RESUMEN
Proneural genes play a crucial role in neuronal differentiation. However, our understanding of the regulatory mechanisms governing proneural genes during neuronal differentiation remains limited. RFX4, identified as a candidate regulator of proneural genes, has been reported to be associated with the development of neuropsychiatric disorders. To uncover the regulatory relationship, we utilized a combination of multi-omics data, including ATAC-seq, ChIP-seq, Hi-C, and RNA-seq, to identify RFX4 as an upstream regulator of proneural genes. We further validated the role of RFX4 using an in vitro model of neuronal differentiation with RFX4 knock-in and a CRISPR-Cas9 knock-out system. As a result, we found that RFX4 directly interacts with the promoters of POU3F2 and NEUROD1. Transcriptomic analysis revealed a set of genes associated with neuronal development, which are highly implicated in the development of neuropsychiatric disorders, including schizophrenia. Notably, ectopic expression of RFX4 can drive human embryonic stem cells toward a neuronal fate. Our results strongly indicate that RFX4 serves as a direct upstream regulator of proneural genes, a role that is essential for normal neuronal development. Impairments in RFX4 function could potentially be related to the development of various neuropsychiatric disorders. However, understanding the precise mechanisms by which the RFX4 gene influences the onset of neuropsychiatric disorders requires further investigation through human genetic studies.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas de Homeodominio , Neuronas , Factores del Dominio POU , Factores de Transcripción del Factor Regulador X , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Perfilación de la Expresión Génica , Regiones Promotoras Genéticas , RNA-Seq , Diferenciación Celular , Proteínas de Homeodominio/genética , Factores del Dominio POU/genética , Factores de Transcripción del Factor Regulador X/genéticaRESUMEN
Primary biliary cholangitis (PBC) is an autoimmune disease that involves chronic inflammation and injury to biliary epithelial cells. To identify critical genetic factor(s) in PBC patients, we performed whole-exome sequencing of five female siblings, including one unaffected and four affected sisters, in a multi-PBC family, and identified 61 rare heterozygote variants that segregated only within the affected sisters. Among them, we were particularly interested in caspase-10, for although several caspases are involved in cell death, inflammation and autoimmunity, caspase-10 is little known from this perspective. We generated caspase-10 knockout macrophages, and then investigated the obtained phenotypes in comparison to those of its structurally similar protein, caspase-8. Unlike caspase-8, caspase-10 does not play a role during differentiation into macrophages, but after differentiation, it regulates the process of inflammatory cell deaths such as necroptosis and pyroptosis more strongly. Interestingly, caspase-10 displays better protease activity than caspase-8 in the process of RIPK1 cleavage, and an enhanced ability to form a complex with RIPK1 and FADD in human macrophages. Higher inflammatory cell death affected the fibrotic response of hepatic stellate cells; this effect could be recovered by treatment with UDCA and OCA, which are currently approved for PBC patients. Our findings strongly indicate that the defective roles of caspase-10 in macrophages contribute to the pathogenesis of PBC, thereby suggesting a new therapeutic strategy for PBC treatment.
Asunto(s)
Cirrosis Hepática Biliar , Humanos , Femenino , Caspasa 10 , Caspasa 8/genética , Cirrosis Hepática Biliar/genética , Muerte Celular/genéticaRESUMEN
Various heart diseases cause cardiac remodeling, which in turn leads to ineffective contraction. Although it is an adaptive response to injury, cardiac fibrosis contributes to this remodeling, for which the reactivation of quiescent myofibroblasts is a key feature. In the present study, we investigated the role of the p300/CBP-associated factor (PCAF), a histone acetyltransferase, in the activation of cardiac fibroblasts. An intraperitoneal (i.p.) injection of a high dose (160 mg/kg) of isoproterenol (ISP) induced cardiac fibrosis and reduced the amount of the PCAF in cardiac fibroblasts in the mouse heart. However, the PCAF activity was significantly increased in cardiac fibroblasts, but not in cardiomyocytes, obtained from ISP-administered mice. An in vitro study using human cardiac fibroblast cells recapitulated the in vivo results; an treatment with transforming growth factor-ß1 (TGF-ß1) reduced the PCAF, whereas it activated the PCAF in the fibroblasts. PCAF siRNA attenuated the TGF-ß1-induced increase in and translocation of fibrosis marker proteins. PCAF siRNA blocked TGF-ß1-mediated gel contraction and cell migration. The PCAF directly interacted with and acetylated mothers against decapentaplegic homolog 2 (SMAD2). PCAF siRNA prevented TGF-ß1-induced phosphorylation and the nuclear localization of SMAD2. These results suggest that the increase in PCAF activity during cardiac fibrosis may participate in SMAD2 acetylation and thereby in its activation.
Asunto(s)
Fibroblastos/metabolismo , Miocardio/citología , Proteína Smad2/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Actinas/metabolismo , Animales , Movimiento Celular , Núcleo Celular/metabolismo , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Fibrosis , Humanos , Isoproterenol , Masculino , Metaloproteinasas de la Matriz/metabolismo , Ratones Endogámicos C57BL , Fosforilación , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factores de Transcripción p300-CBP/genéticaRESUMEN
In this study, a new and improved electrical conductance sensor is proposed for application not only to a horizontal pipe, but also an inclined one. The conductance sensor was designed to have a dual layer, each consisting of a three-electrode set to obtain two instantaneous conductance signals in turns, so that the area-averaged void fraction and structure velocity could be measured simultaneously. The optimum configuration of the electrodes was determined through numerical analysis, and the calibration curves for stratified and annular flow were obtained through a series of static experiments. The fabricated conductance sensor was applied to a 45 mm inner diameter U-shaped downward inclined pipe with an inclination angle of 3° under adiabatic air-water flow conditions. In the tests, the superficial velocities ranged from 0.1 to 3.0 m/s for water and from 0.1 to 18 m/s for air. The obtained mean void fraction and the structure velocity from the conductance sensor were validated against the measurement by the wire-mesh sensor and the cross-correlation technique for the visualized images, respectively. The results of the flow regime classification and the corresponding time series of the void fraction at a variety of flow velocities were also discussed.
RESUMEN
BACKGROUND: Since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Wuhan, China, in December 2019, it has spread rapidly, and many coronavirus disease (COVID-19) cases have occurred in Gwangju, South Korea. Viral mutations following the COVID-19 epidemic have increased interest in the characteristics of epidemics in this region, and pathogen genetic analysis is required for infection control and prevention. METHODS: In this study, SARS-CoV-2 whole-genome analysis was performed on samples from patients with COVID-19 in Gwangju from 2020 to 2022 to identify the trends in COVID-19 prevalence and to analyze the phylogenetic relationships of dominant variants. B.41 and B.1.497 prevailed in 2020, the early stage of the COVID-19 outbreak; then, B.1.619.1 mainly occurred until June 2021. B.1.617.2, classified as sublineages AY.69 and AY.122, occurred continuously from July to December 2021. Since strict measures to strengthen national quarantine management had been implemented in South Korea until this time, the analysis of mutations was also able to infer the epidemiological relationship between infection transmission routes. Since the first identification of the Omicron variant in late December 2021, the spread of infection has been very rapid, and weekly whole-genome analysis of specimens has enabled us to monitor new Omicron sublineages occurring in Gwangju. CONCLUSIONS: Our study suggests that conducting regional surveillance in addition to nation-level genomic surveillance will enable more rapid and detailed variant surveillance, which will be helpful in the overall prevention and management of infectious diseases.
Asunto(s)
COVID-19 , Genoma Viral , Filogenia , SARS-CoV-2 , República de Corea/epidemiología , Humanos , SARS-CoV-2/genética , SARS-CoV-2/clasificación , COVID-19/epidemiología , COVID-19/virología , COVID-19/transmisión , Genoma Viral/genética , Mutación , Secuenciación Completa del Genoma , GenómicaRESUMEN
The social restriction measures implemented due to the COVID-19 pandemic have impacted the pattern of occurrences of respiratory viruses. According to surveillance results in the Gwangju region of South Korea, respiratory syncytial virus (RSV) did not occur during the 2020/2021 season. However, there was a delayed resurgence in the 2021/2022 season, peaking until January 2022. To analyze this, a total of 474 RSV positive samples were investigated before and after the COVID-19 pandemic. Among them, 73 samples were selected for whole-genome sequencing. The incidence rate of RSV in the 2021/2022 season after COVID-19 was found to be approximately three-fold higher compared to before the pandemic, with a significant increase observed in the age group from under 2 years old to under 5 years old. Phylogenetic analysis revealed that, for RSV-A, whereas four lineages were observed before COVID-19, only the A.D.3.1 lineage was observed during the 2021/2022 season post-pandemic. Additionally, during the 2022/2023 season, the A.D.1, A.D.3, and A.D.3.1 lineages co-circulated. For RSV-B, while the B.D.4.1.1 lineage existed before COVID-19, both the B.D.4.1.1 and B.D.E.1 lineages circulated after the pandemic. Although atypical RSV occurrences were not due to new lineages, there was an increase in the frequency of mutations in the F protein of RSV after COVID-19. These findings highlight the need to continue monitoring changes in RSV occurrence patterns in the aftermath of the COVID-19 pandemic to develop and manage strategies in response.
Asunto(s)
COVID-19 , Filogenia , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , SARS-CoV-2 , Humanos , República de Corea/epidemiología , COVID-19/epidemiología , COVID-19/virología , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/virología , Preescolar , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/aislamiento & purificación , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Lactante , Niño , Femenino , Masculino , Incidencia , Secuenciación Completa del Genoma , Adulto , Estaciones del Año , Pandemias , Persona de Mediana Edad , Anciano , Recién Nacido , AdolescenteRESUMEN
Despite numerous biomarkers being proposed for rheumatoid arthritis (RA), a gap remains in our understanding of their mechanisms of action. In this study, we discovered a novel role for gelsolin (GSN), an actin-binding protein whose levels are notably reduced in the plasma of RA patients. We elucidated that GSN is a key regulator of NLRP3 inflammasome activation in macrophages, providing a plausible explanation for the decreased secretion of GSN in RA patients. We found that GSN interacts with NLRP3 in LPS-primed macrophages, hence modulating the formation of the NLRP3 inflammasome complex. Reducing GSN expression significantly enhanced NLRP3 inflammasome activation. GSN impeded NLRP3 translocation to the mitochondria; it contributed to the maintenance of intracellular calcium equilibrium and mitochondrial stability. This maintenance is crucial for controlling the inflammatory response associated with RA. Furthermore, the exacerbation of arthritic symptoms in GSN-deficient mice indicates the potential of GSN as both a diagnostic biomarker and a therapeutic target. Moreover, not limited to RA models, GSN has demonstrated a protective function in diverse disease models associated with the NLRP3 inflammasome. Myeloid cell-specific GSN-knockout mice exhibited aggravated inflammatory responses in models of MSU-induced peritonitis, folic acid-induced acute tubular necrosis, and LPS-induced sepsis. These findings suggest novel therapeutic approaches that modulate GSN activity, offering promise for more effective management of RA and a broader spectrum of inflammatory conditions.
RESUMEN
Papillary thyroid cancer (PTC) is the most common type of endocrine cancer worldwide. Generally, PTC has an excellent prognosis; however, lymph node metastases and recurrences occur frequently. Over the last decade, circular RNAs (circRNAs), a large class of noncoding RNAs (ncRNAs), have emerged as key regulators of various tumor progression pathways. Here, we aimed to identify novel circRNAs as PTC biomarkers. Differentially expressed circRNAs and mRNAs were analyzed using public datasets from the Gene Expression Omnibus and Cancer Genome Atlas. In addition, we screened for target miRNAs using online prediction databases. Based on these results, we established a circRNA-miRNA-mRNA regulatory network associated with PTC, in which protein-protein interaction networks led to the identification of hub genes. Functional enrichment and survival analyses were performed to gain insights into the biological mechanisms of circRNA involvement. As a result, we found that two circRNAs (hsa_circ_0041829 and has_circ_0092299), four miRNAs (miR-369, miR-486, miR-574, and miR-665), and nine hub genes (BBC3, E2F1, FYN, MAG, SDC1, SDC3, SNAP25, TK1, and TYMS) play significant roles in PTC progression. This study provides a novel framework for understanding the roles of circRNA-miRNA-mediated gene regulation in PTC. It also introduces potential therapeutic targets and prognostic biomarkers, which may serve as a basis for developing targeted therapeutic interventions for PTC.
RESUMEN
The non-pharmaceutical interventions implemented to prevent the spread of COVID-19 have affected the epidemiology of other respiratory viruses. In South Korea, Human metapneumovirus (HMPV) typically occurs from winter to the following spring; however, it was not detected for two years during the COVID-19 pandemic and re-emerged in the fall of 2022, which is a non-epidemic season. To examine the molecular genetic characteristics of HMPV before and after the COVID-19 pandemic, we analyzed 427 HMPV-positive samples collected in the Gwangju area from 2018 to 2022. Among these, 24 samples were subjected to whole-genome sequencing. Compared to the period before the COVID-19 pandemic, the incidence rate of HMPV in 2022 increased by 2.5-fold. Especially in the age group of 6-10 years, the incidence rate increased by more than 4.5-fold. In the phylogenetic analysis results, before the COVID-19 pandemic, the A2.2.2 lineage was predominant, while in 2022, the A2.2.1 and B2 lineage were observed. The non-pharmaceutical interventions implemented after COVID-19, such as social distancing, have reduced opportunities for exposure to HMPV, subsequently leading to decreased acquisition of immunity. As a result, HMPV occurred during non-epidemic seasons, influencing the age distribution of its occurrences.
RESUMEN
Community mitigation measures taken owing to the COVID-19 pandemic have caused a decrease in the number of respiratory viruses, including the human parainfluenza virus type 3 (HPIV3), and a delay in their occurrence. HPIV3 was rarely detected as a consequence of monitoring respiratory viral pathogens in Gwangju, Korea, in 2020; however, it resurfaced as a delayed outbreak and peaked in September-October 2021. To understand the genetic characteristics of the reemerging virus, antigenic gene sequences and evolutionary analyses of the hemagglutinin-neuraminidase (HN) and fusion (F) genes were performed for 129 HPIV3 pathogens prevalent in Gwangju from 2018 to 2021. Unlike the prevalence of various HPIV3 strains in 2018-2019, the prevalence of HPIV3 by strains with reduced diversity was confirmed in 2021. It could be inferred that this decrease in genetic diversity was due to the restriction of inflow from other regions at home and abroad following the community mitigation measures and the spread within the region. The HPIV3 that emerged in 2021 consisted of HN coding regions that were 100% consistent with the sequence identified in Saitama, Japan, in 2018, and F coding regions exhibiting 99.6% homology to a sequence identified in India in 2017, among the ranks reported to the National Center for Biotechnology Information. The emergence of a new lineage in a community can lead to a mass outbreak by collapsing the collective immunity of the existing acquired area; therefore, continuous monitoring is necessary.
Asunto(s)
COVID-19 , Virus de la Parainfluenza 3 Humana , COVID-19/epidemiología , Proteína HN/genética , Humanos , Pandemias , SARS-CoV-2/genética , Proteínas Virales de Fusión/genéticaRESUMEN
Despite numerous observations regarding the relationship between DNA methylation changes and cancer progression, only a few genes have been verified as diagnostic biomarkers of colorectal cancer (CRC). To more practically detect methylation changes, we performed targeted bisulfite sequencing. Through co-analysis of RNA-seq, we identified cohort-specific DNA methylation markers: CpG islands of the intragenic regions of PDX1, EN2, and MSX1. We validated that these genes have oncogenic features in CRC and that their expression levels are increased in correlation with the hypermethylation of intragenic regions. The reliable depth of the targeted bisulfite sequencing data enabled us to design highly optimized quantitative methylation-specific PCR primer sets that can successfully detect subtle changes in the methylation levels of candidate regions. Furthermore, these methylation levels can divide CRC patients into two groups denoting good and poor prognoses. In this study, we present a streamlined workflow for screening clinically significant differentially methylated regions. Our discovery of methylation markers in the PDX1, EN2, and MSX1 genes suggests their promising performance as prognostic markers and their clinical application in CRC patients.
Asunto(s)
Neoplasias Colorrectales , Metilación de ADN , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Islas de CpG/genética , Proteínas de Homeodominio , Humanos , Factor de Transcripción MSX1/genética , Factor de Transcripción MSX1/metabolismo , Proteínas del Tejido Nervioso , Oncogenes , TransactivadoresRESUMEN
Leafy vegetables are widely consumed in South Korea, especially in the form of kimchi and namul (seasoned vegetables) and are used for wrapping meat. Therefore, the management of pesticide residues in leafy vegetables is very important. A total of 17,977 samples (49 leafy vegetables) were mainly collected in the largest production area of leafy vegetables (Gwangju Metropolitan City and Chonnam Province) in South Korea. They were analyzed within the government's monitoring programs (Gwangju Metropolitan City) of pesticide residues between 2005 and 2019. Pesticide residues were found in 2815 samples (15.7%), and 426 samples (2.4%) from among these exceeded the specified maximum residue limits (MRLs). Samples exceeding the MRLs were mostly detected in spinach, ssamchoo (brassica lee ssp. namai), crown daisy, lettuce, and perilla leaves. Azoxystrobin, dimethomorph, and procymidone were the most frequently detected pesticides. However, procymidone, diniconazole, and lufenuron were found to most frequently exceed the MRLs. The rate of MRLs exceeding has been managed below the average (2.4%) more recently than in the past in this area. Further, leafy vegetables with the most violations of the MRLs in our study in South Korea were not harmful to health by a risk assessment (the range of the hazard index was 0.001-7.6%).
RESUMEN
AIMS: Previously, we reported that phosphorylation of histone deacetylase 2 (HDAC2) and the resulting activation causes cardiac hypertrophy. Through further study of the specific binding partners of phosphorylated HDAC2 and their mechanism of regulation, we can better understand how cardiac hypertrophy develops. Thus, in the present study, we aimed to elucidate the function of one such binding partner, heat shock protein 70 (HSP70). METHODS AND RESULTS: Primary cultures of rat neonatal ventricular cardiomyocytes and H9c2 cardiomyoblasts were used for in vitro cellular experiments. HSP70 knockout (KO) mice and transgenic (Tg) mice that overexpress HSP70 in the heart were used for in vivo analysis. Peptide-precipitation and immunoprecipitation assay revealed that HSP70 preferentially binds to phosphorylated HDAC2 S394. Forced expression of HSP70 increased phosphorylation of HDAC2 S394 and its activation, but not that of S422/424, whereas knocking down of HSP70 reduced it. However, HSP70 failed to phosphorylate HDAC2 in the cell-free condition. Phosphorylation of HDAC2 S394 by casein kinase 2α1 enhanced the binding of HSP70 to HDAC2, whereas dephosphorylation induced by the catalytic subunit of protein phosphatase 2A (PP2CA) had the opposite effect. HSP70 prevented HDAC2 dephosphorylation by reducing the binding of HDAC2 to PP2CA. HSP70 KO mouse hearts failed to phosphorylate S394 HDAC2 in response to isoproterenol infusion, whereas Tg overexpression of HSP70 increased the phosphorylation and activation of HDAC2. 2-Phenylethynesulfonamide (PES), an HSP70 inhibitor, attenuated cardiac hypertrophy induced either by phenylephrine in neonatal ventricular cardiomyocytes or by aortic banding in mice. PES reduced HDAC2 S394 phosphorylation and its activation by interfering with the binding of HSP70 to HDAC2. CONCLUSION: These results demonstrate that HSP70 specifically binds to S394-phosphorylated HDAC2 and maintains its phosphorylation status, which results in HDAC2 activation and the development of cardiac hypertrophy. Inhibition of HSP70 has possible application as a therapeutic.
Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Histona Desacetilasa 2/metabolismo , Hipertrofia Ventricular Izquierda/enzimología , Miocitos Cardíacos/enzimología , Función Ventricular Izquierda , Remodelación Ventricular , Animales , Sitios de Unión , Línea Celular , Modelos Animales de Enfermedad , Activación Enzimática , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP70 de Choque Térmico/deficiencia , Proteínas HSP70 de Choque Térmico/genética , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/prevención & control , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Fosforilación , Unión Proteica , Proteína Fosfatasa 2/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Sulfonamidas/farmacología , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacosRESUMEN
Sumoylation, the conjugation of a small ubiquitin-like modifier (SUMO) protein to a target, has diverse cellular effects. However, the functional roles of the SUMO modification during myogenesis have not been fully elucidated. Here, we report that basal sumoylation of histone deacetylase 1 (HDAC1) enhances the deacetylation of MyoD in undifferentiated myoblasts, whereas further sumoylation of HDAC1 contributes to switching its binding partners from MyoD to Rb to induce myocyte differentiation. Differentiation in C2C12 skeletal myoblasts induced new immunoblot bands above HDAC1 that were gradually enhanced during differentiation. Using SUMO inhibitors and sumoylation assays, we showed that the upper band was caused by sumoylation of HDAC1 during differentiation. Basal deacetylase activity was not altered in the SUMO modification-resistant mutant HDAC1 K444/476R (HDAC1 2R). Either differentiation or transfection of SUMO1 increased HDAC1 activity that was attenuated in HDAC1 2R. Furthermore, HDAC1 2R failed to deacetylate MyoD. Binding of HDAC1 to MyoD was attenuated by K444/476R. Binding of HDAC1 to MyoD was gradually reduced after 2 days of differentiation. Transfection of SUMO1 induced dissociation of HDAC1 from MyoD but potentiated its binding to Rb. SUMO1 transfection further attenuated HDAC1-induced inhibition of muscle creatine kinase luciferase activity that was reversed in HDAC1 2R. HDAC1 2R failed to inhibit myogenesis and muscle gene expression. In conclusion, HDAC1 sumoylation plays a dual role in MyoD signaling: enhancement of HDAC1 deacetylation of MyoD in the basally sumoylated state of undifferentiated myoblasts and dissociation of HDAC1 from MyoD during myogenesis.