Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Carcinogenesis ; 42(7): 995-1007, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34089582

RESUMEN

MicroRNAs, as a group of post-transcriptional regulators, regulate multiple pathological processes including metastasis during tumor development. Here, we demonstrated the metastasis-suppressive function of microRNA (miR)-338-5p in esophageal squamous cell carcinoma (ESCC). Overexpression of miR-338-5p had inhibitory effect on invasive ability of ESCC cells and extracellular matrix degradation, whereas silencing miR-338-5p had opposite effects. Mechanistically, miR-338-5p directly targeted the 3' untranslated regions of hepatocellular growth factor receptor cMet (cMET) and epidermal growth factor receptor (EGFR). As a result, miR-338-5p inhibited the downstream signaling cascades of cMET and EGFR and repressed cMET- and EGFR-mediated ESCC cell invasion. Re-expression of cMET or EGFR in miR-338-5p overexpressing ESCC cells was sufficient to derepress ESCC cell invasion both in vitro and in vivo. We further showed that such manipulation downregulated the expression and secretion of matrix metalloproteinases 2 and 9, which resulted in impaired extracellular matrix degradation and cell invasion. Most importantly, systemic delivery of miR-338-5p mimic significantly inhibited metastasis of ESCC cells in nude mice. Taken together, our results uncovered a previously unknown mechanism through which miR-338-5p suppresses ESCC invasion and metastasis by regulating cMET/EGFR-matrix metalloproteinase 2/9 axis and highlighted the potential significance of miR-338-5p-based therapy in treating patients with metastatic ESCC.


Asunto(s)
Neoplasias Esofágicas/prevención & control , Carcinoma de Células Escamosas de Esófago/prevención & control , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/prevención & control , MicroARNs/genética , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Animales , Apoptosis , Proliferación Celular , Receptores ErbB/antagonistas & inhibidores , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Ratones , Ratones Desnudos , MicroARNs/administración & dosificación , Invasividad Neoplásica , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
2.
J Oral Pathol Med ; 49(10): 977-985, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32740951

RESUMEN

BACKGROUND: The natural history of oral squamous cell carcinoma (OSCC) is complicated by progressive disease including loco-regional tumour recurrence and development of distant metastases. Accurate prediction of tumour behaviour is crucial in delivering individualized treatment plans and developing optimal patient follow-up and surveillance strategies. Machine learning algorithms may be employed in oncology research to improve clinical outcome prediction. METHODS: Retrospective review of 467 OSCC patients treated over a 19-year period facilitated construction of a detailed clinicopathological database. 34 prognostic features from the database were used to populate 4 machine learning algorithms, linear regression (LR), decision tree (DT), support vector machine (SVM) and k-nearest neighbours (KNN) models, to attempt progressive disease outcome prediction. Principal component analysis (PCA) and bivariate analysis were used to reduce data dimensionality and highlight correlated variables. Models were validated for accuracy, sensitivity and specificity, with predictive ability assessed by receiver operating characteristic (ROC) and area under the curve (AUC) calculation. RESULTS: Out of 408 fully characterized OSCC patients, 151 (37%) had died and 131 (32%) exhibited progressive disease at the time of data retrieval. The DT model with 34 prognostic features was most successful in identifying "true positive" progressive disease, achieving 70.59% accuracy (AUC 0.67), 41.98% sensitivity and a high specificity of 84.12%. CONCLUSION: Machine learning models assist clinicians in accessing digitized health information and appear promising in predicting progressive disease outcomes. The future will see increasing emphasis on the use of artificial intelligence to enhance understanding of aggressive tumour behaviour, recurrence and disease progression.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Inteligencia Artificial , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/terapia , Humanos , Aprendizaje Automático , Neoplasias de la Boca/diagnóstico , Neoplasias de la Boca/terapia , Recurrencia Local de Neoplasia/diagnóstico , Pronóstico , Curva ROC , Estudios Retrospectivos , Resultado del Tratamiento
3.
Cancer Sci ; 110(12): 3677-3688, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31646712

RESUMEN

5-Fluorouracil (5-FU) is a chemotherapeutic agent commonly used to treat esophageal squamous cell carcinoma (ESCC), but acquisition of chemoresistance frequently occurs and the underlying mechanisms are not fully understood. We found that microRNA (miR)-338-5p was underexpressed in ESCC cells with acquired 5-FU chemoresistance. Forced expression of miR-338-5p in these cells resulted in downregulation of Id-1, and restoration of both in vitro and in vivo sensitivity to 5-FU treatment. The effects were abolished by reexpression of Id-1. In contrast, miR-338-5p knockdown induced 5-FU resistance in chemosensitive esophageal cell lines, and knockdown of both miR-338-5p and Id-1 resensitized the cells to 5-FU. In addition, miR-338-5p had suppressive effects on migration and invasion of ESCC cells. Luciferase reporter assay confirmed a direct interaction between miR-338-5p and the 3'-UTR of Id-1. We also found that miR-338-5p was significantly downregulated in tumor tissue and serum samples of patients with ESCC. Notably, low serum miR-338-5p expression level was associated with poorer survival and poor response to 5-FU/cisplatin-based neoadjuvant chemoradiotherapy. In summary, we found that miR-338-5p can modulate 5-FU chemoresistance and inhibit invasion-related functions in ESCC by negatively regulating Id-1, and that serum miR-338-5p could be a novel noninvasive prognostic and predictive biomarker in ESCC.


Asunto(s)
Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Proteína 1 Inhibidora de la Diferenciación/genética , MicroARNs/fisiología , Adulto , Anciano , Animales , Línea Celular Tumoral , Movimiento Celular , Resistencia a Antineoplásicos , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/mortalidad , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/mortalidad , Carcinoma de Células Escamosas de Esófago/patología , Femenino , Fluorouracilo/farmacología , Humanos , Masculino , Ratones , MicroARNs/sangre , Persona de Mediana Edad , Invasividad Neoplásica
4.
J Biomed Sci ; 25(1): 66, 2018 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-30157855

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is the predominant subtype of esophageal cancer worldwide and highly prevalent in less developed regions. Management of ESCC is challenging and involves multimodal treatments. Patient prognosis is generally poor especially for those diagnosed in advanced disease stage. One factor contributing to this clinical dismal is the incomplete understanding of disease mechanism, for which this situation is further compounded by the presence of other limiting factors for disease diagnosis, patient prognosis and treatments. Tumor xenograft animal models including subcutaneous tumor xenograft model, orthotopic tumor xenograft model and patient-derived tumor xenograft model are vital tools for ESCC research. Establishment of tumor xenograft models involves the implantation of human ESCC cells/xenografts/tissues into immunodeficient animals, in which mice are most commonly used. Different tumor xenograft models have their own advantages and limitations, and these features serve as key factors to determine the use of these models at different stages of research. Apart from their routine use on basic research to understand disease mechanism of ESCC, tumor xenograft models are actively employed for undertaking preclinical drug screening project and biomedical imaging research.


Asunto(s)
Carcinoma de Células Escamosas/cirugía , Modelos Animales de Enfermedad , Neoplasias Esofágicas/cirugía , Xenoinjertos , Trasplante Heterólogo , Animales , Carcinoma de Células Escamosas de Esófago , Xenoinjertos/fisiología , Xenoinjertos/trasplante , Humanos , Ratones , Trasplante Heterólogo/métodos
5.
J Pathol ; 239(3): 309-19, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27063000

RESUMEN

Oesophageal squamous cell carcinoma (ESCC) is the most common histological subtype of oesophageal cancer. The disease is particularly prevalent in southern China. The incidence of the disease is on the rise and its overall survival rate remains dismal. Identification and characterization of better molecular markers for early detection and therapeutic targeting are urgently needed. Here, we report levels of transmembrane and soluble neuropilin-2 (NRP2) to be significantly up-regulated in ESCC, and to correlate positively with advanced tumour stage, lymph node metastasis, less favourable R category and worse overall patient survival. NRP2 up-regulation in ESCC was in part a result of gene amplification at chromosome 2q. NRP2 overexpression promoted clonogenicity, angiogenesis and metastasis in ESCC in vitro, while NRP2 silencing by lentiviral knockdown or neutralizing antibody resulted in a contrary effect. This observation was extended in vivo in animal models of subcutaneous tumourigenicity and tail vein metastasis. Mechanistically, overexpression of NRP2 induced expression of ERK MAP kinase and the transcription factor ETV4, leading to enhanced MMP-2 and MMP-9 activity and, as a consequence, suppression of E-cadherin. In summary, NRP2 promotes tumourigenesis and metastasis in ESCC through deregulation of ERK-MAPK-ETV4-MMP-E-cadherin signalling. NRP2 represents a potential diagnostic or prognostic biomarker and therapeutic target for ESCC. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Proteínas E1A de Adenovirus/metabolismo , Biomarcadores de Tumor/metabolismo , Cadherinas/metabolismo , Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Sistema de Señalización de MAP Quinasas/genética , Neuropilina-2/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas E1A de Adenovirus/genética , Animales , Antígenos CD , Biomarcadores de Tumor/genética , Cadherinas/genética , Carcinogénesis , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Estudios de Cohortes , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis Linfática , Neuropilina-2/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-ets , Transcriptoma , Regulación hacia Arriba
6.
Genome Res ; 23(9): 1422-33, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23788652

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most deadly cancers worldwide and has no effective treatment, yet the molecular basis of hepatocarcinogenesis remains largely unknown. Here we report findings from a whole-genome sequencing (WGS) study of 88 matched HCC tumor/normal pairs, 81 of which are Hepatitis B virus (HBV) positive, seeking to identify genetically altered genes and pathways implicated in HBV-associated HCC. We find beta-catenin to be the most frequently mutated oncogene (15.9%) and TP53 the most frequently mutated tumor suppressor (35.2%). The Wnt/beta-catenin and JAK/STAT pathways, altered in 62.5% and 45.5% of cases, respectively, are likely to act as two major oncogenic drivers in HCC. This study also identifies several prevalent and potentially actionable mutations, including activating mutations of Janus kinase 1 (JAK1), in 9.1% of patients and provides a path toward therapeutic intervention of the disease.


Asunto(s)
Carcinoma Hepatocelular/genética , Genoma Humano , Neoplasias Hepáticas/genética , Mutación , Secuencia de Aminoácidos , Carcinoma Hepatocelular/virología , ADN Viral/genética , Femenino , Virus de la Hepatitis B/genética , Humanos , Janus Quinasa 1/genética , Neoplasias Hepáticas/virología , Masculino , Datos de Secuencia Molecular , Factores de Transcripción STAT/genética , Análisis de Secuencia de ADN , Proteína p53 Supresora de Tumor/genética , Integración Viral , Vía de Señalización Wnt/genética , beta Catenina/genética
7.
Tumour Biol ; 37(2): 2127-36, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26346170

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is the predominant type of esophageal cancer in Asia. Cisplatin is commonly used in chemoradiation for unresectable ESCC patients. However, the treatment efficacy is diminished in patients with established cisplatin resistance. To understand the mechanism leading to the development of cisplatin resistance in ESCC, we compared the proteomes from a cisplatin-resistant HKESC-2R cell line with its parental-sensitive counterpart HKESC-2 to identify key molecule involved in this process. Mass spectrometry analysis detected 14-3-3σ as the most abundant molecule expressed exclusively in HKESC-2R cells, while western blot result further validated it to be highly expressed in HKESC-2R cells when compared to HKESC-2 cells. Ectopic expression of 14-3-3σ increased cisplatin resistance in HKESC-2 cells, while its suppression sensitized SLMT-1 cells to cisplatin. Among the molecules involved in drug detoxification, drug transportation, and DNA repair, the examined DNA repair molecules HMGB1 and XPA were found to be highly expressed in HKESC-2R cells with high 14-3-3σ expression. Subsequent manipulation of 14-3-3σ by both overexpression and knockdown approaches concurrently altered the expression of HMGB1 and XPA. 14-3-3σ, HMGB1, and XPA were preferentially expressed in cisplatin-resistant SLMT-1 cells when compared to those more sensitive to cisplatin. In ESCC patients with poor response to cisplatin-based chemoradiation, their pre-treatment tumors expressed higher expression of HMGB1 than those with response to such treatment. In summary, our results demonstrate that 14-3-3σ induces cisplatin resistance in ESCC cells and that 14-3-3σ-mediated cisplatin resistance involves DNA repair molecules HMGB1 and XPA. Results from this study provide evidences for further work in researching the potential use of 14-3-3σ and DNA repair molecules HMGB1 and XPA as biomarkers and therapeutic targets for ESCC.


Asunto(s)
Proteínas 14-3-3/metabolismo , Antineoplásicos/farmacología , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/metabolismo , Cisplatino/farmacología , Resistencia a Antineoplásicos/fisiología , Neoplasias Esofágicas/metabolismo , Exorribonucleasas/metabolismo , Western Blotting , Cromatografía Líquida de Alta Presión , Reparación del ADN/efectos de los fármacos , Reparación del ADN/fisiología , Carcinoma de Células Escamosas de Esófago , Técnicas de Silenciamiento del Gen , Proteína HMGB1/metabolismo , Humanos , Espectrometría de Masas , Reacción en Cadena de la Polimerasa , Transcriptoma , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
8.
Pharmacol Res ; 110: 227-239, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26969793

RESUMEN

Ulcerative colitis (UC) is an increasingly common condition particularly in developed countries. The lack of satisfactory treatment has fueled the search for alternative therapeutic strategies. In recent studies, berberine, a plant alkaloid with a long history of medicinal use in Chinese medicine, has shown beneficial effects against animal models of acute UC. However, UC usually presents as a chronic condition with frequent relapse in patients. How berberine will act on chronic UC remains unclear. In the present study, we adopted dextran sulfate sodium (DSS)-induced chronic relapsing colitis model to assess the ameliorating activity of berberine. Colitis was induced by two cycles of 2.0% DSS for five days followed by 14days of drinking water plus a third cycle consisting of DSS only for five days. The colitis mice were orally administered 20mg/kg berberine from day 13 onward for 30days and monitored daily. The body weight, stool consistency, and stool bleeding were recorded for determination of the disease activity index (DAI). At the end of treatment, animals were sacrificed and samples were collected and subjected to histological, RT-qPCR, Western blot, and LC-MS analyses. Lymphocytes were isolated from spleens and mesenteric lymph nodes (MLN) and cultured for flow cytometry analysis of IL-17 secretion from CD4(+) cells and the Th17 cell differentiation. Results showed that berberine significantly ameliorated the DAI, colon shortening, colon tissue injury, and reduction of colonic expression of tight junction (TJ) protein ZO-1 and occludin of colitis mice. Notably, berberine treatment pronouncedly reduced DSS-upregulated Th17-related cytokine (IL-17 and ROR-γt) mRNAs in the colon. Furthermore, the mRNA expression of IL-6 and IL-23, and the phosphorylation of STAT3 in colon tissues from DSS-treated mice were pronouncedly inhibited by berberine. Moreover, the up-regulation of IL-17 secretion from CD4(+) cells of spleens and MLNs caused by DSS were significantly reversed by berberine treatment. Furthermore, Th17 cell differentiation from naive CD4(+) cells isolated from above DSS colitis mice were suppressed by berberine in a concentration-dependent manner. In summary, we demonstrated for the first time that berberine reduced the severity of chronic relapsing DSS-induced colitis by suppressing Th17 responses. The demonstration of activity in this mouse model supports the possibility of clinical efficacy of berberine in treating chronic UC.


Asunto(s)
Berberina/farmacología , Colitis/tratamiento farmacológico , Colon/efectos de los fármacos , Sulfato de Dextran , Fármacos Gastrointestinales/farmacología , Interleucina-17/metabolismo , Células Th17/efectos de los fármacos , Animales , Células Cultivadas , Enfermedad Crónica , Colitis/inducido químicamente , Colitis/inmunología , Colitis/metabolismo , Colon/inmunología , Colon/metabolismo , Colon/patología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Inmunosupresores/farmacología , Interleucina-17/genética , Interleucina-17/inmunología , Interleucina-23/genética , Interleucina-23/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Ratones Endogámicos C57BL , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Fenotipo , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Recurrencia , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Células Th17/inmunología , Células Th17/metabolismo , Factores de Tiempo
9.
Genomics ; 105(2): 76-82, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25462863

RESUMEN

We did whole-transcriptome sequencing and whole-genome sequencing on nine pairs of Hepatocellular carcinoma (HCC) tumors and matched adjacent tissues to identify RNA editing events. We identified mean 26,982 editing sites with mean 89.5% canonical A→G edits in each sample using an improved bioinformatics pipeline. The editing rate was significantly higher in tumors than adjacent normal tissues. Comparing the difference between tumor and normal tissues of each patient, we found 7 non-synonymous tissue specific editing events including 4 tumor-specific edits and 3 normal-specific edits in the coding region, as well as 292 edits varying in editing degree. The significant expression changes of 150 genes associated with RNA editing were found in tumors, with 3 of the 4 most significant genes being cancer related. Our results show that editing might be related to higher gene expression. These findings indicate that RNA editing modification may play an important role in the development of HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Genoma , Neoplasias Hepáticas/genética , Edición de ARN , Transcriptoma , Biología Computacional/métodos , Estudio de Asociación del Genoma Completo , Humanos , Análisis de Secuencia de ARN
10.
Hepatology ; 60(6): 1972-82, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24798001

RESUMEN

UNLABELLED: Hepatic resection is the most curative treatment option for early-stage hepatocellular carcinoma, but is associated with a high recurrence rate, which exceeds 50% at 5 years after surgery. Understanding the genetic basis of hepatocellular carcinoma at surgically curable stages may enable the identification of new molecular biomarkers that accurately identify patients in need of additional early therapeutic interventions. Whole exome sequencing and copy number analysis was performed on 231 hepatocellular carcinomas (72% with hepatitis B viral infection) that were classified as early-stage hepatocellular carcinomas, candidates for surgical resection. Recurrent mutations were validated by Sanger sequencing. Unsupervised genomic analyses identified an association between specific genetic aberrations and postoperative clinical outcomes. Recurrent somatic mutations were identified in nine genes, including TP53, CTNNB1, AXIN1, RPS6KA3, and RB1. Recurrent homozygous deletions in FAM123A, RB1, and CDKN2A, and high-copy amplifications in MYC, RSPO2, CCND1, and FGF19 were detected. Pathway analyses of these genes revealed aberrations in the p53, Wnt, PIK3/Ras, cell cycle, and chromatin remodeling pathways. RB1 mutations were significantly associated with cancer-specific and recurrence-free survival after resection (multivariate P = 0.038 and P = 0.012, respectively). FGF19 amplifications, known to activate Wnt signaling, were mutually exclusive with CTNNB1 and AXIN1 mutations, and significantly associated with cirrhosis (P = 0.017). CONCLUSION: RB1 mutations can be used as a prognostic molecular biomarker for resectable hepatocellular carcinoma. Further study is required to investigate the potential role of FGF19 amplification in driving hepatocarcinogenesis in patients with liver cirrhosis and to investigate the potential of anti-FGF19 treatment in these patients.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Factores de Crecimiento de Fibroblastos/genética , Neoplasias Hepáticas/genética , Proteína de Retinoblastoma/genética , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/cirugía , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Factor de Transcripción E2F1/metabolismo , Femenino , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/cirugía , Masculino , Persona de Mediana Edad , Proteína de Retinoblastoma/metabolismo
11.
Genomics ; 103(2-3): 189-203, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24462510

RESUMEN

Elucidating the molecular basis of hepatocellular carcinoma (HCC) is crucial to developing targeted diagnostics and therapies for this deadly disease. The landscape of somatic genomic rearrangements (GRs), which can lead to oncogenic gene fusions, remains poorly characterized in HCC. We have predicted 4314 GRs including large-scale insertions, deletions, inversions and translocations based on the whole-genome sequencing data for 88 primary HCC tumor/non-tumor tissues. We identified chromothripsis in 5 HCC genomes (5.7%) recurrently affecting chromosomal arms 1q and 8q. Albumin (ALB) was found to harbor GRs, deactivating mutations and deletions in 10% of cohort. Integrative analysis identified a pattern of paired intra-chromosomal translocations flanking focal amplifications and asymmetrical patterns of copy number variation flanking breakpoints of translocations. Furthermore, we predicted 260 gene fusions which frequently result in aberrant over-expression of the 3' genes in tumors and validated 18 gene fusions, including recurrent fusion (2/88) of ABCB11 and LRP2.


Asunto(s)
Carcinoma Hepatocelular/genética , Reordenamiento Génico , Genoma Humano , Neoplasias Hepáticas/genética , Translocación Genética , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 8/genética , Estudios de Cohortes , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino
12.
Dig Dis Sci ; 59(10): 2477-87, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24811246

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) belong to a group of small non-coding RNA with differential expression in tumors, including hepatocellular carcinoma (HCC). AIM: This study investigates the involvement of miR-125b in HCC. METHODS: Clinical analysis of miR-125b was performed using data derived from miRNA profiling and qPCR. Phenotypic changes of liver cell lines were examined after ectopic miR-125b expression. Lastly, bioinformatics analysis coupled with luciferase reporter assay was used to reveal the cellular target of miR-125b. RESULTS: A down-regulation of miR-125b was found in HCC tumors and cultured cells. Patients having tumors with ≥twofold reduction in miR-125b compared to adjacent non-tumor tissues contributed to 23 out of 49 HCC cases (46.9 %), while this down-regulation was usually found in patients with tumor venous infiltration and recurrence. miR-125b expression was also negatively correlated with increased serum AFP level and poor overall survival of patients. Ectopic expression of miR-125b led to alleviated tumor phenotypes of HCC cells. Among the 110 bioinformatically predicated candidates, 31 of them negatively correlated with miR-125b in HCC tumors for which one of them named eukaryotic translation initiation factor 5A2 (eIF5A2), known also as a liver oncofetal molecule, was validated to be a direct target of miR-125b in HCC. CONCLUSIONS: This study has evidenced for the negative correlation of tumor miR-125b expression with poor prognosis of HCC patients. Expression of miR-125b can reverse the tumorigenic properties of cultured HCC cells via suppressing the tumorigenic molecule eIF5A2, thus postulating restoration of miR-125b level as a way to counteract liver tumorigenesis.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Neoplasias Hepáticas/metabolismo , MicroARNs/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Humanos , MicroARNs/genética , Factores de Iniciación de Péptidos/genética , Transcriptoma
13.
Genomics ; 102(4): 338-44, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23867110

RESUMEN

We reported HIVID (high-throughput Viral Integration Detection), a novel experimental and computational method to detect the location of Hepatitis B Virus (HBV) integration breakpoints in Hepatocellular Carcinoma (HCC) genome. In this method, the fragments with HBV sequence were enriched by a set of HBV probes and then processed to high-throughput sequencing. In order to evaluate the performance of HIVID, we compared the results of HIVID with that of whole genome sequencing method (WGS) in 28 HCC tumors. We detected a total of 246 HBV integration breakpoints in HCC genome, 113 out of which were within 400bp upstream or downstream of 125 breakpoints identified by WGS method, covering 89.3% (125/140) of total breakpoints. The integration was located in the gene TERT, MLL4, and CCNE1. In addition, we discovered 133 novel breakpoints missed by WGS method, with 66.7% (10/15) of validation rate. Our study shows HIVID is a cost-effective methodology with high specificity and sensitivity to identify viral integration in human genome.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virología , Virus de la Hepatitis B/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virología , Integración Viral , China , Ciclina E/genética , Roturas del ADN , Proteínas de Unión al ADN/genética , Genoma Humano , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento/economía , N-Metiltransferasa de Histona-Lisina , Humanos , Proteínas Oncogénicas/genética , Telomerasa/genética
14.
Int J Biol Sci ; 19(2): 625-640, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36632458

RESUMEN

Accumulating evidence shows that exosomes participate in cancer progression. However, the functions of cancer cell exosome-transmitted proteins are rarely studied. Previously, we reported that serglycin (SRGN) overexpression promotes invasion and metastasis of esophageal squamous cell carcinoma (ESCC) cells. Here, we investigated the paracrine effects of exosomes from SRGN-overexpressing ESCC cells (SRGN Exo) on ESCC cell invasion and tumor angiogenesis, and used mass spectrometry to identify exosomal proteins involved. Cation-dependent mannose-6-phosphate receptor (M6PR) and ephrin type-B receptor 4 (EphB4) were pronouncedly upregulated in SRGN Exo. Upregulated exosomal M6PR mediated the pro-angiogenic effects of SRGN Exo both in vitro and in vivo, while augmented exosomal EphB4 mediated the pro-invasive effect of SRGN Exo on ESCC cells in vitro. In addition, in vitro studies showed that manipulation of M6PR expression affected the viability and migration of ESCC cells. Both M6PR and EphB4 expression levels were positively correlated with that of SRGN in the serum of patients with ESCC. High level of serum M6PR was associated with poor overall survival rates. Taken together, this study presents the first proof that exosomal M6PR and EphB4 play essential roles in tumor angiogenesis and malignancy, and that serum M6PR is a novel prognostic marker for ESCC patients.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Exosomas , Humanos , Línea Celular Tumoral , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Exosomas/genética , Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Neovascularización Patológica/metabolismo , Proteoglicanos/genética , Proteoglicanos/metabolismo
15.
J Biol Chem ; 286(35): 30706-30713, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21737452

RESUMEN

Hepatocellular carcinoma (HCC) is a heterogeneous and highly aggressive malignancy, for which there are no effective cures. Identification of a malignant stemlike subtype of HCC may offer patients with a dismal prognosis a potential targeted therapy using c-MET and Wnt pathway inhibitors. MicroRNAs (miRNAs) show promise as diagnostic and prognostic tools for cancer detection and stratification. Using a TRE-c-Met-driven transgenic HCC mouse model, we identified a cluster of 23 miRNAs that is encoded within the Dlk1-Gtl2 imprinted region on chromosome 12qF1 overexpressed in all of the isolated liver tumors. Interestingly, this region is conserved among mammalian species and maps to the human DLK1-DIO3 region on chromosome 14q32.2. We thus examined the expression of the DLK1-DIO3 miRNA cluster in a cohort of 97 hepatitis B virus-associated HCC patients and identified a subgroup (n = 18) of patients showing strong coordinate overexpression of miRNAs in this cluster but not in other cancer types (breast, lung, kidney, stomach, and colon) that were tested. Expression levels of imprinted gene transcripts from neighboring loci in this 14q32.2 region and from a subset of other imprinted sites were concomitantly elevated in human HCC. Interestingly, overexpression of the DLK1-DIO3 miRNA cluster was positively correlated with HCC stem cell markers (CD133, CD90, EpCAM, Nestin) and associated with a high level of serum α-fetoprotein, a conventional biomarker for liver cancer, and poor survival rate in HCC patients. In conclusion, our findings suggest that coordinate up-regulation of the DLK1-DIO3 miRNA cluster at 14q32.2 may define a novel molecular (stem cell-like) subtype of HCC associated with poor prognosis.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidad , Cromosomas Humanos Par 14/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Yoduro Peroxidasa/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidad , Proteínas de la Membrana/genética , MicroARNs/genética , Biomarcadores de Tumor/metabolismo , Proteínas de Unión al Calcio , Estudios de Cohortes , Humanos , Hígado/metabolismo , MicroARNs/metabolismo , Familia de Multigenes , Pronóstico , Distribución Tisular , Resultado del Tratamiento , Regulación hacia Arriba
16.
J Neurooncol ; 107(1): 89-100, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21979894

RESUMEN

Temozolomide (TMZ) is the standard chemotherapeutic agent for human malignant glioma, but intrinsic or acquired chemoresistance represents a major obstacle to successful treatment of this highly lethal group of tumours. Obtaining better understanding of the molecular mechanisms underlying TMZ resistance in malignant glioma is important for the development of better treatment strategies. We have successfully established a passage control line (D54-C10) and resistant variants (D54-P5 and D54-P10) from the parental TMZ-sensitive malignant glioma cell line D54-C0. The resistant sub-cell lines showed alterations in cell morphology, enhanced cell adhesion, increased migration capacities, and cell cycle arrests. Proteomic analysis identified a set of proteins that showed gradual changes in expression according to their 50% inhibitory concentration (IC(50)). Successful validation was provided by transcript profiling in another malignant glioma cell line U87-MG and its resistant counterparts. Moreover, three of the identified proteins (vimentin, cathepsin D and prolyl 4-hydroxylase, beta polypeptide) were confirmed to be upregulated in high-grade glioma. Our data suggest that acquired TMZ resistance in human malignant glioma is associated with promotion of malignant phenotypes, and our reported molecular candidates may serve not only as markers of chemoresistance but also as potential therapeutic targets in the treatment of TMZ-resistant human malignant glioma, providing a platform for future investigations.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Biomarcadores de Tumor/metabolismo , Dacarbazina/análogos & derivados , Resistencia a Antineoplásicos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Apoptosis , Western Blotting , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Adhesión Celular , Ciclo Celular , Movimiento Celular , Proliferación Celular , Dacarbazina/farmacología , Electroforesis en Gel Bidimensional , Citometría de Flujo , Humanos , Etiquetado Corte-Fin in Situ , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Temozolomida , Cicatrización de Heridas
17.
J Neurooncol ; 109(3): 467-75, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22763762

RESUMEN

Temozolomide (TMZ) is standard chemotherapy for glioblastoma multiforme (GBM). Intratumoral hypoxia is common in GBM and may be associated with the development of TMZ resistance. Oxygen therapy has previously been reported to potentiate the effect of chemotherapy in cancer. In this study, we investigated whether hyperoxia can enhance the TMZ-induced cytotoxicity of human GBM cells, and whether and how it would resensitize TMZ-resistant GBM cells to TMZ. TMZ-sensitive human GBM cells (D54-S and U87-S) were treated with TMZ to develop isogenic subclones of TMZ-resistant cells (D54-R and U87-R). All cell lines were then exposed to different oxygen levels (1, 21, 40, or 80 %), with or without concomitant TMZ treatment, before assessment of cell cytotoxicity and morphology. Cell death and survival pathways elicited by TMZ and/or hyperoxia were elucidated by western blotting. Our results showed that TMZ sensitivity of both chemo-sensitive and resistant cells was enhanced significantly under hyperoxia. At the cell line-specific optimum oxygen concentration (D54-R, 80 %; U87-R, 40 %), resistant cells had the same response to TMZ as the parent chemosensitive cells under normoxia via the caspase-dependent pathway. Both TMZ and hyperoxia were associated with increased phosphorylation of ERK p44/42 MAPK (Erk1/2), but to a lesser extent in D54-R cells, suggesting that Erk1/2 activity may be involved in regulation of hyperoxia and TMZ-mediated cell death. Overall, hyperoxia enhanced TMZ toxicity in GBM cells by induction of apoptosis, possibly via MAPK-related pathways. Induced hyperoxia is a potentially promising approach for treatment of TMZ-resistant GBM.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/metabolismo , Dacarbazina/análogos & derivados , Resistencia a Antineoplásicos/fisiología , Glioblastoma/metabolismo , Hiperoxia/metabolismo , Apoptosis/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Dacarbazina/farmacología , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Temozolomida
18.
World J Surg ; 36(1): 90-7, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21976009

RESUMEN

UNLABELLED: Esophageal cancer is a deadly cancer with esophageal squamous cell carcinoma (ESCC) as the major type. Until now there has been a lack of reliable prognostic markers for this malignancy. This study aims to investigate the clinical correlation between Forkhead box M1 (FoxM1)and patients' parameters in ESCC. METHODS: Immunohistochemistry was performed to investigate the expression and localization of FoxM1 in 64ESCC tissues and 10 nontumor esophageal tissues randomly selected from 64 patients before these data were used for clinical correlations. RESULTS: Cytoplasmic and nuclear expressions of FoxM1 were found in 63 and 16 of the 64 ESCC tissues, respectively.Low cytoplasmic expression of FoxM1 was correlated with early pathological stage in ESCC (P = 0.018),while patients with nuclear FoxM1 were younger in age than those without nuclear expression (P\0.001).Upregulation of FoxM1 mRNA was found in five ESCCcell lines (HKESC-1, HKESC-2, HKESC-3, HKESC-4,and SLMT-1) when compared to non-neoplastic esophageal squamous cell line NE-1 using quantitative polymerase chain reaction (qPCR). Except for HKESC-3, all studied ESCC cell lines demonstrated a high expression of FoxM1 protein using immunoblot. A high mRNA level of FoxM1 was observed in all of the ESCC tissues examined when compared to their adjacent nontumor tissues using qPCR. CONCLUSION: Cytoplasmic FoxM1 was correlated with pathological stage and might be a biomarker for advanced ESCC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/patología , Neoplasias Esofágicas/patología , Factores de Transcripción Forkhead/metabolismo , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Western Blotting , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/mortalidad , Carcinoma de Células Escamosas/cirugía , Estudios de Casos y Controles , Línea Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/mortalidad , Neoplasias Esofágicas/cirugía , Esofagectomía , Femenino , Proteína Forkhead Box M1 , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba
19.
Adv Exp Med Biol ; 763: 171-85, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23397624

RESUMEN

Tight junction (TJ) composes of an intriguing class of cell junction molecules, for which these molecules share similar organizations and structure features among different organs. Fourtypes of transmembrane molecules namely occludins, claudins, junctional adhesion molecules and coxsackievirus and adenovirus receptors act as core units and each link directly and indirectly with a panel of peripheral molecules and underlying cytoskeletons to constitute the functional protein complexes at TJs. Individual TJ complex alone or in co-operation with other complexes via cross-talk mediated by peripheral molecules activate signaling pathways pertinent to various physiological and pathological processes in livers. In human livers, TJs are located at two regions in association with hepatocytes and cholangiocytes and perform major roles in controlling bile flow and metabolism. Apart from this physiological function, the other functions of TJs relating to liver diseases of hepatitis and liver cancer are gradually uncovered. The understanding of how TJs are involved in these clinical conditions hint for the development of new treatments at the molecular level.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Hepatopatías/metabolismo , Hígado/patología , Uniones Estrechas/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Bilis/metabolismo , Canalículos Biliares/metabolismo , Canalículos Biliares/patología , Adhesión Celular , Polaridad Celular , Claudinas/genética , Claudinas/metabolismo , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Hígado/irrigación sanguínea , Hígado/metabolismo , Hepatopatías/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Complejos Multiproteicos/metabolismo , Ocludina/genética , Ocludina/metabolismo , Mapeo de Interacción de Proteínas , Transducción de Señal , Uniones Estrechas/genética , Uniones Estrechas/patología
20.
Front Genet ; 13: 991842, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246638

RESUMEN

Esophageal cancer (EC) remains a significant challenge globally, having the 8th highest incidence and 6th highest mortality worldwide. Esophageal squamous cell carcinoma (ESCC) is the most common form of EC in Asia. Crucially, more than 90% of EC cases in China are ESCC. The high mortality rate of EC is likely due to the limited number of effective therapeutic options. To increase patient survival, novel therapeutic strategies for EC patients must be devised. Unfortunately, the development of novel drugs also presents its own significant challenges as most novel drugs do not make it to market due to lack of efficacy or safety concerns. A more time and cost-effective strategy is to identify existing drugs, that have already been approved for treatment of other diseases, which can be repurposed to treat EC patients, with drug repositioning. This can be achieved by comparing the gene expression profiles of disease-states with the effect on gene-expression by a given drug. In our analysis, we used previously published microarray data and identified 167 differentially expressed genes (DEGs). Using weighted key driver analysis, 39 key driver genes were then identified. These driver genes were then used in Overlap Analysis and Network Analysis in Pharmomics. By extracting drugs common to both analyses, 24 drugs are predicted to demonstrate therapeutic effect in EC patients. Several of which have already been shown to demonstrate a therapeutic effect in EC, most notably Doxorubicin, which is commonly used to treat EC patients, and Ixazomib, which was recently shown to induce apoptosis and supress growth of EC cell lines. Additionally, our analysis predicts multiple psychiatric drugs, including Venlafaxine, as repositioned drugs. This is in line with recent research which suggests that psychiatric drugs should be investigated for use in gastrointestinal cancers such as EC. Our study shows that a drug repositioning approach is a feasible strategy for identifying novel ESCC therapies and can also improve the understanding of the mechanisms underlying the drug targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA