Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nature ; 629(8011): 348-354, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658760

RESUMEN

Natural diamonds were (and are) formed (thousands of million years ago) in the upper mantle of Earth in metallic melts at temperatures of 900-1,400 °C and at pressures of 5-6 GPa (refs. 1,2). Diamond is thermodynamically stable under high-pressure and high-temperature conditions as per the phase diagram of carbon3. Scientists at General Electric invented and used a high-pressure and high-temperature apparatus in 1955 to synthesize diamonds by using molten iron sulfide at about 7 GPa and 1,600 °C (refs. 4-6). There is an existing model that diamond can be grown using liquid metals only at both high pressure and high temperature7. Here we describe the growth of diamond crystals and polycrystalline diamond films with no seed particles using liquid metal but at 1 atm pressure and at 1,025 °C, breaking this pattern. Diamond grew in the subsurface of liquid metal composed of gallium, iron, nickel and silicon, by catalytic activation of methane and diffusion of carbon atoms into and within the subsurface regions. We found that the supersaturation of carbon in the liquid metal subsurface leads to the nucleation and growth of diamonds, with Si playing an important part in stabilizing tetravalently bonded carbon clusters that play a part in nucleation. Growth of (metastable) diamond in liquid metal at moderate temperature and 1 atm pressure opens many possibilities for further basic science studies and for the scaling of this type of growth.

2.
Proc Natl Acad Sci U S A ; 119(11): e2113813119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35259014

RESUMEN

SignificanceThe GGGGCC hexanucleotide repeat expansion in the chromosome 9 open reading frame 72 (C9orf72) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS). Despite myriad studies on the toxic effects of poly-dipeptides produced from the C9orf72 repeats, the mechanisms underlying the selective hyperexcitability of motor cortex that characterizes the early stages of C9orf72 ALS patients remain elusive. Here, we show that the proline-arginine poly-dipeptides cause hyperexcitability in cortical motor neurons by increasing persistent sodium currents conducted by the Nav1.2/ß4 sodium channel complex, which is highly expressed in the motor cortex. These findings provide the basis for understanding how the C9orf72 mutation causes motor neuron hyperactivation that can lead to the motor neuron death in C9orf72 ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/etiología , Esclerosis Amiotrófica Lateral/metabolismo , Proteína C9orf72/genética , Dipéptidos/genética , Hipercinesia/genética , Neuronas Motoras/metabolismo , Esclerosis Amiotrófica Lateral/patología , Arginina , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Dipéptidos/metabolismo , Susceptibilidad a Enfermedades , Potenciales Evocados Motores , Predisposición Genética a la Enfermedad , Humanos , Fenotipo , Prolina , Sodio/metabolismo
3.
Molecules ; 27(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35630718

RESUMEN

Electric double-layer capacitors (EDLCs) are an excellent electrochemical energy storage system (ESS) because of their superior power density, faster charge-discharge ability, and longer cycle life compared to those of other EES systems. Activated carbons (ACs) have been mainly used as the electrode materials for EDLCs because of their high specific surface area, superior chemical stability, and low cost. Petroleum pitch (PP) is a graphitizable carbon that is a promising precursor for ACs because of its high carbon content, which is obtained as an abundant by-product during the distillation of petroleum. However, the processibility of PP is poor because of its stable structure. In this study, pre-oxidized PP-derived AC (OPP-AC) was prepared to investigate the effects of pre-oxidation on the electrochemical behaviors of PP. The specific surface area and pore size distribution of OPP-AC were lower and narrower, respectively, compared to the textural properties of untreated PP-derived AC (PP-AC). On the other hand, the specific capacitance of OPP-AC was 25% higher than that of PP-AC. These results revealed that pre-oxidation of PP induces a highly developed micropore structure of ACs, resulting in improved electrochemical performance.

4.
Langmuir ; 36(15): 4144-4152, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32216352

RESUMEN

Zinc sulfide (ZnS) was deposited onto the surface of mesoporous TiO2 film by a typical successive ionic layer adsorption and reaction (SILAR) process. By inducing a spontaneous cation exchange between ZnS and a target cation (Pb2+, Cu2+, Ag+, or Bi3+) dissolved in a chemical bath when they are in contact, it was demonstrated successfully that white translucent ZnS on the substrate could be changed to new brown-colored metal chalcogenides and the amount of ZnS deposited originally by different conditions could be compared in a qualitative way with the degree of color change. By utilizing this simple but effective process, the evolution of a well-known ZnS passivation layer prepared from different chemical baths in quantum dot (QD)-sensitized solar cells could be tracked visually by checking the degree of color change of TiO2/ZnS electrodes after the induced specific cation exchange. When applied to representative CdS QD-sensitized solar cells, it was revealed clearly how the different degrees and rates of ZnS deposition could affect the overall power conversion efficiency while finding an optimized passivation layer over TiO2/CdS electrode. An acetate anion-coupled Zn2+ source was observed to give a much faster deposition of a ZnS passivation layer than a nitrate anion one because of its higher pH-induced more-favorable adsorption of Zn2+ on the surface of TiO2. As another useful application of the ZnS-based cation exchange, as-deposited ZnS was used as a template for preparing a more complex metal chalcogenide onto a mesoporous TiO2 film. The ZnS-derived Sb2S3-sensitized electrode showed a promising initial result of over 1.0% overall power conversion efficiency with a very thin ZrO2 passivation layer between TiO2 and Sb2S3.

5.
Korean J Physiol Pharmacol ; 23(5): 317-328, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31496869

RESUMEN

It is known that top-down associative inputs terminate on distal apical dendrites in layer 1 while bottom-up sensory inputs terminate on perisomatic dendrites of layer 2/3 pyramidal neurons (L2/3 PyNs) in primary sensory cortex. Since studies on synaptic transmission in layer 1 are sparse, we investigated the basic properties and cholinergic modulation of synaptic transmission in layer 1 and compared them to those in perisomatic dendrites of L2/3 PyNs of rat primary visual cortex. Using extracellular stimulations of layer 1 and layer 4, we evoked excitatory postsynaptic current/potential in synapses in distal apical dendrites (L1-EPSC/L1-EPSP) and those in perisomatic dendrites (L4-EPSC/L4-EPSP), respectively. Kinetics of L1-EPSC was slower than that of L4-EPSC. L1-EPSC showed presynaptic depression while L4-EPSC was facilitating. In contrast, inhibitory postsynaptic currents showed similar paired-pulse ratio between layer 1 and layer 4 stimulations with depression only at 100 Hz. Cholinergic stimulation induced presynaptic depression by activating muscarinic receptors in excitatory and inhibitory synapses to similar extents in both inputs. However, nicotinic stimulation enhanced excitatory synaptic transmission by ~20% in L4-EPSC. Rectification index of AMPA receptors and AMPA/NMDA ratio were similar between synapses in distal apical and perisomatic dendrites. These results provide basic properties and cholinergic modulation of synaptic transmission between distal apical and perisomatic dendrites in L2/3 PyNs of the visual cortex, which might be important for controlling information processing balance depending on attentional state.

6.
ACS Appl Mater Interfaces ; 16(17): 21367-21382, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38631339

RESUMEN

Recent advances in paper-based microsupercapacitors (p-MSCs) have attracted significant attention due to their potential as substrates for flexible electronics. This review summarizes progress in the field of p-MSCs, discussing their challenges and prospects. It covers various aspects, including the fundamental characteristics of paper, the modification of paper with functional materials, and different methods for device fabrication. The review critically analyzes recent advancements, materials, and fabrication techniques for p-MSCs, exploring their potential applications and benefits, such as flexibility, cost-effectiveness, and sustainability. Additionally, this review highlights gaps in current research, guiding future investigations and innovations in the field. It provides an overview of the current state of p-MSCs and offers valuable insights for researchers and professionals in the field. The critical analysis and discussion presented herein offer a roadmap for the future development of p-MSCs and their potential impact on the domain of flexible electronics.

7.
ACS Omega ; 9(1): 294-303, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222635

RESUMEN

In this study, to improve the electrical properties and impact strength of phenolic formaldehyde (PF) resin, PF-based composites were prepared by mixing graphene and the ionic liquid 3-decyl-bis(1-vinyl-1H-imidazole-3-ium-bromide) (C10[VImBr]2) via hot blending and compression-curing processes. The graphene surface was modified using a silane coupling agent. The synergistic effect of graphene and C10[VImBr]2 on the electrical properties, electromagnetic shielding efficiency, thermal stability, impact strength, and morphology of PF/graphene and PF/graphene/C10[VImBr]2 composites was then investigated. It was found that the electrical conductivity of the composites significantly increased from 2.3 × 10-10 to 4.14 × 10-3 S/m with an increase in the graphene content from 0 to 15 wt %, increasing further to 0.145 S/m with the addition of 5 wt % C10[VImBr]2. The electromagnetic shielding efficiency of the composite increased from 4.70 to 28.64 dB with the addition of 15 wt % graphene, while the impact strength of the composites rose significantly from 0.59 to 1.13 kJ/m2 with an increase in the graphene content from 0 to 15 wt %, reaching 1.53 kJ/m2 with the addition of 5 wt % C10[VImBr]2. Scanning electron microscopy images of the PF/GNP/C10[VImBr]2 composites revealed a rough morphology with numerous microcracks.

8.
RSC Adv ; 14(2): 1284-1303, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38174250

RESUMEN

Graphene, the most fascinating 2D form of carbon with closely packed carbon atoms arranged in a layer, needs more attention in various fields. For its unique electrical, mechanical, and chemical properties with a large surface area, graphene has been in the limelight since its first report. Graphene has extraordinary properties, making it the most promising electrode component for applications in supercapacitors. However, the persistent re-stacking of carbon layers in graphene, caused by firm interlayer van der Waals attractions, significantly impairs the performance of supercapacitors. As a result, many strategies have been used to get around the aforementioned problems. The utilization of graphene-based nanomaterials has been implemented to surmount the aforementioned constraints and considerably enhance the performance of supercapacitors. This review highlights recent progress in graphene-based nanomaterials with metal oxide, sulfides, phosphides, nitrides, carbides, and conducting polymers, focusing on their synthetic approach, configurations, and electrochemical properties for supercapacitors. It discusses new possibilities that could increase the performance of next-generation supercapacitors.

9.
Nanomicro Lett ; 16(1): 138, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421464

RESUMEN

Zinc-air batteries (ZABs) are gaining attention as an ideal option for various applications requiring high-capacity batteries, such as portable electronics, electric vehicles, and renewable energy storage. ZABs offer advantages such as low environmental impact, enhanced safety compared to Li-ion batteries, and cost-effectiveness due to the abundance of zinc. However, early research faced challenges due to parasitic reactions at the zinc anode and slow oxygen redox kinetics. Recent advancements in restructuring the anode, utilizing alternative electrolytes, and developing bifunctional oxygen catalysts have significantly improved ZABs. Scientists have achieved battery reversibility over thousands of cycles, introduced new electrolytes, and achieved energy efficiency records surpassing 70%. Despite these achievements, there are challenges related to lower power density, shorter lifespan, and air electrode corrosion leading to performance degradation. This review paper discusses different battery configurations, and reaction mechanisms for electrically and mechanically rechargeable ZABs, and proposes remedies to enhance overall battery performance. The paper also explores recent advancements, applications, and the future prospects of electrically/mechanically rechargeable ZABs.

10.
Nat Commun ; 15(1): 3459, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658566

RESUMEN

Establishing dependable, cost-effective electrical connections is vital for enhancing device performance and shrinking electronic circuits. MXenes, combining excellent electrical conductivity, high breakdown voltage, solution processability, and two-dimensional morphology, are promising candidates for contacts in microelectronics. However, their hydrophilic surfaces, which enable spontaneous environmental degradation and poor dispersion stability in organic solvents, have restricted certain electronic applications. Herein, electrohydrodynamic printing technique is used to fabricate fully solution-processed thin-film transistors with alkylated 3,4-dihydroxy-L-phenylalanine functionalized Ti3C2Tx (AD-MXene) as source, drain, and gate electrodes. The AD-MXene has excellent dispersion stability in ethanol, which is required for electrohydrodynamic printing, and maintains high electrical conductivity. It outperformed conventional vacuum-deposited Au and Al electrodes, providing thin-film transistors with good environmental stability due to its hydrophobicity. Further, thin-film transistors are integrated into logic gates and one-transistor-one-memory cells. This work, unveiling the ligand-functionalized MXenes' potential in printed electrical contacts, promotes environmentally robust MXene-based electronics (MXetronics).

11.
J Nanosci Nanotechnol ; 13(1): 443-7, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23646752

RESUMEN

In this work, Ni-doped graphene oxide/MIL-101 hybrid composites (Ni--GO/MIL) were prepared to investigate their hydrogen storage behaviors. Ni--GO/MIL was synthesized by adding Ni--GO in situ during the synthesis of MIL-101 using a hydrothermal process, which was conducted by conventional convection heating with Cr(III) ion as a metal center and telephthalic acid as organic ligands. The crystalline structures and morphologies were measured by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The specific surface area and micropore volume were investigated by N2/77 K adsorption isotherms using the Brunauer-Emmett-Teller (BET) method and Dubinin-Radushkevic (D-R) equation, respectively. The hydrogen storage capacity was investigated by BEL-HP at 77 K and 1 bar. The obtained results show that Ni--GO/MIL presents new directions for achieving novel hybrid materials with higher hydrogen storage capacity.


Asunto(s)
Grafito/química , Hidrógeno/química , Hidrógeno/aislamiento & purificación , Nanoestructuras/química , Nanoestructuras/ultraestructura , Níquel/química , Óxidos/química , Absorción , Ensayo de Materiales , Tamaño de la Partícula
12.
J Colloid Interface Sci ; 629(Pt B): 87-96, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36152583

RESUMEN

Photocatalytic technology is widely explored as a promising alternative for water treatments. However, low photocatalytic efficiency and selectivity usually limit its practical application. Herein, we develop the synthesis of two-dimensional zinc oxide (ZnO) nanosheets decorated with copper (Cu)-palladium (Pd) bimetallic nanoparticles (NPs) for the degradation of organic dyes in an aqueous solution. Compared to pristine ZnO nanosheets, the prepared CuPd/ZnO composites exhibited superior performance for the photocatalytic degradation of organic dyes under visible-light irradiation. The remarkable improvement of degradation activity was attributable to the enhanced separation and transfer efficiency of photogenerated charge carriers. The highest catalytic efficiency of CuPd/ZnO nanocomposite with the CuPd content of 0.5 wt% exhibited 95.3% removal of methyl orange (MO) (40 mg/L) within 45 min. From the experimental data, we believe this study provides a new avenue for the design and fabrication of high-performance photocatalysts capable of water treatments.

13.
Nanomaterials (Basel) ; 13(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36903696

RESUMEN

In recent years, porous carbon materials with high specific surface area and porosity have been developed to meet the commercial demands of supercapacitor applications. Carbon aerogels (CAs) with three-dimensional porous networks are promising materials for electrochemical energy storage applications. Physical activation using gaseous reagents provides controllable and eco-friendly processes due to homogeneous gas phase reaction and removal of unnecessary residue, whereas chemical activation produced wastes. In this work, we have prepared porous CAs activated by gaseous carbon dioxide, with efficient collisions between the carbon surface and the activating agent. Prepared CAs display botryoidal shapes resulting from aggregation of spherical carbon particles, whereas activated CAs (ACAs) display hollow space and irregular particles from activation reactions. ACAs have high specific surface areas (2503 m2 g-1) and large total pore volumes (1.604 cm3 g-1), which are key factors for achieving a high electrical double-layer capacitance. The present ACAs achieved a specific gravimetric capacitance of up to 89.1 F g-1 at a current density of 1 A g-1, along with a high capacitance retention of 93.2% after 3000 cycles.

14.
Chemosphere ; 345: 140479, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863208

RESUMEN

Photogenerated charge carriers can undergo rapid recombination in conventional photocatalyst systems, reducing their photocatalytic efficiency. To address this bottleneck, a g-C3N4/BaTiO3 (CNB) heterojunction composite was decorated with different mass ratios of graphene oxide (GO) to form a novel visible-light responsive ternary GO-g-C3N4/BaTiO3 (GOCNB) nanocomposite using a facile fabrication method. The GOCNB photocatalyst exhibited significantly higher light absorption and greater charge transfer than CNB, g-C3N4, or BaTiO3. The photodegradation performance of GOCNB was optimized with a 2% mass loading of GO, and it achieved a degradation rate constant of 14.9 × 10-3 min-1 for rhodamine B with an efficiency of 94% within 180 min. The rate constant was 8-fold and 6-fold higher than that of bare BaTiO3 and CNB, respectively. The stronger photocatalytic activity was attributed to the synergistic effect of GO, g-C3N4, and BaTiO3, with g-C3N4 and BaTiO3 promoting charge transfer within a wider visible light range and GO promoting electron mobility and the photocatalyst's adsorption capacity. In particular, the proposed system maintained the spatial separation of photogenerated electron-hole pairs, which is vital for high photocatalytic activity. This study provides new insights into semiconductor-based photocatalytic systems and suggests a route for more environmentally sustainable technologies.


Asunto(s)
Luz , Nanocompuestos
15.
Chemosphere ; 323: 138210, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36828115

RESUMEN

Herein, we successfully prepared sustainable nanocomposites from agriculture waste (rice husk)-derived biochar precursor, and followed by nickel-doped, base-treated titanium dioxide nanomaterials loading for efficient lead (Pb2+) removal from aqueous media. By varying the loading contents of active materials, the optimized sample (Ni0.01@Na-TiO2/BC) possessed an efficient Pb2+ adsorption capability of 122.3 mg g-1 under the under optimum adsorption parameters, which is attributable to its specific surface area (138.09 m2 g-1) and excess functional sites. Kinetic and Isothermal examination illustrated that Pb2+ adsorption phenomena was well followed through pseudo 2nd order and Langmuir models. In addition, superior Pb2+ ions adsorption selectivity was recorded by optimized sample in a multi-metallic system over other existing ion (such as Cd2+, Mg2+, Ca2+, Cu2+, and Zn2+). Desorption experiments has been performed by using desorbing agent that demonstrates the good regeneration ability of sample. Hence, these findings provide new insight for the biowaste management by converting them into innovative adsorbents for commercial scale environmental remediation.


Asunto(s)
Nanocompuestos , Oryza , Contaminantes Químicos del Agua , Plomo , Iones , Agua , Contaminantes Químicos del Agua/análisis , Adsorción , Cinética , Concentración de Iones de Hidrógeno
16.
J Mech Behav Biomed Mater ; 147: 106103, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37690292

RESUMEN

The objective of this investigation was to design the selection and ranking of dental restorative composite materials using hybrid Entropy-VIKOR as the MCDM method. Eleven performance defining attributes (PDAs) of dental composites were considered to investigate the best formulation among the dental composites. The weight criteria of various PDAs of the dental composite were calculated by the Entropy method: PDA-1(0.0527), PDA-2 (0.0113), PDA-3(0.1692), PDA-4(0.1291), PDA-5(0.0207), etc. The VIKOR method was employed to demonstrate the rank of dental composites. As per the VIKOR method, the first rank was obtained by DHZ6, the second rank was by DHZ8, the third rank was by DHZ4, the fourth rank was by DHZ2, and the lowest rank was by DHZ0. The Hybrid Entropy-VIKOR method holds significance in the biomedical realm due to its capability to effectively address complex decision-making scenarios. Its ability to account for multiple criteria, uncertainties, and compromise solutions makes it particularly useful for enhancing decision-making processes in the biomedical field, where selecting the most suitable options is critical for patient outcomes and healthcare advancements.

17.
Nanomaterials (Basel) ; 13(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36986007

RESUMEN

Activated carbon fibers (ACFs) as one of the most important porous carbon materials are widely used in many applications that involve rapid adsorption and low-pressure loss, including air purification, water treatment, and electrochemical applications. For designing such fibers for the adsorption bed in gas and aqueous phases, in-depth comprehension of the surface components is crucial. However, achieving reliable values remains a major challenge due to the high adsorption affinity of ACFs. To overcome this problem, we propose a novel approach to determine London dispersive components (γSL) of the surface free energy of ACFs by inverse gas chromatography (IGC) technique at an infinite dilution. Our data reveal the γSL values at 298 K for bare carbon fibers (CFs) and the ACFs to be 97 and 260-285 mJ·m-2, respectively, which lie in the regime of secondary bonding of physical adsorption. Our analysis indicates that these are impacted by micropores and defects on the carbon surfaces. Comparing the γSL obtained by the traditional Gray's method, our method is concluded as the most accurate and reliable value for the hydrophobic dispersive surface component of porous carbonaceous materials. As such, it could serve as a valuable tool in designing interface engineering in adsorption-related applications.

18.
Nanomicro Lett ; 15(1): 123, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37160615

RESUMEN

With an excellent power conversion efficiency of 25.7%, closer to the Shockley-Queisser limit, perovskite solar cells (PSCs) have become a strong candidate for a next-generation energy harvester. However, the lack of stability and reliability in PSCs remained challenging for commercialization. Strategies, such as interfacial and structural engineering, have a more critical influence on enhanced performance. MXenes, two-dimensional materials, have emerged as promising materials in solar cell applications due to their metallic electrical conductivity, high carrier mobility, excellent optical transparency, wide tunable work function, and superior mechanical properties. Owing to different choices of transition elements and surface-terminating functional groups, MXenes possess the feature of tuning the work function, which is an essential metric for band energy alignment between the absorber layer and the charge transport layers for charge carrier extraction and collection in PSCs. Furthermore, adopting MXenes to their respective components helps reduce the interfacial recombination resistance and provides smooth charge transfer paths, leading to enhanced conductivity and operational stability of PSCs. This review paper aims to provide an overview of the applications of MXenes as components, classified according to their roles as additives (into the perovskite absorber layer, charge transport layers, and electrodes) and themselves alone or as interfacial layers, and their significant importance in PSCs in terms of device performance and stability. Lastly, we discuss the present research status and future directions toward its use in PSCs.

19.
Adv Sci (Weinh) ; 10(32): e2303104, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37735148

RESUMEN

Stealth technology is used to enhance the survival of military equipment in the field of military surveillance, as it utilizes a combination of techniques to render itself undetectable by enemy radar systems. Radar absorbing materials (RAMs) are specialized materials used to reduce the reflection (or absorption) of radar signals to provide stealth capability, which is a core component of passive countermeasures in military applications. The properties of RAMs can be optimized by adjusting their composition, microstructure, and surface geometry. Carbon-based materials present a promising approach for the fabrication of ultrathin, versatile, and high-performance RAMs due to their large specific surface area, lightweight, excellent dielectric properties, high electrical conductivity, and stability under harsh conditions. This review begins with a brief history of stealth technology and an introduction to electromagnetic waves, radar systems, and radar absorbing materials. This is followed by a discussion of recent research progress in carbon-based RAMs, including carbon blacks, carbon fibers, carbon nanotubes, graphite, graphene, and MXene, along with an in-depth examination of the principles and strategies on electromagnetic attenuation characteristics. Hope this review will offer fresh perspectives on the design and fabrication of carbon-based RAMs, thereby fostering a deeper fundamental understanding and promoting practical applications.

20.
ACS Energy Lett ; 8(10): 4488-4495, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37854043

RESUMEN

Recently, halide perovskites have been widely explored for high-efficiency photocatalysis or photoelectrochemical (PEC) cells. Here, in order to make an efficient photoanode electrode for the degradation of pollutants, concretely 2-mercaptobenzothiazole (MBT), nanoscale cesium lead bromide (CsPbBr3) perovskite was directly formed on the surface of mesoporous titanium dioxide (meso-TiO2) film using a two-step spin-coating process. This photoelectrode recorded a photocurrent of up to 3.02 ± 0.03 mA/cm2 under standard AM 1.5G (100 mW/cm2) illumination through an optimization process such as introducing a thin aluminum oxide (Al2O3) coating layer. Furthermore, to supply high voltage for efficient oxidation of MBT without an external bias, we developed a new photovoltaic/PEC tandem system using a methylammonium lead iodide (MAPbI3) based mini-module consisting of three solar cells interconnected in series and confirmed its successful operation. This approach looks very promising due to its applicability to various PEC reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA