Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 689
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 20(6): 908-917, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37188954

RESUMEN

The incorporation of light-responsive domains into engineered proteins has enabled control of protein localization, interactions and function with light. We integrated optogenetic control into proximity labeling, a cornerstone technique for high-resolution proteomic mapping of organelles and interactomes in living cells. Through structure-guided screening and directed evolution, we installed the light-sensitive LOV domain into the proximity labeling enzyme TurboID to rapidly and reversibly control its labeling activity with low-power blue light. 'LOV-Turbo' works in multiple contexts and dramatically reduces background in biotin-rich environments such as neurons. We used LOV-Turbo for pulse-chase labeling to discover proteins that traffic between endoplasmic reticulum, nuclear and mitochondrial compartments under cellular stress. We also showed that instead of external light, LOV-Turbo can be activated by bioluminescence resonance energy transfer from luciferase, enabling interaction-dependent proximity labeling. Overall, LOV-Turbo increases the spatial and temporal precision of proximity labeling, expanding the scope of experimental questions that can be addressed with proximity labeling.


Asunto(s)
Mitocondrias , Proteómica , Retículo Endoplásmico , Biotina
2.
Immunity ; 46(4): 587-595, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28423338

RESUMEN

Although vaccines confer protection against influenza A viruses, antiviral treatment becomes the first line of defense during pandemics because there is insufficient time to produce vaccines. Current antiviral drugs are susceptible to drug resistance, and developing new antivirals is essential. We studied host defense peptides from the skin of the South Indian frog and demonstrated that one of these, which we named "urumin," is virucidal for H1 hemagglutinin-bearing human influenza A viruses. This peptide specifically targeted the conserved stalk region of H1 hemagglutinin and was effective against drug-resistant H1 influenza viruses. Using electron microscopy, we showed that this peptide physically destroyed influenza virions. It also protected naive mice from lethal influenza infection. Urumin represents a unique class of anti-influenza virucide that specifically targets the hemagglutinin stalk region, similar to targeting of antibodies induced by universal influenza vaccines. Urumin therefore has the potential to contribute to first-line anti-viral treatments during influenza outbreaks.


Asunto(s)
Proteínas Anfibias/farmacología , Virus de la Influenza A/efectos de los fármacos , Gripe Humana/prevención & control , Infecciones por Orthomyxoviridae/prevención & control , Péptidos/farmacología , Secuencia de Aminoácidos , Proteínas Anfibias/inmunología , Animales , Antivirales/inmunología , Antivirales/farmacología , Perros , Relación Dosis-Respuesta a Droga , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/inmunología , Humanos , Virus de la Influenza A/inmunología , Virus de la Influenza A/metabolismo , Gripe Humana/inmunología , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Péptidos/inmunología , Ranidae/metabolismo , Análisis de Supervivencia , Resultado del Tratamiento , Virión/efectos de los fármacos , Virión/inmunología , Virión/metabolismo
3.
Nature ; 583(7817): 596-602, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32669715

RESUMEN

Ageing is the single greatest cause of disease and death worldwide, and understanding the associated processes could vastly improve quality of life. Although major categories of ageing damage have been identified-such as altered intercellular communication, loss of proteostasis and eroded mitochondrial function1-these deleterious processes interact with extraordinary complexity within and between organs, and a comprehensive, whole-organism analysis of ageing dynamics has been lacking. Here we performed bulk RNA sequencing of 17 organs and plasma proteomics at 10 ages across the lifespan of Mus musculus, and integrated these findings with data from the accompanying Tabula Muris Senis2-or 'Mouse Ageing Cell Atlas'-which follows on from the original Tabula Muris3. We reveal linear and nonlinear shifts in gene expression during ageing, with the associated genes clustered in consistent trajectory groups with coherent biological functions-including extracellular matrix regulation, unfolded protein binding, mitochondrial function, and inflammatory and immune response. Notably, these gene sets show similar expression across tissues, differing only in the amplitude and the age of onset of expression. Widespread activation of immune cells is especially pronounced, and is first detectable in white adipose depots during middle age. Single-cell RNA sequencing confirms the accumulation of T cells and B cells in adipose tissue-including plasma cells that express immunoglobulin J-which also accrue concurrently across diverse organs. Finally, we show how gene expression shifts in distinct tissues are highly correlated with corresponding protein levels in plasma, thus potentially contributing to the ageing of the systemic circulation. Together, these data demonstrate a similar yet asynchronous inter- and intra-organ progression of ageing, providing a foundation from which to track systemic sources of declining health at old age.


Asunto(s)
Envejecimiento/genética , Envejecimiento/fisiología , Regulación de la Expresión Génica , Especificidad de Órganos/genética , Animales , Proteínas Sanguíneas/análisis , Proteínas Sanguíneas/genética , Femenino , Cadenas J de Inmunoglobulina/genética , Cadenas J de Inmunoglobulina/metabolismo , Masculino , Ratones , Células Plasmáticas/citología , Células Plasmáticas/metabolismo , ARN Mensajero/análisis , ARN Mensajero/genética , RNA-Seq , Análisis de la Célula Individual , Linfocitos T/citología , Linfocitos T/metabolismo , Factores de Tiempo , Transcriptoma
4.
Emerg Infect Dis ; 30(2): 299-309, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215495

RESUMEN

During October 2022-March 2023, highly pathogenic avian influenza (HPAI) A(H5N1) clade 2.3.4.4b virus caused outbreaks in South Korea, including 174 cases in wild birds. To understand the origin and role of wild birds in the evolution and spread of HPAI viruses, we sequenced 113 HPAI isolates from wild birds and performed phylogenetic analysis. We identified 16 different genotypes, indicating extensive genetic reassortment with viruses in wild birds. Phylodynamic analysis showed that the viruses were most likely introduced to the southern Gyeonggi-do/northern Chungcheongnam-do area through whooper swans (Cygnus cygnus) and spread southward. Cross-species transmission occurred between various wild bird species, including waterfowl and raptors, resulting in the persistence of HPAI in wild bird populations and further geographic spread as these birds migrated throughout South Korea. Enhanced genomic surveillance was an integral part of the HPAI outbreak response, aiding in timely understanding of the origin, evolution, and spread of the virus.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Filogenia , Animales Salvajes , Aves , Gripe Humana/epidemiología , Patos , República de Corea/epidemiología
5.
Biochem Biophys Res Commun ; 706: 149747, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38479243

RESUMEN

Nobiletin is a natural flavonoid found in citrus fruits with beneficial effects, including anti-inflammatory, anti-cancer and anti-oxidation effects. The aim of this study was to investigate whether nobiletin improves mitochondrial function in porcine oocytes and examine the underlying mechanism. Oocytes enclosed by cumulus cells were cultured in TCM-199 for 44 h with 0.1% dimethyl sulfoxide (control), or supplemented with 5, 10, 25, and 50 µM of nobiletin (Nob5, Nob10, Nob25, and Nob50, respectively). Oocyte maturation rate was significantly enhanced in Nob10 (70.26 ± 0.45%) compared to the other groups (control: 60.12 ± 0.47%; Nob5: 59.44 ± 1.63%; Nob25: 63.15 ± 1.38%; Nob50: 46.57 ± 1.19%). The addition of nobiletin reduced the levels of reactive oxygen species and increased glutathione levels. Moreover, Nob10 promoted mitochondrial biogenesis by upregulating the protein levels of sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α). This resulted in an increase in the number of active mitochondria, mitochondrial DNA copy number, mitochondrial membrane potential, and ATP production, thereby enhancing mitochondrial function. The protein level of p53 decreased, followed by the phosphorylation of B-cell lymphoma 2, suggesting a reduction in mitochondria-mediated apoptosis in the Nob10 group. Additionally, the release of cytochrome c from the mitochondria was significantly diminished along with a decrease in the protein expression of caspase 3. Thus, nobiletin has a great potential to promote the in vitro maturation of porcine oocytes by suppressing oxidative stress and promoting mitochondrial function through the upregulation of the SIRT1/PGC-1α signaling pathway.


Asunto(s)
Flavonas , Mitocondrias , Sirtuina 1 , Animales , Porcinos , Sirtuina 1/metabolismo , Mitocondrias/metabolismo , Transducción de Señal , Oocitos/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
6.
Small ; : e2400287, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109954

RESUMEN

This paper introduces catheter-directed intravascular casting hydrogels for transarterial chemo/starvation/chemodynamic embolization (TACSCE) therapy of hepatocellular carcinoma (HCC). Comprising Mn ion-crosslinked hyaluronic acid-dopamine (HD) with glucose oxidase (for glucose decomposition to H2O2 in starvation therapy), doxorubicin (for chemotherapy), and iopamidol (for X-ray imaging), these hydrogels are fabricated for transarterial embolization therapy guided by X-ray fluoroscopy. Mn4+ (from MnO2) demonstrates strong coordination with the catechol group of HD, providing hypoxia relief through O2 generation and cellular glutathione (GSH) consumption, compared to the OH radical generation potential of Mn2+. The gelation time-controlled, catheter-injectable, and rheologically tuned multitherapeutic/embolic gel system effectively reaches distal arterioles, ensuring complete intravascular casting with fewer complications related to organic solvents. Glucose deprivation, cascade reactive oxygen species (ROS) generation, GSH depletion, and sustained release profiles of multiple drug cargos from the hydrogel system are also achieved. The combined chemo/starvation/chemodynamic efficacies of these designed hydrogel systems are confirmed in HCC cell cultures and HCC-bearing animal models. The developed radiopaque/injectable/embolic/sol-to-gel transformable systems for TACSCE therapy may offer enhanced therapeutic efficacies compared to typical transarterial embolization and transarterial chemoembolization procedures for HCC.

7.
Reproduction ; 168(4)2024 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-39051904

RESUMEN

In brief: GRK2 deficiency disrupts the early embryonic development in pigs. The regulation of GRK2 on HSP90 and AKT may also play an important role during embryo development and tumor formation. Abstract: Among the family of GPCR kinases (GRKs) that regulate receptor phosphorylation and signaling termination, G-protein-coupled receptor kinase 2 (GRK2) binds to HSP90 in response to hypoxia or other stresses. In this study, we investigated the effects of GRK2 knockdown and inhibition on porcine embryonic development from the zygote stage. Immunofluorescence and western blotting were used to determine the localization and expression, respectively, of GRK2 and related proteins. First, GRK2 and p-GRK2 were expressed in both the cytoplasm and membrane and co-localized with HSP90 on the membrane. The mRNA level of GRK2 increased until the 8C-morula stage, suggesting that GRK2 may play an essential role during the early development of the porcine embryos. GRK2 knockdown reduced porcine embryo development capacity and led to significantly decreased blastocyst quality. In addition, inhibition of GRK2 also induced poor ability of embryo development at an early stage, indicating that GRK2 is critical for embryonic cleavage in pigs. Knockdown and inhibition of GRK2 reduced HSP90 expression, AKT activation, and cAMP levels. Additionally, GRK2 deficiency increased LC3 expression, suggesting enhanced autophagy during embryo development. In summary, we showed that GRK2 binds to HSP90 on the membrane to regulate embryonic cleavage and AKT activation during embryonic development in pigs.


Asunto(s)
Desarrollo Embrionario , Quinasa 2 del Receptor Acoplado a Proteína-G , Proteínas HSP90 de Choque Térmico , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Porcinos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica
8.
FASEB J ; 37(12): e23274, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37917004

RESUMEN

Glucose-regulated protein 78 (GRP78) binds to and stabilizes melanocortin 4 receptor (MC4R), which activates protein kinase A (PKA) by regulating G proteins. GRP78 is primarily used as a marker for endoplasmic reticulum stress; however, its other functions have not been well studied. Therefore, in this study, we aimed to investigate the function of GRP78 during porcine embryonic development. The developmental quality of porcine embryos, expression of cell cycle proteins, and function of mitochondria were evaluated by inhibiting the function of GRP78. Porcine oocytes were activated to undergo parthenogenesis, and blastocysts were obtained after 7 days of in vitro culture. GRP78 function was inhibited by adding 20 µM HA15 to the in vitro culture medium. The inhibition in GRP78 function led to a decrease in G proteins release, which subsequently downregulated the cyclic adenosine monophosphate (cAMP)/PKA pathway. Ultimately, inhibition of GRP78 function induced the inhibition of CDK1 and cyclin B expression and disruption of the cell cycle. In addition, inhibition of GRP78 function regulated DRP1 and SIRT1 expression, resulting in mitochondrial dysfunction. This study provides new insights into the role of GRP78 in porcine embryonic development, particularly its involvement in the regulation of the MC4R pathway and downstream cAMP/PKA signaling. The results suggest that the inhibition of GRP78 function in porcine embryos by HA15 treatment may have negative effects on embryo quality and development. This study also demonstrated that GRP78 plays a crucial role in the functioning of MC4R, which releases the G protein during porcine embryonic development.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Receptor de Melanocortina Tipo 4 , Femenino , Embarazo , Porcinos , Animales , Desarrollo Embrionario , Partenogénesis , AMP Cíclico , Proteínas Quinasas Dependientes de AMP Cíclico , Proteínas de Unión al GTP
9.
FASEB J ; 37(5): e22900, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37039823

RESUMEN

Ubiquitin-specific protease 4 (USP4) is highly overexpressed in colon cancer and acts as a potent protooncogenic protein by deubiquitinating ß-catenin. However, its prominent roles in tumor formation and migration in cancer cells are not fully understood by its deubiquitinating enzyme (DUB) activity on ß-catenin. Thus, we investigated an additional role of USP4 in cancer. In this study, we identified cortactin (CTTN), an actin-binding protein involved in the regulation of cytoskeleton dynamics and a potential prognostic marker for cancers, as a new cellular interacting partner of USP4 from proximal labeling of HCT116 cells. Additionally, the role of USP4 in CTTN activation and promotion of cell dynamics and migration was investigated in HCT116 cells. We confirmed that interacting of USP4 with CTTN increased cell movement. This finding was supported by the fact that USP4 overexpression in HCT116 cells with reduced expression of CTTN was insufficient to promote cell migration. Additionally, we observed that USP4 overexpression led to a significant increase in CTTN phosphorylation, which is a requisite mechanism for cell migration, by regulating Src/focal adhesion kinase (FAK) binding to CTTN and its activation. Our results suggest that USP4 plays a dual role in cancer progression, including stabilization of ß-catenin as a DUB and interaction with CTTN to promote cell dynamics by inducing CTTN phosphorylation. Therefore, this study demonstrates that USP4 is important for cancer progression and is a good target for treating or preventing cancer.


Asunto(s)
Neoplasias del Colon , beta Catenina , Humanos , Células HCT116 , beta Catenina/metabolismo , Cortactina/metabolismo , Movimiento Celular/fisiología , Proteasas Ubiquitina-Específicas/metabolismo
10.
Cell Commun Signal ; 22(1): 476, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39367511

RESUMEN

BACKGROUND: Signal transducer and activator of transcription 3 (STAT3), a multifaceted transcription factor, modulates host immune responses by activating cellular response to signaling ligands. STAT3 has a pivotal role in the pathophysiology of kidney injury by counterbalancing resident macrophage phenotypes under inflammation conditions. However, STAT3's role in acute kidney injury (AKI), particularly in macrophage migration, and in chronic kidney disease (CKD) through fibrosis development, remains unclear. METHODS: Stattic (a JAK2/STAT3 inhibitor, 5 mg/kg or 10 mg/kg) was administered to evaluate the therapeutic effect on LPS-induced AKI (L-AKI) and LPS-induced CKD (L-CKD), with animals sacrificed 6-24 h and 14 days post-LPS induction, respectively. The immune mechanisms of STAT3 blockade were determined by comparing the macrophage phenotypes and correlated with renal function parameters. Also, the transcriptomic analysis was used to confirm the anti-inflammatory effect of L-AKI, and the anti-fibrotic role was further evaluated in the L-CKD model. RESULTS: In the L-AKI model, sequential increases in BUN and blood creatinine levels were time-dependent, with a marked elevation of 0-6 h after LPS injection. Notably, two newly identified macrophage subpopulations (CD11bhighF4/80low and CD11blowF4/80high), exhibited population changes, with an increase in the CD11bhighF4/80low population and a decrease in the CD11blowF4/80high macrophages. Corresponding to the FACS results, the tubular injury score, NGAL, F4/80, and p-STAT3 expression in the tubular regions were elevated. STAT3 inhibitor injection in L-AKI and L-CKD mice reduced renal injury and fibrosis. M2-type subpopulation with CD206 in CD11blowF4/80high population increased in the Stattic-treated group compared with that in the LPS-alone group in the L-AKI model. Additionally, STAT3 inhibitor reduced inflammation driven by LPS-stimulated macrophages and epithelial cells injury in the co-culture system. Transcriptomic profiling identified 3 common genes in the JAK-STAT, TLR, and TNF signaling pathways and 11 common genes in the LPS with macrophage response. The PI3K-AKT (IL-6, Akt3, and Pik3r1) and JAK-STAT pathways were determined as potential Stattic targets. Further confirmation through mRNA and protein expressions analyses showed that Stattic treatment reduced inflammation in the L-AKI and fibrosis in the L-CKD mice. CONCLUSIONS: STAT3 blockade effectively mitigated inflammation by retrieving the CD11blowF4/80high population, further emphasizing the role of STAT3-associated macrophage-driven inflammation in kidney injury.


This study investigated the role of STAT3 in LPS-induced acute kidney injury (AKI) and its prolonged pathophysiological effect. In a mouse model, blocking STAT3 with Stattic reduced inflammation and fibrosis, decreased the levels of inflammatory and extracellular matrix (ECM) substances, reduced the number of certain immune cells (macrophages), and influenced specific genes related to inflammation. The findings suggest that targeting STAT3 is a promising approach to treat AKI and CKD by controlling the inflammation and the immune response as well as ECM accumulation. This study provides novel insights into AKI and CKD progression and will facilitate the development of new treatments for kidney injuries at various stages.


Asunto(s)
Lesión Renal Aguda , Inflamación , Lipopolisacáridos , Macrófagos , Factor de Transcripción STAT3 , Animales , Masculino , Ratones , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patología , Lesión Renal Aguda/tratamiento farmacológico , Óxidos S-Cíclicos/farmacología , Óxidos S-Cíclicos/uso terapéutico , Modelos Animales de Enfermedad , Fibrosis , Inflamación/patología , Inflamación/tratamiento farmacológico , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo
11.
Arch Phys Med Rehabil ; 105(3): 480-486, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37714505

RESUMEN

OBJECTIVES: To investigate shoulder, elbow and wrist proprioception impairment poststroke. DESIGN: Proprioceptive acuity in terms of the threshold detection to passive motion at the shoulder, elbow and wrist joints was evaluated using an exoskeleton robot to the individual joints slowly in either inward or outward direction. SETTING: A university research laboratory. PARTICIPANTS: Seventeen stroke survivors and 17 healthy controls (N=34). Inclusion criteria of stroke survivors were (1) a single stroke; (2) stroke duration <1 year; and (3) cognitive ability to follow simple instructions. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Threshold detection to passive motion and detection error at the shoulder, elbow and wrist. RESULTS: There was significant impairment of proprioceptive acuity in stroke survivors as compared to healthy group at all 3 joints and in both the inward (shoulder horizontal adduction, elbow and wrist flexion, P<.01) and outward (P<.01) motion. Furthermore, the distal wrist joint showed more severe impairment in proprioception than the proximal shoulder and elbow joints poststroke (P<.01) in inward motion. Stroke survivors showed significantly larger detection error in identifying the individual joint in motion (P<.01) and the movement direction (P<.01) as compared to the healthy group. There were significant correlations among the proprioception acuity across the shoulder, elbow and wrist joints and 2 movement directions poststroke. CONCLUSIONS: There were significant proprioceptive sensory impairments across the shoulder, elbow and wrist joints poststroke, especially at the distal wrist joint. Accurate evaluations of multi-joint proprioception deficit may help guide more focused rehabilitation.


Asunto(s)
Articulación del Codo , Accidente Cerebrovascular , Humanos , Muñeca , Cognición , Propiocepción , Accidente Cerebrovascular/complicaciones
12.
Planta Med ; 90(4): 256-266, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38040033

RESUMEN

Hyperglycemia is a potent risk factor for the development and progression of diabetes-induced nephropathy. Dendropanoxide (DPx) is a natural compound isolated from Dendropanax morbifera (Araliaceae) that exerts various biological effects. However, the role of DPx in hyperglycemia-induced renal tubular cell injury remains unclear. The present study explored the protective mechanism of DPx on high glucose (HG)-induced cytotoxicity in kidney tubular epithelial NRK-52E cells. The cells were cultured with normal glucose (5.6 mM), HG (30 mM), HG + metformin (10 µM), or HG + DPx (10 µM) for 48 h, and cell cycle and apoptosis were analyzed. Malondialdehyde (MDA), advanced glycation end products (AGEs), and reactive oxygen species (ROS) were measured. Protein-based nephrotoxicity biomarkers were measured in both the culture media and cell lysates. MDA and AGEs were significantly increased in NRK-52E cells cultured with HG, and these levels were markedly reduced by pretreatment with DPx or metformin. DPx significantly reduced the levels of kidney injury molecule-1 (KIM-1), pyruvate kinase M2 (PKM2), selenium-binding protein 1 (SBP1), or neutrophil gelatinase-associated lipocalin (NGAL) in NRK-52E cells cultured under HG conditions. Furthermore, treatment with DPx significantly increased antioxidant enzyme activity. DPx protects against HG-induced renal tubular cell damage, which may be mediated by its ability to inhibit oxidative stress through the protein kinase B/mammalian target of the rapamycin (AKT/mTOR) signaling pathway. These findings suggest that DPx can be used as a new drug for the treatment of high glucose-induced diabetic nephropathy.


Asunto(s)
Hiperglucemia , Metformina , Triterpenos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular , Glucosa/toxicidad , Estrés Oxidativo , Transducción de Señal , Antioxidantes/farmacología , Apoptosis , Serina-Treonina Quinasas TOR/metabolismo , Metformina/metabolismo , Metformina/farmacología , Células Epiteliales/metabolismo
13.
Curr Microbiol ; 81(10): 307, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150477

RESUMEN

The association between human metabolites and the environmental microbiome has primarily been investigated in relation to disease. In this study, the associations between environmental conditions and microbial communities on the surface of bloodstains were analyzed from a forensic science approach. The composition of microbial communities can be affected by numerous variables. After exposing bloodstains to two different environments with limited airflow and human interference, the microbial communities of the bloodstain surfaces were subjected to longitudinal analysis. Various microbes showed increasing or decreasing trends at the phylum and species level. The microbes identified in this study are usually found in soil, freshwater, and seawater and are known to exhibit unique properties, such as sporulation. Longitudinal variation in temperature and humidity were associated with various changes and correlations with the blood surface microbial community. Understanding these changes could introduce a new perspective to forensic science and could be used to develop a forensic tool used at crime scenes to analyze blood stains in more detail.


Asunto(s)
Bacterias , Manchas de Sangre , Microbiota , Humanos , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Temperatura , Humedad , Estudios Longitudinales , Ciencias Forenses/métodos , Microbiología Ambiental
14.
PLoS Genet ; 17(8): e1009094, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34398873

RESUMEN

The systematic identification of genetic events driving cellular transformation and tumor progression in the absence of a highly recurrent oncogenic driver mutation is a challenge in cutaneous oncology. In cutaneous squamous cell carcinoma (cuSCC), the high UV-induced mutational burden poses a hurdle to achieve a complete molecular landscape of this disease. Here, we utilized the Sleeping Beauty transposon mutagenesis system to statistically define drivers of keratinocyte transformation and cuSCC progression in vivo in the absence of UV-IR, and identified both known tumor suppressor genes and novel oncogenic drivers of cuSCC. Functional analysis confirms an oncogenic role for the ZMIZ genes, and tumor suppressive roles for KMT2C, CREBBP and NCOA2, in the initiation or progression of human cuSCC. Taken together, our in vivo screen demonstrates an extremely heterogeneous genetic landscape of cuSCC initiation and progression, which can be harnessed to better understand skin oncogenic etiology and prioritize therapeutic candidates.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/genética , Transformación Celular Neoplásica/genética , Queratinocitos/patología , Mutagénesis Insercional/métodos , Análisis de Secuencia de ADN/métodos , Neoplasias Cutáneas/genética , Proteína de Unión a CREB/genética , Carcinoma de Células Escamosas/patología , Transformación Celular Neoplásica/patología , Elementos Transponibles de ADN , Proteínas de Unión al ADN/genética , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Coactivador 2 del Receptor Nuclear/genética , Neoplasias Cutáneas/patología
15.
BMC Palliat Care ; 23(1): 42, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38355511

RESUMEN

BACKGROUND: In the intensive care unit (ICU), we may encounter patients who have completed a Do-Not-Resuscitate (DNR) or a Physician Orders to Stop Life-Sustaining Treatment (POLST) document. However, the characteristics of ICU patients who choose DNR/POLST are not well understood. METHODS: We retrospectively analyzed the electronic medical records of 577 patients admitted to a medical ICU from October 2019 to November 2020, focusing on the characteristics of patients according to whether they completed DNR/POLST documents. Patients were categorized into DNR/POLST group and no DNR/POLST group according to whether they completed DNR/POLST documents, and logistic regression analysis was used to evaluate factors influencing DNR/POLST document completion. RESULTS: A total of 577 patients were admitted to the ICU. Of these, 211 patients (36.6%) had DNR or POLST records. DNR and/or POLST were completed prior to ICU admission in 48 (22.7%) patients. The DNR/POLST group was older (72.9 ± 13.5 vs. 67.6 ± 13.8 years, p < 0.001) and had higher Acute Physiology and Chronic Health Evaluation (APACHE) II score (26.1 ± 9.2 vs. 20.3 ± 7.7, p < 0.001) and clinical frailty scale (5.1 ± 1.4 vs. 4.4 ± 1.4, p < 0.001) than the other groups. Solid tumors, hematologic malignancies, and chronic lung disease were the most common comorbidities in the DNR/POLST groups. The DNR/POLST group had higher ICU and in-hospital mortality and more invasive treatments (arterial line, central line, renal replacement therapy, invasive mechanical ventilation) than the other groups. Body mass index, APAHCE II score, hematologic malignancy, DNR/POLST were factors associated with in-hospital mortality. CONCLUSIONS: Among ICU patients, 36.6% had DNR or POLST orders and received more invasive treatments. This is contrary to the common belief that DNR/POLST patients would receive less invasive treatment and underscores the need to better understand and include end-of-life care as an important ongoing aspect of patient care, along with communication with patients and families.


Asunto(s)
Médicos , Cuidado Terminal , Humanos , Órdenes de Resucitación , Estudios Retrospectivos , Unidades de Cuidados Intensivos
16.
Vascular ; : 17085381241250112, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662409

RESUMEN

OBJECTIVES: This study was aimed to assess the preliminary outcomes of radiofrequency ablation (RFA) using a newly developed catheter (VENISTAR) for the treatment of incompetent great saphenous veins (GSVs). METHODS: In this prospective observational study, endovenous RFA using a VENISTAR catheter was performed on 16 saphenous veins in 12 patients between August and November 2019. Patients' pre- and post-procedural data were recorded. Doppler ultrasound imaging and clinical evaluation were performed at 1 week and 1, 3, and 6 months to determine the efficacy and safety of the treatment. RESULTS: Technical success and complete closure of the targeted GSVs immediately after the procedure were observed in all 16 limbs (100%). However, one patient (one limb) was found to have partial occlusion without significant reflux after 1 week of follow-up. Kaplan-Meier analysis yielded a complete occlusion rate of 93% at 6 months of follow-up. The Venous Clinical Severity Scores at the time of all follow-up were significantly lower than those at baseline (3.3 ± 1.1 at baseline to 0.6 ± 0.6, 0.3 ± 0.6, 0.1 ± 0.4, and 0.2 ± 0.4 at 1 week and 1, 3, and 6 months, respectively) (p < .001). Mild post-procedural pain was noted in 7 and 4 limbs at 1 week and 1 month, respectively. Grade 1 ecchymosis over the ablated segment was noted in 5 (35.7%) of 14 limbs at 1-week follow-up. CONCLUSIONS: Endovenous treatment of GSV insufficiency using a new VENISTAR radiofrequency catheter has been shown to be feasible, effective, and safe throughout the 6-month follow-up.

17.
J Korean Med Sci ; 39(8): e75, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38442718

RESUMEN

BACKGROUND: Limited data are available on the mortality rates of patients receiving extracorporeal membrane oxygenation (ECMO) support for coronavirus disease 2019 (COVID-19). We aimed to analyze the relationship between COVID-19 and clinical outcomes for patients receiving ECMO. METHODS: We retrospectively investigated patients with COVID-19 pneumonia requiring ECMO in 19 hospitals across Korea from January 1, 2020 to August 31, 2021. The primary outcome was the 90-day mortality after ECMO initiation. We performed multivariate analysis using a logistic regression model to estimate the odds ratio (OR) of 90-day mortality. Survival differences were analyzed using the Kaplan-Meier (KM) method. RESULTS: Of 127 patients with COVID-19 pneumonia who received ECMO, 70 patients (55.1%) died within 90 days of ECMO initiation. The median age was 64 years, and 63% of patients were male. The incidence of ECMO was increased with age but was decreased after 70 years of age. However, the survival rate was decreased linearly with age. In multivariate analysis, age (OR, 1.048; 95% confidence interval [CI], 1.010-1.089; P = 0.014) and receipt of continuous renal replacement therapy (CRRT) (OR, 3.069; 95% CI, 1.312-7.180; P = 0.010) were significantly associated with an increased risk of 90-day mortality. KM curves showed significant differences in survival between groups according to age (65 years) (log-rank P = 0.021) and receipt of CRRT (log-rank P = 0.004). CONCLUSION: Older age and receipt of CRRT were associated with higher mortality rates among patients with COVID-19 who received ECMO.


Asunto(s)
COVID-19 , Oxigenación por Membrana Extracorpórea , Humanos , Masculino , Persona de Mediana Edad , Anciano , Femenino , COVID-19/terapia , Estudios Retrospectivos , Muerte , Factores de Riesgo
18.
Microsc Microanal ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39226079

RESUMEN

The levels of nicotinamide adenine dinucleotide (NADH) dehydrogenase [ubiquinone] iron-sulfur protein 2 (NDUFS2, a subunit of NADH dehydrogenase) decrease in aged tissues, and these reductions may be partly associated with age-related conditions such as Parkinson's disease. Aging leads to many mitochondrial defects, such as biogenesis disruption, dysfunction, defects in the mitochondrial membrane potential, and production of reactive oxygen species, that may be highly related to NDUFS2 expression. The relationship between NDUFS2 and postovulatory oocyte aging in pigs remains unknown. In this study, we investigated changes in NDUFS2 expression during postovulatory aging (POA). Furthermore, NDUFS2 was knocked down via dsRNA microinjection at the MII stage to evaluate the effects on mitochondrial-related processes during POA. The mRNA expression of NDUFS2 decreased significantly after 48-h aging compared with that in fresh oocytes. NDUFS2 knockdown (KD) significantly impaired the maintenance of oocyte morphology and blastocyst development of embryos after POA. The levels of PGC1α (mitochondrial biogenesis-related proteins) decreased significantly after NDUFS2 KD, while the level of GSNOR, a protein denitrosylase, was reduced by NDUFS2 KD after 48 h of aging. These data suggest that NDUFS2 is vital for maintaining the oocyte quality during POA in pigs.

19.
J Neuroeng Rehabil ; 21(1): 58, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627779

RESUMEN

BACKGROUND: Identification of cortical loci for lower limb movements for stroke rehabilitation is crucial for better rehabilitation outcomes via noninvasive brain stimulation by targeting the fine-grained cortical loci of the movements. However, identification of the cortical loci for lower limb movements using functional MRI (fMRI) is challenging due to head motion and difficulty in isolating different types of movement. Therefore, we developed a custom-made MR-compatible footplate and leg cushion to identify the cortical loci for lower limb movements and conducted multivariate analysis on the fMRI data. We evaluated the validity of the identified loci using both fMRI and behavioral data, obtained from healthy participants as well as individuals after stroke. METHODS: We recruited 33 healthy participants who performed four different lower limb movements (ankle dorsiflexion, ankle rotation, knee extension, and toe flexion) using our custom-built equipment while fMRI data were acquired. A subgroup of these participants (Dataset 1; n = 21) was used to identify the cortical loci associated with each lower limb movement in the paracentral lobule (PCL) using multivoxel pattern analysis and representational similarity analysis. The identified cortical loci were then evaluated using the remaining healthy participants (Dataset 2; n = 11), for whom the laterality index (LI) was calculated for each lower limb movement using the cortical loci identified for the left and right lower limbs. In addition, we acquired a dataset from 15 individuals with chronic stroke for regression analysis using the LI and the Fugl-Meyer Assessment (FMA) scale. RESULTS: The cortical loci associated with the lower limb movements were hierarchically organized in the medial wall of the PCL following the cortical homunculus. The LI was clearer using the identified cortical loci than using the PCL. The healthy participants (mean ± standard deviation: 0.12 ± 0.30; range: - 0.63 to 0.91) exhibited a higher contralateral LI than the individuals after stroke (0.07 ± 0.47; - 0.83 to 0.97). The corresponding LI scores for individuals after stroke showed a significant positive correlation with the FMA scale for paretic side movement in ankle dorsiflexion (R2 = 0.33, p = 0.025) and toe flexion (R2 = 0.37, p = 0.016). CONCLUSIONS: The cortical loci associated with lower limb movements in the PCL identified in healthy participants were validated using independent groups of healthy participants and individuals after stroke. Our findings suggest that these cortical loci may be beneficial for the neurorehabilitation of lower limb movement in individuals after stroke, such as in developing effective rehabilitation interventions guided by the LI scores obtained for neuronal activations calculated from the identified cortical loci across the paretic and non-paretic sides of the brain.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Movimiento/fisiología , Extremidad Inferior , Imagen por Resonancia Magnética
20.
Reprod Domest Anim ; 59(9): e14715, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39262106

RESUMEN

G-protein-coupled receptor kinase 2 (GRK2) interacts with Gßγ and Gαq, subunits of G-protein alpha, to regulate cell signalling. The second messenger inositol trisphosphate, produced by activated Gαq, promotes calcium release from the endoplasmic reticulum (ER) and regulates maturation-promoting factor (MPF) activity. This study aimed to investigate the role of GRK2 in MPF activity during the meiotic maturation of porcine oocytes. A specific inhibitor of GRK2 (ßi) was used in this study. The present study showed that GRK2 inhibition increased the percentage of oocyte arrest at the metaphase I (MI) stage (control: 13.84 ± 0.95%; ßi: 31.30 ± 4.18%), which resulted in the reduction of the maturation rate (control: 80.36 ± 1.94%; ßi: 65.40 ± 1.14%). The level of phospho-GRK2 decreased in the treated group, suggesting that GRK2 activity was reduced upon GRK2 inhibition. Furthermore, the addition of ßi decreased Ca2+ release from the ER. The protein levels of cyclin B and cyclin-dependent kinase 1 were higher in the treatment group than those in the control group, indicating that GRK2 inhibition prevented a decrease in MPF activity. Collectively, GRK2 inhibition induced meiotic arrest at the MI stage in porcine oocytes by preventing a decrease in MPF activity, suggesting that GRK2 is essential for oocyte meiotic maturation in pigs.


Asunto(s)
Calcio , Quinasa 2 del Receptor Acoplado a Proteína-G , Meiosis , Oocitos , Animales , Oocitos/efectos de los fármacos , Meiosis/efectos de los fármacos , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Femenino , Calcio/metabolismo , Porcinos , Factor Promotor de Maduración/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA