Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Biogerontology ; 15(2): 153-64, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24337961

RESUMEN

Viscum album coloratum (Korean mistletoe) is a semi-parasitic plant that grows on various trees and has a variety of biological functions such as immunomodulation, apoptosis, and anti-tumor activity. In this study, we investigated the effects of Korean mistletoe extract (KME) on lifespan in experimental models using Caenorhabditis elegans and Drosophila melanogaster. Supplementation of KME at 50 µg/ml extended the mean survival time by 9.61 and 19.86 % in worms and flies, respectively. The longevity benefit of KME was not due to reduced feeding, reproduction, and/or locomotion in flies and worms. The supplementation of KME also did not increase resistance to various stresses including heat shock, oxidative, or starvation stresses. Furthermore, KME did not further extend the lifespan of flies fed a dietary restricted diet but did increase the expression of Sir2, one of the target genes of dietary restriction, suggesting that KME may function as a putative dietary restriction mimetic. These results also suggest that the longevity promoting effects of KME may be an example of mild stress-induced hormesis.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/fisiología , Drosophila melanogaster/efectos de los fármacos , Longevidad/efectos de los fármacos , Viscum album/química , Animales , Restricción Calórica , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Femenino , Expresión Génica/efectos de los fármacos , Genes de Insecto , Histona Desacetilasas/genética , Masculino , Medicina Tradicional Coreana , Extractos Vegetales/farmacología , Sirtuinas/genética , Estrés Fisiológico/efectos de los fármacos
2.
Exp Cell Res ; 318(5): 670-81, 2012 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-22265916

RESUMEN

Stem cells are tightly regulated by both intrinsic and extrinsic signals as well as the extracellular matrix (ECM) for tissue homeostasis and regenerative capacity. Matrix metalloproteinases (MMPs), proteolytic enzymes, modulate the turnover of numerous substrates, including cytokine precursors, growth factors, and ECM molecules. However, the roles of MMPs in the regulation of adult stem cells are poorly understood. In the present study, we utilize the Drosophila midgut, which is an excellent model system for studying stem cell biology, to show that Mmp1 is involved in the regulation of intestinal stem cells (ISCs). The results showed that Mmp1 is expressed in the adult midgut and that its expression increases with age and with exposure to oxidative stress. Mmp1 knockdown or Timp-overexpressing flies and flies heterozygous for a viable, hypomorphic Mmp1 allele increased ISC proliferation in the gut, as shown by staining with an anti-phospho-histone H3 antibody and BrdU incorporation assays. Reduced Mmp1 levels induced intestinal hyperplasia, and the Mmp1depletion-induced ISC proliferation was rescued by the suppression of the EGFR signaling pathway, suggesting that Mmp1 regulates ISC proliferation through the EGFR signaling pathway. Furthermore, adult gut-specific knockdown and whole-animal heterozygotes of Mmp1 increased additively sensitivity to paraquat-induced oxidative stress and shortened lifespan. Our data suggest that Drosophila Mmp1 is involved in the regulation of ISC proliferation for maintenance of gut homeostasis.


Asunto(s)
Drosophila melanogaster/enzimología , Homeostasis , Intestinos/enzimología , Metaloproteinasa 1 de la Matriz/metabolismo , Animales , Proliferación Celular , Enterocitos/enzimología , Receptores ErbB/metabolismo , Técnicas de Silenciamiento del Gen , Hiperplasia/enzimología , Intestinos/patología , Intestinos/fisiopatología , Esperanza de Vida , Metaloproteinasa 1 de la Matriz/deficiencia , Metaloproteinasa 1 de la Matriz/genética , Índice Mitótico , Estrés Oxidativo , Interferencia de ARN , Nicho de Células Madre , Células Madre/enzimología , Células Madre/patología
3.
Diabetes Metab J ; 46(1): 15-37, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34965646

RESUMEN

Insulin resistance is the pivotal pathogenic component of many metabolic diseases, including type 2 diabetes mellitus, and is defined as a state of reduced responsiveness of insulin-targeting tissues to physiological levels of insulin. Although the underlying mechanism of insulin resistance is not fully understood, several credible theories have been proposed. In this review, we summarize the functions of insulin in glucose metabolism in typical metabolic tissues and describe the mechanisms proposed to underlie insulin resistance, that is, ectopic lipid accumulation in liver and skeletal muscle, endoplasmic reticulum stress, and inflammation. In addition, we suggest potential therapeutic strategies for addressing insulin resistance.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Diabetes Mellitus Tipo 2/metabolismo , Estrés del Retículo Endoplásmico , Humanos , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Músculo Esquelético/patología
4.
Insects ; 13(2)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35206792

RESUMEN

BACKGROUND: Commensal microbiota live in their host with a symbiotic relationship that affects the host's health and physiology. Many studies showed that microbial load and composition were changed by aging and observed that increasing the abundance and changing the composition of commensal microbes had detrimental effects on host lifespan. We hypothesized that dysbiosis of the intestinal microbiota leads to systemic effects in aging flies as a result of the increased intestinal permeability. METHODS: We used the fruit fly, Drosophila melanogaster, laboratory strains w1118, as a model system with many advantages for microbe-host studies. RESULTS: The incidence of intestinal dysfunction was increased with age, and intestinal dysfunction increased the permeability of the fly intestine to resident microbes. The lifespan of flies with an intestinal barrier dysfunction was increased by removal of the microbes. Interestingly, some bacteria were also found in the hemolymph of flies with intestinal barrier dysfunction. CONCLUSION: Our findings suggest the possibility that, as the host ages, there is an increase in intestinal permeability, which leads to an increased intestinal microbial load and a reduction in the host lifespan. Our data therefore indicate a connection between commensal microbes and host lifespan.

5.
Metabolism ; 129: 155139, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35063533

RESUMEN

OBJECTIVE: Maintaining a constant core body temperature is essential to homeothermic vertebrate survival. Adaptive thermogenesis in brown adipose tissue and skeletal muscle is the primary mechanism of adjustment to an external stimulus such as cold exposure. Recently, several reports have revealed that the liver can play a role as a metabolic hub during adaptive thermogenesis. In this study, we suggest that the liver plays a novel role in secreting thermogenic factors in adaptive thermogenesis. Bone morphogenetic protein 9 (BMP9) is a hepatokine that regulates many biological processes, including osteogenesis, chondrogenesis, hematopoiesis, and angiogenesis. Previously, BMP9 was suggested to affect preadipocyte proliferation and differentiation. However, the conditions and mechanisms underlying hepatic expression and secretion and adipose tissue browning of BMP9 remain largely unknown. In this study, we investigated the physiological conditions for secretion and the regulatory mechanism of hepatic Bmp9 expression and the molecular mechanism by which BMP9 induces thermogenic gene program activation in adipose tissue. Here, we also present the pharmacological effects of BMP9 on a high-fat-induced obese mouse model. METHODS: To investigate the adaptive thermogenic role of BMP9 in vivo, we challenged mice with cold temperature exposure for 3 weeks and then examined the BMP9 plasma concentration and hepatic expression level. The cellular mechanism of hepatic Bmp9 expression under cold exposure was explored through promoter analysis. To identify the role of BMP9 in the differentiation of brown and beige adipocytes, we treated pluripotent stem cells and inguinal white adipose tissue (iWAT)-derived stromal-vascular (SV) cells with BMP9, and brown adipogenesis was monitored by examining thermogenic gene expression and signaling pathways. Furthermore, to evaluate the effect of BMP9 on diet-induced obesity, changes in body composition and glucose tolerance were analyzed in mice administered recombinant BMP9 (rBMP9) for 8 weeks. RESULTS: Hepatic Bmp9 expression and plasma levels in mice were significantly increased after 3 weeks of cold exposure. Bmp9 mRNA expression in the liver was regulated by transcriptional activation induced by cAMP response-element binding protein (CREB) and CREB-binding protein (CBP) on the Bmp9 promoter. Treatment with BMP9 promoted the differentiation of multipotent stem cells and iWAT-derived SV cells into beige adipocytes, as indicated by the increased expression of brown adipocyte and mitochondrial biogenesis markers. Notably, activation of the mothers against decapentaplegic homolog 1 (Smad1) and p44/p42 mitogen-activated protein kinase (MAPK) pathways was required for the induction of uncoupling protein 1 (UCP1) and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α) expression in BMP9-induced differentiation of SVs into beige adipocytes. The administration of rBMP9 in vivo also induced browning markers in white adipose tissue. In high-fat diet-induced obese mice, rBMP9 administration conferred protection against obesity and enhanced glucose tolerance. CONCLUSIONS: BMP9 is a hepatokine regulated by cold-activated CREB and CBP and enhances glucose and fat metabolism by promoting the activation of the thermogenic gene program in adipocytes. These data implicate BMP9 as a potential pharmacological tool for protecting against obesity and type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Factor 2 de Diferenciación de Crecimiento/metabolismo , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Frío , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Factor 2 de Diferenciación de Crecimiento/farmacología , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Termogénesis/genética , Proteína Desacopladora 1/metabolismo
6.
Cell Struct Funct ; 36(2): 197-208, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21979236

RESUMEN

Recent studies have suggested the involvement of epigenetic factors such as methyl-CpG-binding protein-2 (MeCP2) in tumorigenesis. In addition, cancer may represent a stem cell-based disease, suggesting that understanding of stem cell regulation could provide valuable insights into the mechanisms of tumorigenesis. However, the function of epigenetic factors in stem cell regulation in adult tissues remains poorly understood. In the present study, we investigated the role of human MeCP2 (hMeCP2), a bridge factor linked to DNA modification and histone modification, in stem cell proliferation using adult Drosophila midgut, which appears to be an excellent model system to study stem cell biology. Results show that enterocyte (EC)-specific expression of hMeCP2 in adult midgut using an exogenous GAL4/UAS expression system induced intestinal stem cell (ISC) proliferation marked by staining with anti-phospho-histone H3 antibody and BrdU incorporation assays. In addition, hMeCP2 expression in ECs activated extracellular stress-response kinase signals in ISCs. Furthermore, expression of hMeCP2 modulated the distribution of heterochromatin protein-1 in ECs. Our data suggests the hypothesis that the expression of hMeCP2 in differentiated ECs stimulates ISC proliferation, implying a role of MeCP2 as a stem cell regulator.


Asunto(s)
Intestinos/citología , Proteína 2 de Unión a Metil-CpG/metabolismo , Células Madre/citología , Animales , Bromodesoxiuridina/metabolismo , Proliferación Celular , Células Cultivadas , Cromatina/metabolismo , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Histonas/metabolismo , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Células Madre/metabolismo , Transfección
7.
Biochim Biophys Acta ; 1799(7): 510-9, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20346429

RESUMEN

The Drosophila midgut is an excellent model for evaluation of gene networks that regulate adult stem cell proliferation and differentiation. The Drosophila p38b (D-p38b) gene has been shown to be involved in intestinal stem cell (ISC) proliferation and differentiation in the adult midgut. Here, we report that D-p38b gene expression is regulated by DREF (DNA replication-related element binding factor) in the adult midgut. We have identified a DRE in the 5'-flanking region of the D-p38b gene and showed that DREF could bind to this DRE via a gel mobility shift assay and a ChIP assay. Base-substitution mutations of the D-p38b promoter DRE and analyses of transformants carrying D-p38b-lacZ or D-p38b-DREmut-lacZ indicated that this DRE is required for the activity of the D-p38b gene promoter. Furthermore, by using the GAL4-UAS system, we showed that DREF regulates the activity of the D-p38b gene promoter in adult ISCs and progenitors. In addition, the D-p38b knockdown phenotypes in the midgut were rescued by DREF overexpression, suggesting a functional link between these two factors. Our results suggest that the D-p38b gene is regulated by the DREF pathway and that DREF is involved in the regulation of proliferation and differentiation of Drosophila ISCs and progenitors.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica , Mucosa Intestinal/metabolismo , Proteína Quinasa 11 Activada por Mitógenos/genética , Proteína Quinasa 11 Activada por Mitógenos/metabolismo , Factores de Transcripción/genética , Animales , Animales Modificados Genéticamente , Linaje de la Célula , Proteínas de Drosophila/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Modelos Biológicos , Mutación , Fenotipo , Regiones Promotoras Genéticas , Células Madre/citología , Factores de Transcripción/metabolismo
8.
Geriatr Gerontol Int ; 21(8): 725-731, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34101322

RESUMEN

AIM: We examined the underlying mechanisms associated with the longevity effects of Korean mistletoe extract (KME) in Drosophila melanogaster. METHODS: We measured the lifespan of sirtuin, chico and foxo mutant flies fed KME, the expression of the forkhead box O (FOXO) target genes and insulin-like peptide genes, and the localization of FOXO in flies fed the KME. RESULTS: The longevity effect of KME was abolished in sirtuin, chico and foxo null mutant flies. In addition, the expression of FOXO target genes and the localization of FOXO into nuclei were increased in flies fed KME, but the expression of the insulin-like peptide genes was decreased by KME supplementation. CONCLUSIONS: The results show that KME extends the fly lifespan through sirtuin-induced FOXO activation. We suggest that KME has potential use as a beneficial anti-aging and longevity supplement. Geriatr Gerontol Int 2021; 21: 725-731.


Asunto(s)
Proteínas de Drosophila , Muérdago , Viscum album , Viscum , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Factores de Transcripción Forkhead/genética , Longevidad , República de Corea
9.
Microorganisms ; 9(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374132

RESUMEN

Ionizing radiation induces biological/physiological changes and affects commensal microbes, but few studies have examined the relationship between the physiological changes induced by irradiation and commensal microbes. This study investigated the role of commensal microbes in the γ-ray irradiation-induced physiological changes in Drosophila melanogaster. The bacterial load was increased in 5 Gy irradiated flies, but irradiation decreased the number of operational taxonomic units. The mean lifespan of conventional flies showed no significant change by irradiation, whereas that of axenic flies was negatively correlated with the radiation dose. γ-Ray irradiation did not change the average number of eggs in both conventional and axenic flies. Locomotion of conventional flies was decreased after 5 Gy radiation exposure, whereas no significant change in locomotion activity was detected in axenic flies after irradiation. γ-Ray irradiation increased the generation of reactive oxygen species in both conventional and axenic flies, but the increase was higher in axenic flies. Similarly, the amounts of mitochondria were increased in irradiated axenic flies but not in conventional flies. These results suggest that axenic flies are more sensitive in their mitochondrial responses to radiation than conventional flies, and increased sensitivity leads to a reduced lifespan and other physiological changes in axenic flies.

10.
Adv Biosyst ; 4(7): e1900248, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32558394

RESUMEN

Many studies utilizing animal models have revealed the genetic and pharmacogenetic modulators of the rate of organismal aging. However, finding routes for healthy aging during extended life remains one of the largest questions. With regards to an antiaging reagent, it has been shown that natural phytochemical syringaresinol (SYR) delays cellular senescence by activating sirtuin1 (SIRT1). Here, it is found that SYR treatment results in metabolic changes similar to those observed during dietary restriction (DR). The DR mimetic effects are mediated by FoxO3a-dependent SIRT1 activation and insulin/insuline growth factor-1 signaling modulation. The direct binding of SYR-FoxO3a is identified and this could partially explain the DR-like phenotype. The report gives a clue as to how the longevity gene involves the DR pathway and suggests that natural phytochemicals applied as a geroprotector mimics DR effects.


Asunto(s)
Materiales Biomiméticos/farmacología , Restricción Calórica , Proteína Forkhead Box O3/metabolismo , Fitoquímicos/farmacología , Animales , Reprogramación Celular , Ratones , Sirtuina 1/metabolismo
11.
Biochim Biophys Acta ; 1779(12): 789-96, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18760387

RESUMEN

Drosophila big brain (bib) encodes for a protein similar to members of the major intrinsic protein family, which includes the water- and ion-conducting aquaporin (AQP) channels. In mammals, AQP dysregulation has been implicated in a variety of diseases, including colorectal cancer and colonic injury. However, the regulatory mechanisms of AQP expression remain to be clearly elucidated. In this study, as we found a DREF binding site (DRE) in the 5'-flanking regions of both the Drosophila bib gene and the human AQP1 gene, we assessed the role of DREF in bib gene expression. DREF in Drosophila and humans has been demonstrated to function as a key transcriptional activator for cell proliferation-related genes. Herein, we demonstrate that the DRE is required for optimal promoter activity of Drosophila bib gene, particularly in the larval imaginal discs, which are actively proliferating tissues, as well as the adult hindgut. Our results may provide insight into the mechanisms inherent to the regulation of mammalian AQP genes.


Asunto(s)
Acuaporinas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Factores de Transcripción/fisiología , Animales , Animales Modificados Genéticamente , Acuaporina 1/metabolismo , Núcleo Celular/metabolismo , Drosophila melanogaster , Regulación de la Expresión Génica , Humanos , Iones , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Agua/química
12.
BMB Rep ; 52(1): 24-34, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30526767

RESUMEN

Sirtuin is an essential factor that delays cellular senescence and extends the organismal lifespan through the regulation of diverse cellular processes. Suppression of cellular senescence by Sirtuin is mainly mediated through delaying the age-related telomere attrition, sustaining genome integrity and promotion of DNA damage repair. In addition, Sirtuin modulates the organismal lifespan by interacting with several lifespan regulating signaling pathways including insulin/IGF-1 signaling pathway, AMP-activated protein kinase, and forkhead box O. Although still controversial, it is suggested that the prolongevity effect of Sirtuin is dependent with the level of and with the tissue expression of Sirtuin. Since Sirtuin is also believed to mediate the prolongevity effect of calorie restriction, activators of Sirtuin have attracted the attention of researchers to develop therapeutics for age-related diseases. Resveratrol, a phytochemical rich in the skin of red grapes and wine, has been actively investigated to activate Sirtuin activity with consequent beneficial effects on aging. This article reviews the evidences and controversies regarding the roles of Sirtuin on cellular senescence and lifespan extension, and summarizes the activators of Sirtuin including Sirtuin-activating compounds and compounds that increase the cellular level of nicotinamide dinucleotide. [BMB Reports 2019; 52(1): 24-34].


Asunto(s)
Envejecimiento/fisiología , Senescencia Celular/fisiología , Sirtuina 1/fisiología , Animales , Restricción Calórica , Daño del ADN , Reparación del ADN/fisiología , Humanos , Longevidad , Resveratrol , Transducción de Señal/fisiología , Sirtuina 1/metabolismo , Telómero
13.
Aging (Albany NY) ; 11(13): 4611-4640, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31299010

RESUMEN

Commensal microbes have mutualistic relationships with their host and mainly live in the host intestine. There are many studies on the relationships between commensal microbes and host physiology. However, there are inconsistent results on the effects of commensal microbes on host lifespan. To clarify this controversy, we generated axenic flies by using two controlled methods - bleaching and antibiotic treatment - and investigated the relationship between the commensal microbes and host lifespan in Drosophila melanogaster. The removal of microbes by using bleaching and antibiotic treatments without detrimental effects increased fly lifespan. Furthermore, a strain of flies colonized with a high load of microbiota showed a greater effect on lifespan extension when the microbes were eliminated, suggesting that commensal bacteria abundance may be a critical determinant of host lifespan. Consistent with those observations, microbial flora of aged fly gut significantly decreased axenic fly lifespan via an increase in bacterial load rather than through a change of bacterial composition. Our elaborately controlled experiments showed that the elimination of commensal microbes without detrimental side effects increased fly lifespan, and that bacterial load was a significant determinant of lifespan. Furthermore, our results indicate the presence of a deterministic connection between commensal microbes and host lifespan.


Asunto(s)
Drosophila melanogaster/microbiología , Microbioma Gastrointestinal , Longevidad , Factores de Edad , Animales , Carga Bacteriana , Drosophila melanogaster/fisiología , Vida Libre de Gérmenes , Interacciones Microbiota-Huesped , Simbiosis
14.
Stud Health Technol Inform ; 264: 1957, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438426

RESUMEN

Malicious e-mails sent intentionally to institutions have caused an increase in data breaches. Measures against these methods must be taken by healthcare institutions to prevent leakage of sensitive personal medical information. As a form of training, we conducted a phishing simulation to gauge the response of the hospital staff to similar email attacks, and to raise awareness about information security protocols.


Asunto(s)
Correo Electrónico , Hospitales
15.
Aging (Albany NY) ; 11(21): 9369-9387, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31672931

RESUMEN

Many studies have indicated that Korean red ginseng (KRG) has anti-inflammatory and anti-oxidative effects, thereby inducing many health benefits in humans. Studies into the longevity effects of KRG are limited and have provided contradictory results, and the molecular mechanism of lifespan extension by KRG is not elucidated yet. Herein, the longevity effect of KRG was investigated in Drosophila melanogaster by feeding KRG extracts, and the molecular mechanism of lifespan extension was elucidated by using longevity-related mutant flies. KRG extended the lifespan of Drosophila when administrated at 10 and 25 µg/mL, and the longevity benefit of KRG was not due to reduced feeding, reproduction, and/or climbing ability in fruit flies, indicating that the longevity benefit of KRG is a direct effect of KRG, not of a secondary artifact. Diet supplementation with KRG increased the lifespan of flies on a full-fed diet but not of those on a restricted diet, and the longevity effect of KRG was diminished by the mutation of dSir2, a deacetylase known to mediate the benefits of dietary restriction. Similarly, the longevity effect of KRG was mediated by the reduction of insulin/IGF-1 signaling. In conclusion, KRG extends the lifespan of Drosophila through Sir2 and insulin/IGF-1 signaling and has potential as an anti-aging dietary-restriction mimetic and prolongevity supplement.


Asunto(s)
Proteínas de Drosophila/metabolismo , Histona Desacetilasas/metabolismo , Insulina/metabolismo , Longevidad/efectos de los fármacos , Panax , Preparaciones de Plantas/uso terapéutico , Sirtuinas/metabolismo , Animales , Restricción Calórica , Drosophila melanogaster , Evaluación Preclínica de Medicamentos , Femenino , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Fitoterapia , Preparaciones de Plantas/farmacología , Estrés Fisiológico/efectos de los fármacos
16.
Healthc Inform Res ; 22(2): 120-8, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27200222

RESUMEN

OBJECTIVES: Methyl-CpG binding protein 2 (MeCP2) is a ubiquitous epigenetic factor that represses gene expression by modifying chromatin. Mutations in the MeCP2 gene cause Rett syndrome, a progressive neurodevelopmental disorder. Recent studies also have shown that MeCP2 plays a role in carcinogenesis. Specifically, functional ablation of MeCP2 suppresses cell growth and leads to the proliferation of cancer cells. However, MeCP2's function in adult tissues remains poorly understood. We utilized a weight matrix-based comparison software to identify transcription factor binding site (TFBS) of MeCP2-regulated genes, which were recognized by cDNA microarray analysis. METHODS: MeCP2 expression was silenced using annealed siRNA in HEK293 cells, and then a cDNA microarray analysis was performed. Functional analysis was carried out, and transcriptional levels in target genes regulated by MeCP2 were investigated. TFBS analysis was done within genes selected by the cDNA microarray analysis, using a weight matrix-based program and the TRANSFAC 6.0 database. RESULTS: Among the differentially expressed genes with a change in expression greater than two-fold, 189 genes were up-regulated and 91 genes were down-regulated. Genes related to apoptosis and cell proliferation (JUN, FOSL2, CYR61, SKIL, ATF3, BMABI, BMPR2, RERE, and FALZ) were highly up-regulated. Genes with anti-apoptotic and anti-proliferative functions (HNRPA0, HIS1, and FOXC1) were down-regulated. Using TFBS analysis within putative promoters of novel candidate target genes of MeCP2, disease-related transcription factors were identified. CONCLUSIONS: The present results provide insights into the new target genes regulated by MeCP2 under epigenetic control. This information will be valuable for further studies aimed at clarifying the pathogenesis of Rett syndrome and neoplastic diseases.

17.
PLoS One ; 10(12): e0143450, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26624577

RESUMEN

Phytoncides, which are volatile substances emitted from plants for protection against plant pathogens and insects, are known to have insecticidal, antimicrobial, and antifungal activities. In contrast to their negative effects on microorganisms and insects, phytoncides have been shown to have beneficial effects on human health. Essential oil from Hinoki cypress (Chamaecyparis obtusa) is mostly used in commercial products such as air purifiers. However, the physiological/behavioral impact of essential oil from C. obtusa on insects is not established. In this study, we tested the effects of essential oil extracted from C. obtusa on the physiologies and behaviors of Drosophila melanogaster and Musca domestica. Exposure to essential oil from C. obtusa decreased the lifespan, fecundity, locomotive activity, and developmental success rate of D. melanogaster. In addition, both fruit flies and house flies showed strong repellent behavioral responses to the essential oil, with duration times of about 5 hours at 70 µg/ml. These results suggest that essential oil from C. obtusa can be used as a 'human-friendly' alternative insect repellent.


Asunto(s)
Conducta Animal/efectos de los fármacos , Chamaecyparis/química , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/fisiología , Moscas Domésticas/efectos de los fármacos , Moscas Domésticas/fisiología , Aceites Volátiles/farmacología , Animales , Reacción de Prevención/efectos de los fármacos , Femenino , Fertilidad/efectos de los fármacos , Repelentes de Insectos/farmacología , Longevidad/efectos de los fármacos , Masculino , Actividad Motora/efectos de los fármacos , Análisis de Supervivencia
18.
Int J Nanomedicine ; 10: 3687-97, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26056448

RESUMEN

As nanomaterials are now widely utilized in a wide range of fields for both medical and industrial applications, concerns over their potential toxicity to human health and the environment have increased. To evaluate the toxicity of long-term exposure to carbon nanofibers (CNFs) in an in vivo system, we selected Drosophila melanogaster as a model organism. Oral administration of CNFs at a concentration of 1,000 µg/mL had adverse effects on fly physiology. Long-term administration of a high dose of CNFs (1,000 µg/mL) reduced larval viability based on the pupa:egg ratio, adult fly lifespan, reproductive activity, climbing activity, and survival rate in response to starvation stress. However, CNFs at a low concentration (100 µg/mL) did not show any significant deleterious effect on developmental rate or fecundity. Furthermore, long-term administration of a low dose of CNFs (100 µg/mL) increased lifespan and climbing ability, coincident with mild reactive oxygen species generation and stimulation of the antioxidant system. Taken together, our data suggest that a high dose of CNFs has obvious physiological toxicity, whereas low-dose chronic exposure to CNFs can actually have beneficial effects via stimulation of the antioxidant defense system.


Asunto(s)
Drosophila melanogaster/efectos de los fármacos , Nanofibras/toxicidad , Animales , Carbono/química , Relación Dosis-Respuesta a Droga , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/fisiología , Fertilidad/efectos de los fármacos , Larva/efectos de los fármacos , Longevidad/efectos de los fármacos , Nanofibras/administración & dosificación , Nanofibras/química , Especies Reactivas de Oxígeno/metabolismo , Pruebas de Toxicidad Crónica
19.
Radiat Res ; 181(4): 376-86, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24701963

RESUMEN

Although the diverse effects of ionizing radiation on biological and pathological processes at various levels ranging from molecular to whole body are well studied, the effects on adult stem cells by ionizing radiation remain largely unknown. In this study, we characterized the functional modifications of adult Drosophila midgut intestinal stem cells after ionizing radiation treatment. A dose of 10 Gy of radiation decreased the proliferative capacity of intestinal stem cells. Interestingly, after irradiation at 2 Gy, the intestinal stem cells exhibited increased proliferative activity, misdifferentiation and γH2AvD and 8-oxo-dG levels. In addition, the guts irradiated with 2 Gy showed increased JNK and AKT activities. Furthermore, we showed that 2 Gy of ionizing radiation induced centrosome amplification in intestinal stem cells of adult midguts. Our data gives molecular insights into the effects of ionizing radiation on functional modifications of stem cells. The adult Drosophila midgut intestinal stem cells offer a potentially rich new system for the exploration of the biological effects of ionizing radiation.


Asunto(s)
Intestinos/efectos de la radiación , Radiación Ionizante , Células Madre/efectos de la radiación , Animales , Proliferación Celular/efectos de la radiación , Centrosoma , Daño del ADN , Drosophila , Intestinos/citología , Células Madre/citología
20.
BMB Rep ; 46(4): 181-7, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23615258

RESUMEN

Caloric restriction is the most reliable intervention to prevent age-related disorders and extend lifespan. The reduction of calories by 10-30% compared to an ad libitum diet is known to extend the longevity of various species from yeast to rodents. The underlying mechanisms by which the benefits of caloric restriction occur have not yet been clearly defined. However, many studies are being conducted in an attempt to elucidate these mechanisms, and there are indications that the benefits of caloric restriction are related to alteration of the metabolic rate and the accumulation of reactive oxygen species. During molecular signaling, insulin/insulin-like growth factor signaling, target of rapamycin pathway, adenosine monophosphate activated protein kinase signaling, and Sirtuin are focused as underlying pathways that mediate the benefits of caloric restriction. Here, we will review the current status of caloric restriction.


Asunto(s)
Materiales Biomiméticos/metabolismo , Restricción Calórica , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Humanos , Insulina/metabolismo , Longevidad , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Sirtuinas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA