Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Liposome Res ; : 1-14, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101839

RESUMEN

Micro-145 down-regulation is frequently found in breast cancers, indicating its potential as a therapeutic target. The introduction of exogenous miR-145 directly to the tumor sites has been a hurdle due to limited delivery, low bioavailability, and hence lower therapeutic efficacy. Thus, this study aims to synthesize and characterize PEGylated liposome co-loaded with Dox-HCl and miR-145 mimics to investigate its in-vitro anti-proliferative activity against MDA-MB-231 cells. The formulations were developed using a composite central design to optimize nanoparticle size and encapsulation efficiency (EE%) of Dox-HCl and miR-145 mimics. The optimized formulation exhibited the highest desirability function (D = 0.814) and displayed excellent stability over 60 days at 4 °C, maintaining a stable nanoparticle size and zeta potential, with relative EE% of Dox-HCl and miR-145 mimics on the final incubation day 94.97 ± 0.53% and 51.96 ± 2.67%, respectively. The system displayed a higher rate of drug release within 4 h of incubation at an acidic condition. Additionally, the optimized formulation demonstrated a higher toxicity (IC50 = 0.58 µM) against MDA-MB-231 cells than the free Dox- HCl and miR-145 regimen (IC50 = 1.00 µM). Our findings suggest that PEGylated liposome is tunable for effective concurrent delivery of anticancer drugs and therapeutic miRNAs into tumor cells, necessitating further investigation.

2.
BMC Cancer ; 22(1): 1317, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36527000

RESUMEN

BACKGROUND: Acquired chemo-drug resistance constantly led to the failure of chemotherapy for malignant cancers, consequently causing cancer relapse. Hence, identifying the biomarker of drug resistance is vital to improve the treatment efficacy in cancer. The clinical prognostic value of CYP24A1 remains inconclusive, hence we aim to evaluate the association between CYP24A1 and the drug resistance in cancer patients through a meta-analysis approach. METHOD: Relevant studies detecting the expression or SNP of CYP24A1 in cancer patients up till May 2022 were systematically searched in four common scientific databases including PubMed, EMBASE, Cochrane library and ISI Web of Science. The pooled hazard ratios (HRs) indicating the ratio of hazard rate of survival time between CYP24A1high population vs CYP24A1low population were calculated. The pooled HRs and odds ratios (ORs) with 95% confidence intervals (CIs) were used to explore the association between CYP24A1's expression or SNP with survival, metastasis, recurrence, and drug resistance in cancer patients. RESULT: Fifteen studies were included in the meta-analysis after an initial screening according to the inclusion and exclusion criteria. There was a total of 3784 patients pooled from all the included studies. Results indicated that higher expression or SNP of CYP24A1 was significantly correlated with shorter survival time with pooled HRs (95% CI) of 1.21 (1.12, 1.31), metastasis with pooled ORs (95% CI) of 1.81 (1.11, 2.96), recurrence with pooled ORs (95% CI) of 2.14 (1.45, 3.18) and drug resistance with pooled HRs (95% CI) of 1.42 (1.17, 1.68). In the subgroup analysis, cancer type, treatment, ethnicity, and detection approach for CYP24A1 did not affect the significance of the association between CYP24A1 expression and poor prognosis. CONCLUSION: Findings from our meta-analysis demonstrated that CYP24A1's expression or SNP was correlated with cancer progression and drug resistance. Therefore, CYP24A1 could be a potential molecular marker for cancer resistance.


Asunto(s)
Biomarcadores de Tumor , Neoplasias , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Resistencia a Medicamentos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Pronóstico , Vitamina D3 24-Hidroxilasa
3.
Nutr Cancer ; 74(9): 3058-3076, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35675271

RESUMEN

Plant extracts comprise a complex mixture of natural compounds with diverse biological activities including anticancer activities. This has made the use of plant extracts a trending strategy in cancer treatment. In addition, plants' active constituents such as polyphenols could confer protective effects on normal cells against damage by free radicals as well as lessen the toxicity of chemotherapeutic drugs. Recently, many emerging studies revealed the combinatory uses of plant extracts and individual therapeutic compounds that could be a promising panacea in hampering multiple signaling pathways involved in cancer development and progression. Besides enhancing the therapeutic efficacy, this has also been proven to reduce the dosage of chemotherapeutic drugs used, and hence overcome multiple drug resistance and minimize treatment side effects. Notably, combined use of plant extracts with chemotherapeutics drugs was shown to enhance anticancer effects through modulating various signaling pathways, such as P13K/AKT, NF-κB, JNK, ERK, WNT/ß-catenin, and many more. Hence, this review aims to comprehensively summarize both In Vitro and In Vivo mechanisms of actions of well-studied plant extracts, such as Ganoderma Lucidum, Korean red ginseng, Garcinia sp., curcumin, and luteolin extracts in augmenting anticancer properties of the conventional chemotherapeutic drugs from an extensive literature search of recent publications.


Asunto(s)
Curcumina , Neoplasias , Curcumina/uso terapéutico , Humanos , FN-kappa B , Neoplasias/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Polifenoles/farmacología , Polifenoles/uso terapéutico
4.
Jpn J Clin Oncol ; 50(10): 1108-1116, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32579167

RESUMEN

BACKGROUND: Patient-derived xenograft model is a powerful and promising tool for drug discovery and cancer biology studies. The application of previous metastatic colorectal cancer models has been greatly limited by its low success rate and long time to develop metastasis. Therefore, in this study, we aim to describe an optimized protocol for faster establishment of colorectal cancer metastatic patient-derived xenograft mouse models. METHODS: Smaller micro tissues (˂150 µm in diameter) mixed with Matrigel were engrafted subcutaneously into NSG mice to generate the passage 1 (P1) patient-derived xenograft. The micro tumours from P1 patient-derived xenograft were then excised and orthotopically xenografted into another batch of NSG mice to generate a metastatic colorectal cancer patient-derived xenograft, P2. Haematoxylin and eosin and immunohistochemistry staining were performed to compare the characters between patient-derived xenograft tumours and primary tumours. RESULTS: About 16 out of 18 P1 xenograft models successfully grew a tumour for 50.8 ± 5.1 days (success rate 89.9%). Six out of eight P1 xenograft models originating from metastatic patients successfully grew tumours in the colon and metastasized to liver or lung in the NSG recipients for 60.9 ± 4.5 days (success rate 75%). Histological examination of both P1 and P2 xenografts closely resembled the histological architecture of the original patients' tumours. Immunohistochemical analysis revealed similar biomarker expression levels, including CDH17, Ki-67, active ß-catenin, Ki-67 and α smooth muscle actin when compared with the original patients' tumours. The stromal components that support the growth of patient-derived xenograft tumours were of murine origin. CONCLUSIONS: Metastatic patient-derived xenograft mouse model could be established with shorter time and higher success rate. Although the patient-derived xenograft tumours were supported by the stromal cells of murine origin, they retained the dominant characters of the original patient tumours.


Asunto(s)
Neoplasias Colorrectales/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores de Tumor/metabolismo , Carcinogénesis/patología , Femenino , Xenoinjertos , Humanos , Masculino , Ratones , Persona de Mediana Edad , Metástasis de la Neoplasia
5.
Intervirology ; 61(4): 193-203, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30541013

RESUMEN

OBJECTIVE: Herpes simplex virus infection through the neuronal route is the most well-studied mode of viral encephalitis that can persists in a human host for a lifetime. However, the involvement of other possible infection mechanisms by the virus remains underexplored. Therefore, this study aims to determine the temporal effects and mechanisms by which the virus breaches the human brain micro-vascular endothelial cells of the blood-brain barrier. METHOD: An electrical cell-substrate impedance-sensing tool was utilized to study the real-time cell-cell barrier or morphological changes in response to the virus infection. RESULTS: Herpes simplex virus, regardless of type (i.e., 1 or 2), reduced the cell-cell barrier resistance almost immediately after virus addition to endothelial cells, with negligible involvement of cell-matrix adhesion changes. There is no exclusivity in the infection ability of endothelial cells. From 30 h after HSV infection, there was an increase in cell membrane capacitance with a subsequent loss of cell-matrix adhesion capability, indicating a viability loss of the infected endothelial cells. CONCLUSION: This study shows for the first time that destruction of human brain micro-vascular endothelial cells as an in vitro model of the blood-brain barrier could be an alternative invasion mechanism during herpes simplex virus infection.


Asunto(s)
Barrera Hematoencefálica/fisiología , Barrera Hematoencefálica/virología , Células Endoteliales/fisiología , Células Endoteliales/virología , Simplexvirus/crecimiento & desarrollo , Supervivencia Celular , Impedancia Eléctrica , Humanos , Modelos Biológicos
6.
Pathol Res Pract ; 254: 155073, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218039

RESUMEN

Breast cancer has become the most diagnosed cancer worldwide in 2020 with high morbidity and mortality rates. The alarming increase in breast cancer incidence has sprung many researchers to focus on developing novel screening tests to identify early breast cancer which will allow clinicians to provide timely and effective treatments. With much evidence supporting the notion that the deregulation of miRNAs (a class of non-coding RNA) greatly contributes to cancer initiation and progression, the promising role of miRNAs as cancer biomarkers is gaining traction in the research world. Among the upregulated miRNAs identified in breast carcinogenesis, miR-21 was shown to be significantly expressed in breast cancer tissues and bodily fluids of breast cancer patients. Therein, this review paper aims to provide an overview of breast cancer, the role and significance of miR-21 in breast cancer pathogenesis, and its potential as a breast cancer biomarker. The paper also discusses the current types of tumor biomarkers and their limitations, the presence of miR-21 in extracellular vesicles and plasma, screening methods available for miRNA detection along with some challenges faced in developing diagnostic miR-21 testing for breast cancer to provide readers with a comprehensive outlook based on using miR-21 in clinical settings.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Biomarcadores de Tumor/genética , MicroARNs/metabolismo , Regulación Neoplásica de la Expresión Génica
7.
Curr Drug Discov Technol ; 21(6): e220224227304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38409702

RESUMEN

BACKGROUND: Cancer is a worldwide issue. It has been observed that conventional therapies face many problems, such as side effects and drug resistance. Recent research reportedly used marine-derived products to treat various diseases and explored their potential in treating cancers. OBJECTIVE: This study aims to discover short-length anticancer peptides derived from pardaxin 6 through an in silico approach. METHODS: Fragmented peptides ranging from 5 to 15 amino acids were derived from the pardaxin 6 parental peptide. These peptides were further replaced with one residue and, along with the original fragmented peptides, were predicted for their SVM scores and physicochemical properties. The top 5 derivative peptides were further examined for their toxicity, hemolytic probability, peptide structures, docking models, and energy scores using various web servers. The trend of in silico analysis outputs across 5 to 15 amino acid fragments was further analyzed. RESULTS: Results showed that when the amino acids were increased, SVM scores of the original fragmented peptides were also increased. Designed peptides had increased SVM scores, which was aligned with previous studies where the single residue replacement transformed the non-anticancer peptide into an anticancer agent. Moreover, in vitro studies validated that the designed peptides retained or enhanced anticancer effects against different cancer cell lines. Interestingly, a decreasing trend was observed in those fragmented derivative peptides. CONCLUSION: Single residue replacement in fragmented pardaxin 6 was found to produce stronger anticancer agents through in silico predictions. Through bioinformatics tools, fragmented peptides improved the efficiency of marine-derived drugs with higher efficacy and lower hemolytic effects in treating cancers.


Asunto(s)
Antineoplásicos , Simulación por Computador , Antineoplásicos/farmacología , Antineoplásicos/química , Humanos , Animales , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Péptidos/farmacología , Péptidos/química , Hemólisis/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Fragmentos de Péptidos/química , Neoplasias/tratamiento farmacológico
8.
Cell Oncol (Dordr) ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373858

RESUMEN

PURPOSE: Taxol is the first-line chemo-drug for advanced non-small cell lung cancer (NSCLC), but it frequently causes acquired resistance, which leads to the failure of treatment. Therefore, it is critical to screen and characterize the mechanism of the taxol-resistance reversal agent that could re-sensitize the resistant cancer cells to chemo-drug. METHOD: The cell viability, sphere-forming and xenografts assay were used to evaluate the ability of ASIV to reverse taxol-resistance. Immunohistochemistry, cytokine application, small-interfering RNA, small molecule inhibitors, and RNA-seq approaches were applied to characterize the molecular mechanism of inhibition of epiregulin (EREG) and downstream signaling by ASIV to reverse taxol-resistance. RESULTS: ASIV reversed taxol resistance through suppression of the stemness-associated genes of spheres in NSCLC. The mechanism exploration revealed that ASIV promoted the K48-linked polyubiquitination of EREG along with degradation. Moreover, EREG could be triggered by chemo-drug treatment. Consequently, EREG bound to the ErbB receptor and activated the ERK signal to regulate the expression of the stemness-associated genes. Inhibition of EREG/ErbB/ERK could reverse the taxol-resistance by inhibiting the stemness-associated genes. Finally, it was observed that TGFß and Hedgehog signaling were downstream of EREG/ErbB/ERK, which could be targeted using inhibitors to reverse the taxol resistance of NSCLC. CONCLUSIONS: These findings revealed that inhibition of EREG by ASIV reversed taxol-resistance through suppression of the stemness of NSCLC via EREG/ErbB/ERK-TGFß, Hedgehog axis.

9.
BMC Complement Altern Med ; 13: 271, 2013 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-24138815

RESUMEN

BACKGROUND: Lung cancer constitutes one of the malignancies with the greatest incidence and mortality rates with 1.6 million new cases and 1.4 million deaths each year. Prognosis remains poor due to deleterious development of multidrug resistance resulting in less than 15% lung cancer patients reaching five years survival. We have previously shown that Phyllanthus induced apoptosis in conjunction with its antimetastastic action. In the current study, we aimed to determine the signaling pathways utilized by Phyllanthus to exert its antimetastatic activities. METHODS: Cancer 10-pathway reporter array was performed to screen the pathways affected by Phyllanthus in lung carcinoma cell line (A549) to exert its antimetastatic effects. Results from this array were then confirmed with western blotting, cell cycle analysis, zymography technique, and cell based ELISA assay for human total iNOS. Two-dimensional gel electrophoresis was subsequently carried out to study the differential protein expressions in A549 after treatment with Phyllanthus. RESULTS: Phyllanthus was observed to cause antimetastatic activities by inhibiting ERK1/2 pathway via suppression of Raf protein. Inhibition of this pathway resulted in the suppression of MMP2, MMP7, and MMP9 expression to stop A549 metastasis. Phyllanthus also inhibits hypoxia pathway via inhibition of HIF-1α that led to reduced VEGF and iNOS expressions. Proteomic analysis revealed a number of proteins downregulated by Phyllanthus that were involved in metastatic processes, including invasion and mobility proteins (cytoskeletal proteins), transcriptional proteins (proliferating cell nuclear antigen; zinc finger protein), antiapoptotic protein (Bcl2) and various glycolytic enzymes. Among the four Phyllanthus species tested, P. urinaria showed the greatest antimetastatic activity. CONCLUSIONS: Phyllanthus inhibits A549 metastasis by suppressing ERK1/2 and hypoxia pathways that led to suppression of various critical proteins for A549 invasion and migration.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Hipoxia/metabolismo , Neoplasias Pulmonares/metabolismo , Phyllanthus/química , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Hipoxia/tratamiento farmacológico , Hipoxia/genética , Hipoxia/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Metástasis de la Neoplasia , Proteómica , Quinasas raf/genética , Quinasas raf/metabolismo
10.
BMC Complement Altern Med ; 13: 192, 2013 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-23889893

RESUMEN

BACKGROUND: The absence of commercialized vaccines and antiviral agents against dengue has made the disease a major health concern around the world. With the current dengue virus transmission rate and incidences, the development of antiviral drugs is of vital need. The aim of this project was to evaluate the possibility of developing a local medicinal plant, Phyllanthus as an anti-dengue agent. METHODS: Cocktail (aqueous and methanolic) extracts were prepared from four species of Phyllanthus (P.amarus, P.niruri, P.urinaria, and P.watsonii) and their polyphenolic compounds were identified via HPLC and LC-MS/MS analysis. MTS assay was then carried out to determine the maximal non-toxic dose (MNTD) of the extracts, followed by screening of the in vitro antiviral activity of aqueous cocktail extracts against DENV2 by means of time-of-addition (pre-, simultaneous and post-) using RT-qPCR. The differentially expressed proteins in the treated and infected cells were analysed with two dimensional gel electrophoresis experiments. RESULTS: Several active compounds including gallic acid, geraniin, syringin, and corilagen have been identified. The MNTD of both aqueous and methanolic extracts on Vero cells were 250.0 µg/ml and 15.63 µg/ml respectively. Phyllanthus showed strongest inhibitory activity against DENV2 with more than 90% of virus reduction in simultaneous treatment. Two-dimensional analysis revealed significantly altered levels of thirteen proteins, which were successfully identified by tandem MS (MS/MS). These altered proteins were involved in several biological processes, including viral entry, viral transcription and translation regulations, cytoskeletal assembly, and cellular metabolisms. CONCLUSIONS: Phyllanthus could be potentially developed as an anti-DENV agent.


Asunto(s)
Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Dengue/virología , Phyllanthus/química , Extractos Vegetales/farmacología , Animales , Chlorocebus aethiops , Ácido Gálico/farmacología , Glucósidos/farmacología , Humanos , Taninos Hidrolizables/farmacología , Fenilpropionatos/farmacología , Plantas Medicinales , Espectrometría de Masas en Tándem , Células Vero
11.
Med Oncol ; 40(3): 88, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36735206

RESUMEN

Chemotherapy is one of the widely used anticancer treatments that involves the use of powerful cytotoxic drugs to stop tumor growth by targeting rapidly dividing cells through various mechanisms, which will be elucidated in this review. Introduced during the early twentieth century, chemotherapy has since lengthened the longevity of innumerable cancer patients. However, the increase in lifespan is at the expense of quality of life as patients are at risk of developing short-term and long-term side effects following chemotherapy, such as alopecia (hair loss), chemotherapy-induced peripheral neuropathy, chemotherapy-induced nausea and vomiting, cardiotoxicity, diarrhea, infertility, and chemo brain. Currently, a number of these chemotherapy-induced adverse effects are managed through supportive care and approved treatments, while the rest of the side effects are unavoidable. Hence, chemotherapeutic drugs associated with inevitable side effects are only administered when their therapeutic role outweighs their chemotoxicity, thus severely limiting the potency of chemotherapy in treating malignancy. Therein, the potential approaches to alleviating side effects of chemotherapy ranging from pharmaceutical drugs to alternative therapies will be discussed in this review in hopes of increasing the tolerance and effectiveness of future chemotherapeutic treatments.


Asunto(s)
Antineoplásicos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Neoplasias , Humanos , Calidad de Vida , Antineoplásicos/efectos adversos , Neoplasias/tratamiento farmacológico , Vómitos/inducido químicamente , Náusea/inducido químicamente , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control
12.
Curr Drug Targets ; 24(6): 484-508, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36999414

RESUMEN

MicroRNAs have a plethora of roles in various biological processes in the cells and most human cancers have been shown to be associated with dysregulation of the expression of miRNA genes. MiRNA biogenesis involves two alternative pathways, the canonical pathway which requires the successful cooperation of various proteins forming the miRNA-inducing silencing complex (miRISC), and the non-canonical pathway, such as the mirtrons, simtrons, or agotrons pathway, which bypasses and deviates from specific steps in the canonical pathway. Mature miRNAs are secreted from cells and circulated in the body bound to argonaute 2 (AGO2) and miRISC or transported in vesicles. These miRNAs may regulate their downstream target genes via positive or negative regulation through different molecular mechanisms. This review focuses on the role and mechanisms of miRNAs in different stages of breast cancer progression, including breast cancer stem cell formation, breast cancer initiation, invasion, and metastasis as well as angiogenesis. The design, chemical modifications, and therapeutic applications of synthetic anti-sense miRNA oligonucleotides and RNA mimics are also discussed in detail. The strategies for systemic delivery and local targeted delivery of the antisense miRNAs encompass the use of polymeric and liposomal nanoparticles, inorganic nanoparticles, extracellular vesicles, as well as viral vectors and viruslike particles (VLPs). Although several miRNAs have been identified as good candidates for the design of antisense and other synthetic modified oligonucleotides in targeting breast cancer, further efforts are still needed to study the most optimal delivery method in order to drive the research beyond preclinical studies.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Humanos , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Proteínas , Oligonucleótidos
13.
Curr Drug Targets ; 23(13): 1212-1218, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35702768

RESUMEN

MicroRNAs (miRNAs) are non-coding RNAs involved in the modulation of various biological processes, and their dysregulation is greatly associated with cancer progression as miRNAs can act as either tumour suppressors or oncogenes, depending on their intended target, mechanism of actions, and expression levels. This review paper aims to shed light on the role of overexpressed miRNAs in cancer progression. Cancer cells are known to upregulate specific miRNAs to inhibit the expression of genes regulating the cell cycle, such as PTEN, FOXO1, SOX7, caspases, KLF4, TRIM8, and ZBTB4. Inhibition of these genes promotes cancer development and survival by inducing cell growth, migration, and invasion while evading apoptosis, which leads to poor cancer survival rates. Therefore, the potential of antisense miRNAs in treating cancer is also explored in this review. Antisense miRNAs are chemically modified oligonucleotides that can reverse the action of overexpressed miRNAs. Currently, the therapeutic potential of antisense miRNAs is being validated in both in vitro and in vivo models. Studies have shown that antisense miRNAs could slow down the progression of cancer while enhancing the action of conventional anticancer drugs. These findings provide hope for future oncologic care as this novel intervention is in the process of clinical translation.


Asunto(s)
MicroARNs , Neoplasias , Humanos , MicroARNs/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Oncogenes , Proliferación Celular , Genes Supresores de Tumor , Proteínas Portadoras/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo
14.
Anticancer Agents Med Chem ; 22(5): 999-1011, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34238173

RESUMEN

BACKGROUND: The lack of specificity, severe side effects, and development of drug resistance have largely limited the use of platinum-based compounds in cancer treatment. Therefore, copper complexes have emerged as potential alternatives to platinum-based compounds. OBJECTIVE: Ternary copper (II) complex incorporated with 1-10-phenanthroline and L-tyrosine was investigated for its anti-cancer effects in HT-29 colorectal cancer cells. METHODS: Cytotoxic effects of ternary copper (II) complex in HT-29 cells was evaluated using MTT assay, Real-Time Cell Analysis (RTCA) and lactate dehydrogenase (LDH) assay. Cell cycle analysis was performed using flow cytometry. Apoptosis induction was studied by Annexin V-FITC/Propidium Iodide (PI) staining and mitochondrial membrane potential analysis (JC-10 staining) using flow cytometry. Intracellular Reactive Oxygen Species (ROS) were detected by DCFH-DA assay. The expression of proteins involved in the apoptotic signalling pathway (p53, caspases, and PARP-1) was evaluated by western blot analysis. RESULTS: Ternary copper (II) complex reduced the cell viability of HT-29 cells in a time- and dose-dependent manner, with IC50 of 2.4 ± 0.4 and 0.8 ± 0.04 µM at 24 and 48 hours, respectively. Cell cycle analysis demonstrated induction of S-phase cell cycle arrest. Morphological evaluation and Annexin V-FITC/PI flow cytometry analysis confirmed induction of apoptosis that was further supported by cleavage and activation of caspase-8, caspase-9, caspase-3, and PARP- 1. Mutant p53 was also downregulated in a dose-dependent manner. No LDH release, mitochondrial membrane potential disruption, and ROS production were observed. CONCLUSION: Ternary copper (II) complex holds great potential to be developed for colorectal cancer treatment.


Asunto(s)
Neoplasias Colorrectales , Cobre , Apoptosis , Ciclo Celular , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Cobre/farmacología , Humanos , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
15.
Stem Cell Res Ther ; 13(1): 197, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35551652

RESUMEN

BACKGROUND: Chemoresistance often causes the failure of treatment and death of patients with advanced non-small-cell lung cancer. However, there is still no resistance genes signature and available enriched signaling derived from a comprehensive RNA-Seq data analysis of lung cancer patients that could act as a therapeutic target to re-sensitize the acquired resistant cancer cells to chemo-drugs. Hence, in this study, we aimed to identify the resistance signature for clinical lung cancer patients and explore the regulatory mechanism. METHOD: Analysis of RNA-Seq data from clinical lung cancer patients was conducted in R studio to identify the resistance signature. The resistance signature was validated by survival time of lung cancer patients and qPCR in chemo-resistant cells. Cytokine application, small-interfering RNA and pharmacological inhibition approaches were applied to characterize the function and molecular mechanism of EREG and downstream signaling in chemoresistance regulation via stemness. RESULTS: The RTK and vitamin D signaling were enriched among resistance genes, where 6 genes were validated as resistance signature and associated with poor survival in patients. EREG/ERK signaling was activated by chemo-drugs in NSCLC cells. EREG protein promoted the NSCLC resistance to chemo-drugs by increasing stemness genes expression. Additionally, inhibition of EREG/ErbB had downregulated ERK signaling, resulting in decreased expression of stemness-associated genes and subsequently re-sensitized the resistant NSCLC cells and spheres to chemo-drugs. CONCLUSIONS: These findings revealed 6 resistance genes signature and proved that EREG/ErbB regulated the stemness to maintain chemoresistance of NSCLC via ERK signaling. Therefore, targeting EREG/ErbB might significantly and effectively resolve the chemoresistance issue.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Epirregulina/genética , Epirregulina/metabolismo , Epirregulina/farmacología , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Transducción de Señal
16.
PLoS One ; 16(5): e0250634, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34048444

RESUMEN

BACKGROUND: Drug resistance frequently led to the failure of chemotherapy for malignant cancers, hence causing cancer relapse. Thus, understanding mechanism of drug resistance in cancer is vital to improve the treatment efficacy. Here, we aim to evaluate the association between SMAD4 expression and the drug resistance in cancers by performing a meta-analysis. METHOD: Relevant studies detecting SMAD4 expression in cancer patients treated with chemo-drugs up till December 2020 were systematically searched in four common scientific databases using selected keywords. The pooled hazard ratio (HR) was the ratio of hazard rate between SMAD4neg population vs SMAD4pos population. The HRs and risk ratios (RRs) with 95% confidence intervals (CIs) were used to explore the association between SMAD4 expression losses with drug resistance in cancers. RESULT: After an initial screening according to the inclusion and exclusion criteria, eleven studies were included in the meta-analysis. There were a total of 2092 patients from all the included studies in this analysis. Results obtained indicated that loss of SMAD4 expression was significantly correlated with drug resistance with pooled HRs (95% CI) of 1.23 (1.01-1.45), metastasis with pooled RRs (95% CI) of 1.10 (0.97-1.25) and recurrence with pooled RRs (95% CI) of 1.32 (1.06-1.64). In the subgroup analysis, cancer type, drug type, sample size and antibody brand did not affect the significance of association between loss of SMAD4 expression and drug resistance. In addition, there was no evidence of publication bias as suggested by Begg's test. CONCLUSION: Findings from our meta-analysis demonstrated that loss of SMAD4 expression was correlated with drug resistance, metastasis and recurrence. Therefore, SMAD4 expression could be potentially used as a molecular marker for cancer resistance.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Resistencia a Antineoplásicos , Neoplasias/patología , Proteína Smad4/metabolismo , Humanos , Metástasis de la Neoplasia , Neoplasias/genética , Neoplasias/metabolismo , Pronóstico , Proteína Smad4/genética
17.
Cells Dev ; 165: 203659, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-34024336

RESUMEN

Successful outcomes of cell-based therapeutic is highly-dependent on quality and quantity of the cells. Epigenetic modifiers are known to modulate cell fates via reprogramming, hence it is plausible to use them in enhancing the plasticity of mesenchymal stem cells. In this study, we aimed to study the effects of 5-Azacytidine (5-AzaCR), an epigenetic modifier, pretreatment on mesenchymal stem cells-derived from Wharton's Jelly (WJMSCs) fates. WJMSCs were pretreated with 5-AzaCR for 24 h and subsequently cultured in culture media mixtures. The proliferative and stemness characteristics of the pretreated WJMSCs were assessed through morphological and gene expression analyses. Results showed that cells pretreated with 5 µM to 20 µM of 5-AzaCR showed to acquire higher proliferative state transiently when cultured in embryonic-mesenchymal stem cell (ESC-MSC) media, but not in MSC medium alone, and this coincides with significant transitional upregulation of stemness transcription factors. 5-AzaCR pretreatment has potential to confer initial induction of higher state of stemness and proliferation in WJMSCs, influenced by the culture media.


Asunto(s)
Azacitidina/farmacología , Células Madre Mesenquimatosas/citología , Regulación hacia Arriba , Biomarcadores/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Femenino , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Gelatina de Wharton/citología
18.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34832875

RESUMEN

Exosomes are the small extracellular vesicles secreted by cells for intercellular communication. Exosomes are rich in therapeutic cargos such as microRNA (miRNA), long non-coding RNA (lncRNA), small interfering RNA (siRNA), DNA, protein, and lipids. Recently, many studies have focused on miRNAs as a promising therapeutic factor to support cartilage regeneration. Exosomes are known to contain a substantial amount of a variety of miRNAs. miRNAs regulate the post-transcriptional gene expression by base-pairing with the target messenger RNA (mRNA), leading to gene silencing. Several exosomal miRNAs have been found to play a role in cartilage regeneration by promoting chondrocyte proliferation and matrix secretion, reducing scar tissue formation, and subsiding inflammation. The exosomal miRNA cargo can be modulated using techniques such as cell transfection and priming as well as post-secretion modifications to upregulate specific miRNAs to enhance the therapeutic effect. Exosomes are delivered to the joints through direct injection or via encapsulation within a scaffold for sustained release. To date, exosome therapy for cartilage injuries has yet to be optimized as the ideal cell source for exosomes, and the dose and method of delivery have yet to be identified. More importantly, a deeper understanding of the role of exosomal miRNAs in cartilage repair is paramount for the development of more effective exosome therapy.

19.
Stem Cells Int ; 2021: 2616807, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34422061

RESUMEN

Cell therapy involves the transplantation of human cells to replace or repair the damaged tissues and modulate the mechanisms underlying disease initiation and progression in the body. Nowadays, many different types of cell-based therapy are developed and used to treat a variety of diseases. In the past decade, cell-free therapy has emerged as a novel approach in regenerative medicine after the discovery that the transplanted cells exerted their therapeutic effect mainly through the secretion of paracrine factors. More and more evidence showed that stem cell-derived secretome, i.e., growth factors, cytokines, and extracellular vesicles, can repair the injured tissues as effectively as the cells. This finding has spurred a new idea to employ secretome in regenerative medicine. Despite that, will cell-free therapy slowly replace cell therapy in the future? Or are these two modes of treatment still needed to address different diseases and conditions? This review provides an indepth discussion about the values of stem cells and secretome in regenerative medicine. In addition, the safety, efficacy, advantages, and disadvantages of using these two modes of treatment in regenerative medicine are also critically reviewed.

20.
Curr Cancer Drug Targets ; 20(3): 187-196, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31713495

RESUMEN

Peptides have acquired increasing interest as promising therapeutics, particularly as anticancer alternatives during recent years. They have been reported to demonstrate incredible anticancer potentials due to their low manufacturing cost, ease of synthesis and great specificity and selectivity. Hepatocellular carcinoma (HCC) is among the leading cause of cancer death globally, and the effectiveness of current liver treatment has turned out to be a critical issue in treating the disease efficiently. Hence, new interventions are being explored for the treatment of hepatocellular carcinoma. Anticancer peptides (ACPs) were first identified as part of the innate immune system of living organisms, demonstrating promising activity against infectious diseases. Differentiated beyond the traditional effort on endogenous human peptides, the discovery of peptide drugs has evolved to rely more on isolation from other natural sources or through the medicinal chemistry approach. Up to the present time, the pharmaceutical industry intends to conduct more clinical trials for the development of peptides as alternative therapy since peptides possess numerous advantages such as high selectivity and efficacy against cancers over normal tissues, as well as a broad spectrum of anticancer activity. In this review, we present an overview of the literature concerning peptide's physicochemical properties and describe the contemporary status of several anticancer peptides currently engaged in clinical trials for the treatment of hepatocellular carcinoma.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Proteínas de Neoplasias/metabolismo , Fragmentos de Péptidos/uso terapéutico , Animales , Antineoplásicos/química , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/inmunología , Fragmentos de Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA