Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(11): 6237-6245, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32123075

RESUMEN

Stomata in the plant epidermis play a critical role in growth and survival by controlling gas exchange, transpiration, and immunity to pathogens. Plants modulate stomatal cell fate and patterning through key transcriptional factors and signaling pathways. MicroRNAs (miRNAs) are known to contribute to developmental plasticity in multicellular organisms; however, no miRNAs appear to target the known regulators of stomatal development. It remains unclear as to whether miRNAs are involved in stomatal development. Here, we report highly dynamic, developmentally stage-specific miRNA expression profiles from stomatal lineage cells. We demonstrate that stomatal lineage miRNAs positively and negatively regulate stomatal formation and patterning to avoid clustered stomata. Target prediction of stomatal lineage miRNAs implicates potential cellular processes in stomatal development. We show that miR399-mediated PHO2 regulation, involved in phosphate homeostasis, contributes to the control of stomatal development. Our study demonstrates that miRNAs constitute a critical component in the regulatory mechanisms controlling stomatal development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , MicroARNs/metabolismo , Estomas de Plantas/crecimiento & desarrollo , Enzimas Ubiquitina-Conjugadoras/genética , MicroARNs/genética , Plantas Modificadas Genéticamente , RNA-Seq
2.
Stem Cells ; 38(4): 516-529, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31778275

RESUMEN

Pluripotent stem cells (PSCs) can serve as an unlimited cell source for transplantation therapies for treating various devastating diseases, such as cardiovascular diseases, diabetes, and Parkinson's disease. However, PSC transplantation has some associated risks, including teratoma formation from the remaining undifferentiated PSCs. Thus, for successful clinical application, it is essential to ablate the proliferative PSCs before or after transplantation. In this study, neural stem cell-derived conditioned medium (NSC-CM) inhibited the proliferation of PSCs and PSC-derived neural precursor (NP) cells without influencing the potential of PSC-NP cells to differentiate into neurons in vitro and prevented teratoma growth in vivo. Moreover, we found that the NSC-CM remarkably decreased the expression levels of Oct4 and cyclin D1 that Oct4 directly binds to and increased the cleaved-caspase 3-positive cell death through the DNA damage response in PSCs and PSC-NPs. Interestingly, we found that NSCs distinctly secreted the tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 proteins. These proteins suppressed not only the proliferation of PSCs in cell culture but also teratoma growth in mice transplanted with PSCs through inhibition of matrix metalloproteinase (MMP)-2 and MMP-9 activity. Taken together, these results suggest that the TIMP proteins may improve the efficacy and safety of the PSC-based transplantation therapy.


Asunto(s)
Células Madre Pluripotentes/metabolismo , Teratoma/terapia , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Animales , Humanos , Masculino , Ratones , Ratones Desnudos , Teratoma/patología
3.
Lipids Health Dis ; 20(1): 163, 2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34775964

RESUMEN

Reprogramming of lipid metabolism has received increasing recognition as a hallmark of cancer cells because lipid dysregulation and the alteration of related enzyme profiles are closely correlated with oncogenic signals and malignant phenotypes, such as metastasis and therapeutic resistance. In this review, we describe recent findings that support the importance of lipids, as well as the transcription factors involved in cancer lipid metabolism. With recent advances in transcription factor analysis, including computer-modeling techniques, transcription factors are emerging as central players in cancer biology. Considering the limited number and the crucial role of transcription factors associated with lipid rewiring in cancers, transcription factor targeting is a promising potential strategy for cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Metabolismo de los Lípidos/fisiología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Factores de Transcripción/metabolismo , Terapia Molecular Dirigida/métodos , Neoplasias/inmunología , Neoplasias/patología
4.
Plant Cell Rep ; 35(12): 2523-2537, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27637203

RESUMEN

KEY MESSAGE: We described identification, expression, subcellular localization, and functions of genes that encode fatty acid desaturase enzymes in Perilla frutescens var. frutescens. Perilla (Perilla frutescens var. frutescens) seeds contain approximately 40 % of oil, of which α-linolenic acid (18:3) comprise more than 60 % in seed oil and 56 % of total fatty acids (FAs) in leaf, respectively. In perilla, endoplasmic reticulum (ER)-localized and chloroplast-localized ω-3 FA desaturase genes (PfrFAD3 and PfrFAD7, respectively) have already been reported, however, microsomal oleate 12-desaturase gene (PfrFAD2) has not yet. Here, four perilla FA desaturase genes, PfrFAD2-1, PfrFAD2-2, PfrFAD3-2 and PfrFAD7-2, were newly identified and characterized using random amplification of complementary DNA ends and sequence data from RNAseq analysis, respectively. According to the data of transcriptome and gene cloning, perilla expresses two PfrFAD2 and PfrFAD3 genes, respectively, coding for proteins that possess three histidine boxes, transmembrane domains, and an ER retrieval motif at its C-terminal, and two chloroplast-localized ω-3 FA desaturase genes, PfrFAD7-1 and PfrFAD7-2. Arabidopsis protoplasts transformed with perilla genes fused to green fluorescence protein gene demonstrated that PfrFAD2-1 and PfrFAD3-2 were localized in the ER, and PfrFAD7-1 and PfrFAD7-2 were localized in the chloroplasts. PfrFAD2 and perilla ω-3 FA desaturases were functional in budding yeast (Saccharomyces cerevisiae) indicated by the presence of 18:2 and 16:2 in yeast harboring the PfrFAD2 gene. 18:2 supplementation of yeast harboring ω-3 FA desaturase gene led to the production of 18:3. Therefore, perilla expresses two functional FAD2 and FAD3 genes, and two chloroplast-localized ω-3 FA desaturase genes, which support an evidence that P. frutescens cultivar is allotetraploid plant.


Asunto(s)
Ácido Graso Desaturasas/genética , Genes de Plantas , Perilla frutescens/enzimología , Perilla frutescens/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Cromatografía de Gases , Clonación Molecular , Ésteres/análisis , Ácido Graso Desaturasas/química , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Semillas/enzimología , Semillas/genética , Semillas/metabolismo , Alineación de Secuencia , Fracciones Subcelulares/enzimología
5.
Plant Cell Rep ; 34(1): 71-81, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25253450

RESUMEN

KEY MESSAGE: The Arabidopsis AP2/ERF family transcription factor AtERF15 is nuclear-localized and positively regulates ABA and stress responses. Abscisic acid (ABA) is a major plant hormone that controls the expression of hundreds genes involved in various aspects of plant growth and development, such as seed development, germination, seedling growth and abiotic stress response. Several cis-elements mediating the ABA-regulated gene expression have been reported, and one of the regulatory elements is Coupling Element 1 (CE1). We previously isolated a group of AP2/ERF family proteins that bind CE1, but their functions are mostly unknown. In this study, we demonstrate that one of the CE1 binding factors (CEBFs), AtERF15, is involved in ABA response. To investigate the AtERF15 function, we generated its overexpression (OX) lines by expressing the AtERF15 coding region under the control of CaMV 35S promoter and analyzed their phenotypes. We found that the AtERF15 OX lines were hypersensitive to ABA at the germination stage. The ABA hypersensitivity was also observed in our root elongation assay of seedlings. Furthermore, the transgenic lines were hypersensitive to high salinity and high osmolarity at the seedling establishment stage, and the transgenic seedlings were drought-tolerant. We also determined the tissue-specific expression pattern and the subcellular localization of AtERF15. Our results indicate that it is highly expressed in roots and embryos and nuclear-localized. Collectively, our data suggest that AtERF15 is a positive regulator of ABA response.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/genética , Arabidopsis/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Factores de Transcripción/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Relación Dosis-Respuesta a Droga , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/efectos de los fármacos , Germinación/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Manitol/farmacología , Microscopía Fluorescente , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/efectos de los fármacos , Semillas/genética , Semillas/crecimiento & desarrollo , Cloruro de Sodio/farmacología , Factores de Transcripción/metabolismo
6.
J Nanosci Nanotechnol ; 21(7): 4081-4084, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33715749

RESUMEN

This study examined the thermal and catalytic pyrolysis of waste Achyranthes Root (AR) using pyrolyzer-gas chromatography/mass spectrometry (Py-GC/MS). The non-catalytic pyrolysis of waste AR produced various kinds of oxygenates, such as acetic acid, hydroxy propanone, furfural, phenol, cresol, guaiacols, syringols, and so on. By applying nanoporous Al-MCM-41 with acidic properties and mesopores to the pyrolysis of waste AR, the levels of furan and aromatic hydrocarbons production increased with a concomitant decrease in the other oxygenates. The formation efficiency of furans was improved further by increasing the amount of Al-MCM-41 applied to the catalytic pyrolysis of waste AR.


Asunto(s)
Achyranthes , Pirólisis , Catálisis , Dióxido de Silicio
7.
Front Plant Sci ; 11: 551, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32499801

RESUMEN

Leaf senescence is a developmental process designed for nutrient recycling and relocation to maximize growth competence and reproductive capacity of plants. Thus, plants integrate developmental and environmental signals to precisely control senescence. To genetically dissect the complex regulatory mechanism underlying leaf senescence, we identified an early leaf senescence mutant, rse1. RSE1 encodes a putative glycosyltransferase. Loss-of-function mutations in RSE1 resulted in precocious leaf yellowing and up-regulation of senescence marker genes, indicating enhanced leaf senescence. Transcriptome analysis revealed that salicylic acid (SA) and defense signaling cascades were up-regulated in rse1 prior to the onset of leaf senescence. We found that SA accumulation was significantly increased in rse1. The rse1 phenotypes are dependent on SA-INDUCTION DEFICIENT 2 (SID2), supporting a role of SA in accelerated leaf senescence in rse1. Furthermore, RSE1 protein was localized to the cell wall, implying a possible link between the cell wall and RSE1 function. Together, we show that RSE1 negatively modulates leaf senescence through an SID2-dependent SA signaling pathway.

8.
Nat Plants ; 5(12): 1273-1282, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31740770

RESUMEN

RNA quality control (RQC) and post-transcriptional gene silencing (PTGS) target and degrade aberrant endogenous RNAs and foreign RNAs, contributing to homeostasis of cellular RNAs. In plants, RQC and PTGS compete for foreign and selected endogenous RNAs; however, little is known about the mechanism interconnecting the two pathways. Using a reporter system designed for monitoring PTGS, we revealed that the 26S proteasome subunit RPT2a enhances transgene PTGS by promoting the accumulation of transgene-derived short interfering RNAs without affecting their biogenesis. RPT2a physically associated with a subset of RQC components and downregulated the protein level. Overexpression of the RQC components interfered with transgene silencing, and impairment of the RQC machinery reinforced transgene PTGS attenuated by rpt2a. Overall, we demonstrate that the 26S proteasome subunit RPT2a promotes PTGS by repressing the RQC machinery to control foreign RNAs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Interferencia de ARN , ARN de Planta/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Complejo de la Endopetidasa Proteasomal/genética , ARN de Planta/metabolismo , Transgenes
11.
Mol Cells ; 40(3): 230-242, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28292003

RESUMEN

In the Arabidopsis genome, approximately 80 MAP3Ks (mitogen-activated protein kinase kinase kinases) have been identified. However, only a few of them have been characterized, and the functions of most MAP3Ks are largely unknown. In this paper, we report the function of MAP3K16 and several other MAP3Ks, MAP3K14/15/17/18, whose expression is salt-inducible. We prepared MAP3K16 overexpression (OX) lines and analyzed their phenotypes. The result showed that the transgenic plants were ABA-insensitive during seed germination and cotyledon greening stage but their root growth was ABA-hypersensitive. The OX lines were more susceptible to water-deficit condition at later growth stage in soil. A MAP3K16 knockout (KO) line, on the other hand, exhibited opposite phenotypes. In similar transgenic analyses, we found that MAP3K14/15/17/18 OX and KO lines displayed similar phenotypes to those of MA3K16, suggesting the functional redundancy among them. MAP3K16 possesses in vitro kinase activity, and we carried out two-hybrid analyses to identify MAP3K16 substrates. Our results indicate that MAP3K16 interacts with MKK3 and the negative regulator of ABA response, ABR1, in yeast. Furthermore, MAP3K16 recombinant protein could phosphorylate MKK3 and ABR1, suggesting that they might be MAP3K16 substrates. Collectively, our results demonstrate that MAP3K16 and MAP3K14/15/17/18 are involved in ABA response, playing negative or positive roles depending on developmental stage and that MAP3K16 may function via MKK3 and ABR1.


Asunto(s)
Ácido Abscísico/farmacología , Arabidopsis/crecimiento & desarrollo , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , MAP Quinasa Quinasa 3/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Fenotipo , Fosforilación , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA