Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Nanobiotechnology ; 18(1): 54, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32209114

RESUMEN

BACKGROUND: Influenza viruses (IVs) have become increasingly resistant to antiviral drugs that target neuraminidase and matrix protein 2 due to gene mutations that alter their drug-binding target protein regions. Consequently, almost all recent IV pandemics have exhibited resistance to commercial antiviral vaccines. To overcome this challenge, an antiviral target is needed that is effective regardless of genetic mutations. MAIN BODY: In particular, hemagglutinin (HA), a highly conserved surface protein across many IV strains, could be an effective antiviral target as it mediates binding of IVs with host cell receptors, which is crucial for membrane fusion. HA has 6 disulfide bonds that can easily bind with the surfaces of gold nanoparticles. Herein, we fabricated porous gold nanoparticles (PoGNPs) via a surfactant-free emulsion method that exhibited strong affinity for disulfide bonds due to gold-thiol interactions, and provided extensive surface area for these interactions. A remarkable decrease in viral infectivity was demonstrated by increased cell viability results after exposing MDCK cells to various IV strains (H1N1, H3N2, and H9N2) treated with PoGNP. Most of all, the viability of MDCK cells infected with all IV strains increased to 96.8% after PoGNP treatment of the viruses compared to 33.9% cell viability with non-treated viruses. Intracellular viral RNA quantification by real-time RT-PCR also confirmed that PoGNP successfully inhibited viral membrane fusion by blocking the viral entry process through conformational deformation of HA. CONCLUSION: We believe that the technique described herein can be further developed for PoGNP-utilized antiviral protection as well as metal nanoparticle-based therapy to treat viral infection. Additionally, facile detection of IAV can be achieved by developing PoGNP as a multiplatform for detection of the virus.


Asunto(s)
Antivirales/farmacología , Oro/farmacología , Virus de la Influenza A/efectos de los fármacos , Nanopartículas del Metal/química , Animales , Perros , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H9N2 del Virus de la Influenza A/genética , Virus de la Influenza A/genética , Células de Riñón Canino Madin Darby , Fusión de Membrana , Porosidad , ARN Viral/análisis , ARN Viral/genética , Internalización del Virus
2.
Sensors (Basel) ; 19(5)2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30823667

RESUMEN

To achieve an effective surface-enhanced Raman scattering (SERS) sensor with periodically distributed "hot spots" on wafer-scale substrates, we propose a hybrid approach combining physical nano-imprint lithography and a chemical deposition method to form a silver microbead array. Nano-imprint lithography (NIL) can lead to mass-production and high throughput, but is not appropriate for generating strong "hot-spots." However, when we apply electrochemical deposition to an NIL substrate and the reaction time was increased to 45 s, periodical "hot-spots" between the microbeads were generated on the substrates. It contributed to increasing the enhancement factor (EF) and lowering the detection limit of the substrates to 4.40 × 106 and 1.0 × 10-11 M, respectively. In addition, this synthetic method exhibited good substrate-to-substrate reproducibility (RSD < 9.4%). Our research suggests a new opportunity for expanding the SERS application.

3.
Biosensors (Basel) ; 13(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36831950

RESUMEN

Wearable biosensors have the potential for developing individualized health evaluation and detection systems owing to their ability to provide continuous real-time physiological data. Among various wearable biosensors, localized surface plasmon resonance (LSPR)-based wearable sensors can be versatile in various practical applications owing to their sensitive interactions with specific analytes. Understanding and analyzing endocrine responses to stress is particularly crucial for evaluating human performance, diagnosing stress-related diseases, and monitoring mental health, as stress takes a serious toll on physiological health and psychological well-being. Cortisol is an essential biomarker of stress because of the close relationship between cortisol concentration in the human body and stress level. In this study, a flexible LSPR biosensor was manufactured to detect cortisol levels in the human body by depositing gold nanoparticle (AuNP) layers on a 3-aminopropyltriethoxysilane (APTES)-functionalized poly (dimethylsiloxane) (PDMS) substrate. Subsequently, an aptamer was immobilized on the surface of the LSPR substrate, enabling highly sensitive and selective cortisol capture owing to its specific cortisol recognition. The biosensor exhibited excellent detection ability in cortisol solutions of various concentrations ranging from 0.1 to 1000 nM with a detection limit of 0.1 nM. The flexible LSPR biosensor also demonstrated good stability under various mechanical deformations. Furthermore, the cortisol levels of the flexible LSPR biosensor were also measured in the human epidermis before and after exercise as well as in the morning and afternoon. Our biosensors, which combine easily manufactured flexible sensors with sensitive cortisol-detecting molecules to measure human stress levels, could be versatile candidates for human-friendly products.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Dispositivos Electrónicos Vestibles , Humanos , Resonancia por Plasmón de Superficie , Hidrocortisona , Sudor/química , Oro/química , Nanopartículas del Metal/química
4.
Pharmaceutics ; 14(11)2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36365211

RESUMEN

The use of untethered microrobots for precise synergistic anticancer drug delivery and controlled release has attracted attention over the past decade. A high surface area of the microrobot is desirable to achieve greater therapeutic effect by increasing the drug load. Therefore, various nano- or microporous microrobot structures have been developed to load more drugs. However, as most porous structures are not interconnected deep inside, the drug-loading efficiency may be reduced. Here, we propose a magnetically guided helical microrobot with a Gyroid surface for high drug-loading efficiency and precise drug delivery. All spaces inside the proposed microrobot are interconnected, thereby enabling drug loading deep inside the structure. Moreover, we introduce gold nanostars on the microrobot structure for near-infrared-induced photothermal therapy and triggering drug release. The results of this study encourage further exploration of a high loading efficiency in cell-based therapeutics, such as stem cells or immune cells, for microrobot-based drug-delivery systems.

5.
ACS Omega ; 6(30): 19656-19664, 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34368553

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) detection in microfluidics is an interesting topic because of its high sensitivity, miniaturization, and ability to perform online detection. However, the difficulties in generating SERS-based microfluidic devices with uniform signal reproducibility and high sensitivity have hindered their widespread application. In addition, the recyclability of the SERS-based microfluidic devices can contribute to their broad commercialization, but the possible contamination in the detection area and cumbersome cleaning procedures remain a challenge. In this study, we describe a repeatable SERS-based microfluidic device comprising a disposable SERS substrate and a reusable microfluidic channel. The microfluidic channel was prepared via mechanical processing, and the SERS substrate was fabricated by nanoimprint lithography and electrodeposition. The SERS substrate and microfluidic channel can be attached easily because they were assembled using screws. The SERS substrate achieved an excellent SERS enhancement factor greater than 108 over a large sample area, signal uniformity, and substrate-to-substrate reproducibility. This guaranteed reliable and sensitive signals in every experiment. Furthermore, the disposable SERS substrate contributed exact detection of target molecules. Finally, their practical application was demonstrated with the repeated use of the microfluidic device by detecting a specific micro-RNA, (miR-34a) at a concentration as low as 5 fM.

6.
ACS Sens ; 5(10): 3099-3108, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32786378

RESUMEN

Biological metamaterials with a specific size and spacing are necessary for developing highly sensitive and selective sensing systems to detect hazardous bacteria in complex solutions. Herein, the construction of peptidoglycan-binding protein (PGBP)-based metamaterials to selectively capture Gram-positive cells with high efficacy is reported. Nanoimprint lithography was used to generate a nanohole pattern as a template, the inside of which was modified with nickel(II)-nitrilotriacetic acid (Ni-NTA). Then, PGBP metamaterials were fabricated by immobilizing PGBP via chelation between Ni-NTA and six histidines on PGBP. Compared to the flat and spread PGBP-covered bare substrates, the PGBP-based metamaterials enabled selective capturing of Gram-positive bacteria with high efficacy, owing to enhanced interactions between the metamaterials and bacterial surface not shown in bulk materials. Thereafter, the specific strain and quantitative information of the captured bacteria was obtained by surface-enhanced Raman scattering mapping analysis in the 1 to 1 × 106 cfu/mL range within 30 min. It should be noted that no additional signal amplification process was required for lowly abundant bacteria, even at the single-bacterium level. The PGBP-based metamaterials could be regenerated multiple times with preserved sensing efficiency. Finally, this assay can detect specific Gram-positive bacteria, such as Staphylococcus aureus, in human plasma.


Asunto(s)
Peptidoglicano , Espectrometría Raman , Bacterias , Proteínas Portadoras , Bacterias Grampositivas , Humanos
7.
ACS Omega ; 5(43): 27749-27755, 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33163757

RESUMEN

As the light-emitting diode (LED) size gradually decreases, it is difficult to conventionally transfer an LED onto a donor substrate. In this paper, we propose a print transfer method that selectively transfers an LED onto a UV release tape, i.e., the donor substrate, via focused laser scanning with Lissajous patterns. We implemented an optical system based on focused laser scanning to perform selective transfer; this can adjust the scanning area immediately without changing the donor substrate size according to the LED size. Because the commercialized UV release tape is utilized as a donor substrate, the adhesion between the LED and donor substrate can be constantly maintained even after repeated experiments. In this study, several LEDs were transferred to a flexible printed circuit board-arranged in a circular and square shape to demonstrate a high degree of freedom of the system-and turned on.

8.
Nanoscale ; 10(8): 3680-3687, 2018 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-29323386

RESUMEN

Highly sensitive and reproducible surface enhanced Raman spectroscopy (SERS) requires not only a nanometer-level structural control, but also superb uniformity across the SERS substrate for practical imaging and sensing applications. However, in the past, increased reproducibility of the SERS signal was incompatible with increased SERS sensitivity. This work presents multiple silver nanocrystals inside periodically arrayed gold nanobowls (SGBs) via an electrochemical reaction at an overpotential of -3.0 V (vs. Ag/AgCl). The gaps between the silver nanocrystals serve as hot spots for SERS enhancement, and the evenly distributed gold nanobowls lead to a high device-to-device signal uniformity. The SGBs on the large sample surface exhibit an excellent SERS enhancement factor of up to 4.80 × 109, with excellent signal uniformity (RSD < 8.0 ± 2.5%). Furthermore, the SGBs can detect specific microRNA (miR-34a), which plays a widely acknowledged role as biomarkers in diagnosis and treatment of diseases. Although the small size and low abundance of miR-34a in total RNA samples hinder their detection, by utilizing the advantages of SGBs in SERS sensing, reliable and direct detection of human gastric cancer cells has been successfully accomplished.


Asunto(s)
Oro , MicroARNs/análisis , Nanoestructuras , Plata , Espectrometría Raman , Línea Celular Tumoral , Humanos , Reproducibilidad de los Resultados , Neoplasias Gástricas/genética
9.
J Mater Chem B ; 5(7): 1400-1407, 2017 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32264632

RESUMEN

We report minimal amount of hyaluronic acid (HA) conjugated magnetic nanocrystals (mHMs) for targeted imaging of CD44 abundant breast cancer cells via MRI. These mHMs lead to less induced cancer migration and drug resistance, which is distinct from conventional approaches using nanoplatforms (imaging or therapeutic systems) that are completely covered with HA. To synthesize mHMs, magnetic nanocrystals (MNCs), as MRI contrast agents, were encapsulated mostly with polysorbate 80 (P80, non-reactive to HA) and partially with aminated P80 (reactive to HA). This system enabled conjugation of an immensely diminished amount of HA onto MNCs. While these nanoparticles maintained good CD44 targeted imaging efficacy, they also showed no cytotoxicity and colloidal stability. We varied the HA ratios on an equal amount of MNCs and identified that when more HA was attached on nanoparticles, there was more facilitated cancer migration and drug resistant potentials. We chose the lowest amount of HA conjugated mHMs (mHM1) and demonstrated that mHM1 selectively diagnosed tumor regions in vivo. We believe that the technique described herein can be applied to various applications using HA to detect CD44 abundant cancer cell lines and offer a basis to understand the interaction between the cellular response and surface modification of nanoparticles.

10.
Adv Healthc Mater ; 4(2): 255-63, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25044601

RESUMEN

Here, wire-framed Au nanobundles (WNBs), which consist of randomly oriented and mutually connected Au wires to form a bundle shape, are synthesized. In contrast to conventional nanoparticles (spheres, rods, cubes, and stars), which exhibit nanostructure only on the surface, cross-sectional view image shows that WNBs have nanostructures in a whole volume. By using this specific property of WNBs, an externally controllable multistep photothermic-driven drug release (PDR) system is demonstrated for in vivo cancer treatment. In contrast to conventional nanoparticles that encapsulate a drug on their surface, WNBs preserve the drug payload in the overall inner volume, providing a drug loading capacity sufficient for cancer therapy. An improved in vivo therapeutic efficacy of PDR therapy is also demonstrated by delivering sufficient amount of drugs to the target tumor region.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Oro/química , Luz , Nanopartículas del Metal/química , Temperatura , Absorción Fisicoquímica , Animales , Línea Celular Tumoral , Humanos , Nanopartículas del Metal/ultraestructura , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Fluorescente , Espectroscopía Infrarroja Corta
11.
Int J Nanomedicine ; 10(Spec Iss): 261-71, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26425093

RESUMEN

Silica-gold nanoshell (SGNS), which is a silica core surrounded by a gold layer, was synthesized by seed-mediated coalescence of gold clusters in an electroless plating solution. SGNS variations with different surface coverage of gold clusters were prepared by adjusting the amounts of gold salts in the presence of formaldehyde-reducing agents. Fully covered SGNS (f-SGNS) with connected gold clusters exhibited stronger intensity and more redshift of plasmon bands located around 820 nm than those of partially covered SGNS (p-SGNS) with disconnected gold clusters. Upon irradiation with near-infrared light (30 W/cm(2), 700-800 nm), f-SGNS caused a larger hyperthermia effect, generating a large temperature change (ΔT =42°C), as compared to the relatively small temperature change (ΔT =24°C) caused by p-SGNS. The therapeutic antibody, Erbitux™ (ERB), was further conjugated to SGNS for specific tumor cell targeting. The f-ERB-SGNS showed excellent therapeutic efficacy based on the combined effect of both the therapeutic antibody and the full hyperthermia dose under near-infrared irradiation. Thus, SGNS with well-controlled surface morphology of gold shells may be applicable for near-infrared-induced hyperthermia therapy with tunable optical properties.


Asunto(s)
Epitelio/patología , Oro/farmacología , Hipertermia Inducida/métodos , Nanocáscaras/química , Dióxido de Silicio/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Diagnóstico por Imagen , Epitelio/efectos de los fármacos , Humanos , Nanocáscaras/ultraestructura , Soluciones , Espectrofotometría Ultravioleta , Propiedades de Superficie , Temperatura , Difracción de Rayos X
13.
Int J Nanomedicine ; 9: 2489-98, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24904209

RESUMEN

In this study, dextran-encrusted magnetic nanoclusters (DMNCs) were synthesized using a one-pot solution phase method for detection of atherosclerosis by magnetic resonance imaging. Pyrenyl dextran was used as a surfactant because of its electron-stabilizing effect and its amphiphilic nature, rendering the DMNCs stable and water-dispersible. The DMNCs were 65.6±4.3 nm, had a narrow size distribution, and were superparamagnetic with a high magnetization value of 60.1 emu/g. Further, they showed biocompatibility and high cellular uptake efficiency, as indicated by a strong interaction between dextran and macrophages. In vivo magnetic resonance imaging demonstrated the ability of DMNCs to act as an efficient magnetic resonance imaging contrast agent capable of targeted detection of atherosclerosis. In view of these findings, it is concluded that DMNCs can be used as magnetic resonance imaging contrast agents to detect inflammatory disease.


Asunto(s)
Enfermedades de las Arterias Carótidas/patología , Medios de Contraste/síntesis química , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/química , Nanocápsulas/química , Animales , Dextranos/química , Aumento de la Imagen/métodos , Nanocápsulas/administración & dosificación , Nanocápsulas/ultraestructura , Nanocompuestos/química , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
14.
Nanoscale Res Lett ; 8(1): 149, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23547716

RESUMEN

Targeted molecular imaging with hyaluronic acid (HA) has been highlighted in the diagnosis and treatment of CD44-overexpressing cancer. CD44, a receptor for HA, is closely related to the growth of cancer including proliferation, metastasis, invasion, and angiogenesis. For the efficient detection of CD44, we fabricated a few kinds of HA-modified MnFe2O4 nanocrystals (MNCs) to serve as specific magnetic resonance (MR) contrast agents (HA-MRCAs) and compared physicochemical properties, biocompatibility, and the CD44 targeting efficiency. Hydrophobic MNCs were efficiently phase-transferred using aminated polysorbate 80 (P80) synthesized by introducing spermine molecules on the hydroxyl groups of P80. Subsequently, a few kinds of HA-MRCAs were fabricated, conjugating different ratios of HA on the equal amount of phase-transferred MNCs. The optimized conjugation ratio of HA against magnetic content was identified to exhibit not only effective CD44 finding ability but also high cell viability through in vitro experiments. The results of this study demonstrate that the suggested HA-MRCA shows strong potential to be used for accurate tumor diagnosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA