are numerous sarcoma subtypes and vary widely in terms of epidemiology, clinical characteristics, genetic profiles, and pathophysiology. They also differ widely between ethnic groups. This review focuses on the different incidence rates of sarcomas in different regions and the potential explanations for these disparities. RECENT FINDINGS: In an intercontinental study using national cancer registry databases from France and Taiwan, the French population had a higher risk of liposarcomas, leiomyosarcomas, and synovial sarcomas, whereas the Taiwanese population had a higher incidence of angiosarcomas and malignant peripheral nerve sheath tumors. The anatomical distribution of these sarcomas also varied between these two regions. In France, most angiosarcoma cases occurred in the extremities and trunk, whereas in Taiwan, angiosarcoma cases in the abdomen and pelvis were more common. Another international study showed that in addition to the common known TP53 and NF1 germline mutations, genes involved in centromere and telomere maintenance were also involved in sarcomagenesis. We reviewed factors related to genetics, environmental effects, chemical exposure, and radiation exposure that could explain the differences in sarcoma incidence among different geographical or ethnic regions. SUMMARY: Our understanding of the potential cause of sarcomas with different subtypes is limited. Establishing a comprehensive global database for patients with sarcomas from all ethnic groups is essential to deepen our understanding of the potential risk factors and the pathophysiology of all sarcoma subtypes.


Asunto(s)
Sarcoma , Humanos , Salud Global , Incidencia , Sarcoma/epidemiología , Sarcoma/genética , Sarcoma/patología , Taiwán/epidemiología , Francia/epidemiología
16.
Small ; 20(11): e2305905, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37926774

RESUMEN

To overcome the low efficiency of overall water splitting, highly effective and stable catalysts are in urgent need, especially for the anode oxygen evolution reaction (OER). In this case, nickel selenides appear as good candidates to catalyze OER and other substitutable anodic reactions due to their high electronic conductivity and easily tunable electronic structure to meet the optimized adsorption ability. Herein, an interesting phase transition from the hexagonal phase of NiSe (H-NiSe) to the rhombohedral phase of NiSe (R-NiSe) induced by the doping of cobalt atoms is reported. The five-coordinated R-NiSe is found to grow adjacent to the six-coordinated H-NiSe, resulting in the formation of the H-NiSe/R-NiSe heterostructure. Further characterizations and calculations prove the reduced splitting energy for R-NiSe and thus the less occupancy in the t2g orbits, which can facilitate the electron transfer process. As a result, the Co2 -NiSe/NF shows a satisfying catalytic performance toward OER, hydrogen evolution reaction, and (hybrid) overall water splitting. This work proves that trace amounts of Co doping can induce the phase transition from H-NiSe to R-NiSe. The formation of less-coordinated species can reduce the t2g occupancy and thus enhance the catalytic performance, which might guide rational material design.

17.
Ann Neurol ; 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37776102

RESUMEN

OBJECTIVE: The SLIT and NTRK-like 1 (SLITRK1) gene mutation and striatal cholinergic interneurons (ChIs) loss are associated with Tourette syndrome (TS). ChIs comprise only 1 to 2% of striatal neurons but project widely throughout the stratum to impact various striatal neurotransmission, including TS-related dopaminergic transmission. Here, we link striatal Slitrk1, ChI function, and dopaminergic transmission and their associations with TS-like tic behaviors. METHODS: Slitrk1-KD mice were induced by bilaterally injecting Slitrk1 siRNA into their dorsal striatum. Control mice received scrambled siRNA injection. Their TS-like tic behaviors, prepulse inhibition, sensory-motor function and dopamine-related behaviors were compared. We also compared dopamine and ACh levels in microdialysates, Slitrk protein and dopamine transporter levels, and numbers of Slitrk-positive ChIs and activated ChIs in the striatum between two mouse groups, and electrophysiological properties between Slitrk-positive and Slitrk-negative striatal ChIs. RESULTS: Slitrk1-KD mice exhibit TS-like haloperidol-sensitive stereotypic tic behaviors, impaired prepulse inhibition, and delayed sensorimotor response compared with the control group. These TS-like characteristics correlate with lower striatal Slitrk1 protein levels, fewer Slitrk1-containing ChIs, and fewer activated ChIs in Slitrk1-KD mice. Based on their electrophysiological properties, Slitrk1-negative ChIs are less excitable than Slitrk1-positive ChIs. Slitrk1-KD mice have lower evoked acetylcholine and dopamine levels, higher tonic dopamine levels, and downregulated dopamine transporters in the striatum, increased apomorphine-induced climbing behaviors, and impaired methamphetamine-induced hyperlocomotion compared with controls. INTERPRETATION: Slitrk1 is pivotal in maintaining striatal ChIs activity and subsequent dopaminergic transmission for normal motor functioning. Furthermore, conditional striatal Slitrk1-KD mice may serve as a translational modality with aspects of TS phenomenology. ANN NEUROL 2023.

18.
J Gen Intern Med ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886321

RESUMEN

BACKGROUND: Palpitations represent a common clinic complaint. OBJECTIVE: To explore gender and age differences in the evaluation and outcomes of patients with palpitations in outpatient settings. DESIGN/PARTICIPANTS: This is a retrospective observational study of 58,543 patients with no known structural cardiac disease or arrythmias presenting to primary care and cardiology clinics in an integrated health system in California with palpitations between January 2017 and December 2021. The primary and secondary endpoints were hospitalization for arrhythmia and all-cause mortality at 1 year. Multivariable logistic regression models evaluated the association between gender, age, and outcomes. RESULTS: Men and women were equally as likely to be started on beta-blockers (adjusted OR 0.96, 95% CI 0.90-1.02) and evaluated with electrocardiograms (adjusted OR 0.95, 95% CI 0.90-1.01) and cardiac monitors (adjusted OR 1.04, 95% CI 0.99-1.08). Patients who completed Holter or event monitors had a lower rate of hospitalization for cardiovascular disease at 1 year than those without (2.3% vs. 2.7%, p = 0.001). At 1 year, women had a lower risk of all-cause mortality (adjusted OR 0.47, 95% CI 0.35-0.64) and hospitalization for atrial fibrillation (adjusted OR 0.47, 95% CI 0.30-0.72) and arrhythmias (adjusted OR 0.73, 95% CI 0.58-0.91) compared to men. Among older women and men (≥ 80 years), there was no significant difference in 1-year all-cause mortality (adjusted OR 0.57, 95% CI 0.29-1.12), hospitalization for atrial fibrillation (adjusted OR 0.58, 95% CI 0.17-1.97), or arrhythmias (adjusted OR 1.15, 95% CI 0.12-11.07). CONCLUSIONS: There were no gender differences in referrals for cardiac monitoring or prescriptions for beta-blockers. Women had a better prognosis with a lower risk of hospitalization for arrhythmias and death at 1 year compared to men. However, 1-year risks for mortality and hospitalization for arrythmias among older women were comparable to those of older men, underscoring the importance of considering age and gender in managing patients with palpitations.

19.
J Gen Intern Med ; 39(5): 747-755, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38236317

RESUMEN

BACKGROUND: In patients with new-onset heart failure (HF), coronary artery disease (CAD) testing remains underutilized. Whether widespread CAD testing in patients with new-onset HF leads to improved outcomes remains to be determined. OBJECTIVE: We sought to examine whether CAD testing, and its timing, among patients hospitalized with new-onset HF with reduced ejection fraction (HFrEF), is associated with improved outcomes. DESIGN: Retrospective cohort study. PARTICIPANTS: Adult (≥ 18 years) non-pregnant patients with new-onset HFrEF hospitalized within one of 15 Kaiser Permanente Southern California medical centers between 2016 and 2021. Key exclusion criteria included history of heart transplant, hospice, and a do-not-resuscitate order. MAIN MEASURES: Primary outcome was a composite of HF readmission or all-cause mortality through end of follow-up on 12/31/2022. KEY RESULTS: Among 2729 patients hospitalized with new-onset HFrEF, 1487 (54.5%) received CAD testing. The median age was 66 (56-76) years old, 1722 (63.1%) were male, and 1074 (39.4%) were White. After a median of 1.8 (0.6-3.4) years, the testing group had a reduced risk of HF readmission or all-cause mortality (aHR [95%CI], 0.71 [0.63-0.79]). These results were consistent across subgroups by history of atrial fibrillation, diabetes, renal disease, myocardial infarction, and elevated troponin during hospitalization. In a secondary analysis where CAD testing was further divided to early (received testing before discharge) and late testing (up to 90 days after discharge), there was no difference in late vs early testing (0.97 [0.81-1.16]). CONCLUSIONS: In a contemporary and diverse cohort of patients hospitalized with new-onset HFrEF, CAD testing within 90 days of hospitalization was associated with a lower risk of HF readmission or all-cause mortality. Testing within 90 days after discharge was not associated with worse outcomes.


Asunto(s)
Enfermedad de la Arteria Coronaria , Insuficiencia Cardíaca , Readmisión del Paciente , Humanos , Insuficiencia Cardíaca/mortalidad , Insuficiencia Cardíaca/diagnóstico , Masculino , Femenino , Readmisión del Paciente/estadística & datos numéricos , Anciano , Persona de Mediana Edad , Estudios Retrospectivos , Enfermedad de la Arteria Coronaria/mortalidad , Enfermedad de la Arteria Coronaria/diagnóstico , California/epidemiología
20.
Am J Nephrol ; 55(2): 225-234, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37931608

RESUMEN

INTRODUCTION: Urinary fetuin-A has been identified as a biomarker for acute kidney injury and is proposed as a biomarker for early detection of kidney function decline. We investigated whether fetuin-A could serve as a marker of graft failure in kidney transplant recipients (KTRs). METHODS: Data of KTR with a functioning graft ≥1 year that were enrolled in the TransplantLines Food and Nutrition Biobank and cohort study were used. Graft failure was defined as the need for re-transplantation or (re-)initiation of dialysis. Urinary fetuin-A was measured using an enzyme-linked immunosorbent assay kit that detected post-translationally modified fetuin-A in the urine (uPTM-FetA). In the main analyses, 24h uPTM-FetA excretion was used. In the sensitivity analyses, we excluded the outliers in 24h uPTM-FetA excretion, and we used uPTM-FetA concentration and uPTM-FetA concentration indexed for creatinine instead of 24h uPTM-FetA excretion. RESULTS: A total of 627 KTRs (age 53 ± 13 years, 42% females) were included at 5.3 (1.9-12.2) years after transplantation. The estimated glomerular filtration rate (eGFR) was 52 ± 20 mL/min/1.73 m2 and uPTM-FetA excretion was 34 (17-74) µg/24 h. During a median follow-up of 5.3 (4.5-6.0) years after baseline measurements, 73 (12%) KTRs developed graft failure. The association of 24h uPTM-FetA excretion with increased risk of graft failure was not constant over time, with increased risk only observed after 3 years from baseline measurements, independent of potential confounders including kidney function and 24 h urinary protein excretion (hazard ratio per doubling of 24h uPTM-FetA excretion = 1.31; 95% confidence interval = 1.06-1.61). This finding was robust in the sensitivity analyses. CONCLUSIONS: Our findings suggest that uPTM-FetA can be used as a marker for early detection of graft failure in KTR. Further studies are needed to confirm our findings.


Asunto(s)
Trasplante de Riñón , Femenino , Humanos , Adulto , Persona de Mediana Edad , Anciano , Masculino , Trasplante de Riñón/efectos adversos , Estudios de Cohortes , alfa-2-Glicoproteína-HS , Biomarcadores/orina , Diálisis Renal , Receptores de Trasplantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA