Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chem Soc Rev ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985007

RESUMEN

The rapid advancements in nucleic acid-based electrochemical sensors for implantable and wearable applications have marked a significant leap forward in the domain of personal healthcare over the last decade. This technology promises to revolutionize personalized healthcare by facilitating the early diagnosis of diseases, monitoring of disease progression, and tailoring of individual treatment plans. This review navigates through the latest developments in this field, focusing on the strategies for nucleic acid sensing that enable real-time and continuous biomarker analysis directly in various biofluids, such as blood, interstitial fluid, sweat, and saliva. The review delves into various nucleic acid sensing strategies, emphasizing the innovative designs of biorecognition elements and signal transduction mechanisms that enable implantable and wearable applications. Special perspective is given to enhance nucleic acid-based sensor selectivity and sensitivity, which are crucial for the accurate detection of low-level biomarkers. The integration of such sensors into implantable and wearable platforms, including microneedle arrays and flexible electronic systems, actualizes their use in on-body devices for health monitoring. We also tackle the technical challenges encountered in the development of these sensors, such as ensuring long-term stability, managing the complexity of biofluid dynamics, and fulfilling the need for real-time, continuous, and reagentless detection. In conclusion, the review highlights the importance of these sensors in the future of medical engineering, offering insights into design considerations and future research directions to overcome existing limitations and fully realize the potential of nucleic acid-based electrochemical sensors for healthcare applications.

2.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542264

RESUMEN

The multifunctional carbon catabolite repression negative on TATA-box-less complex (CCR4-NOT) is a multi-subunit complex present in all eukaryotes, including fungi. This complex plays an essential role in gene expression; however, a functional study of the CCR4-NOT complex in the rice blast fungus Magnaporthe oryzae has not been conducted. Seven genes encoding the putative CCR4-NOT complex were identified in the M. oryzae genome. Among these, a homologous gene, MoNOT3, was overexpressed during appressorium development in a previous study. Deletion of MoNOT3 in M. oryzae resulted in a significant reduction in hyphal growth, conidiation, abnormal septation in conidia, conidial germination, and appressorium formation compared to the wild-type. Transcriptional analyses suggest that the MoNOT3 gene affects conidiation and conidial morphology by regulating COS1 and COM1 in M. oryzae. Furthermore, Δmonot3 exhibited a lack of pathogenicity, both with and without wounding, which is attributable to deficiencies in the development of invasive growth in planta. This result was also observed in onion epidermal cells, which are non-host plants. In addition, the MoNOT3 gene was involved in cell wall stress responses and heat shock. Taken together, these observations suggest that the MoNOT3 gene is required for fungal infection-related cell development and stress responses in M. oryzae.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ascomicetos/metabolismo , Esporas Fúngicas , Oryza/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Regulación Fúngica de la Expresión Génica
3.
Cladistics ; 38(2): 159-186, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35277892

RESUMEN

Calaphidinae is the second-largest subfamily in the family Aphididae. Despite their species diversity and some taxonomic controversy, no phylogenetic studies have been conducted on them thus far. Herein, we report the first molecular phylogeny of Calaphidinae and two related lineages, Phyllaphidinae and Saltusaphidinae, based on five genes (3418 bp) for 126 taxa. Maximum parsimony, maximum-likelihood and Bayesian inference phylogenetic analyses were performed on the multilocus dataset. Divergence time estimation, biogeographical reconstruction, ancestral host plant reconstruction and PhyloType analyses were performed to identify evolutionary trends in Calaphidinae. Our phylogenetic results lead to several conclusions: Phyllaphidinae is a sister group to Calaphidinae s.l.; Calaphidinae is paraphyletic with respect to the former "Saltusaphidinae"; the ingroup clade was subdivided into nine newly recognized lineages; and three subtribes of Calaphidinae (Monaphidina, Calaphdina and Panaphidina) and many genera were not recovered as monophyletic. A new classification is proposed with eight tribal divisions that reflect our phylogenetic results, including three new tribes (Pterocallidini trib.n., Pseudochromaphidini trib.n. and Shivaphidini trib.n.) and three new statuses (Saltusaphidini stat.n., Therioaphidini stat.n. and Myzocallidini stat.n.). The ancestral reconstruction results imply that the ingroup taxa's common ancestor originated in the Eastern Palaearctic and might have fed on Fagaceae in the Late Cretaceous. Later, multiple host shifts and an expanding geographical distribution led to the current species diversity of Calaphidinae. Our reconstructions suggest that species diversification cannot solely be explained by speciation via host shifts and that geographical isolation probably also played a key role. Our results provide new insight into the natural classification and history of the host plant associations and biogeography of Calaphidinae s.l.


Asunto(s)
Áfidos , Animales , Áfidos/genética , Teorema de Bayes , Geografía , Filogenia
4.
MRS Bull ; 46(9): 847-853, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34608355

RESUMEN

ABSTRACT: From Operation Warp Speed to the lipid mRNA vaccine, the COVID-19 pandemic has been a watershed moment for technological development, production, and implementation. The scale and pace of innovation and global collaboration has likely not been experienced since World War II. This article highlights some of the engineering accomplishments that occurred during the pandemic. We provide a broad overview of the technological achievements in vaccine design, antibody engineering, drug repurposing, and rapid diagnostic testing. We also discuss what the future of these technologies and the future of large-scale collaborations might look like moving forward.

5.
Plant Dis ; 2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33591825

RESUMEN

Pears (Pyrus pylifolia L.) are cultivated nationwide as one of the most economically important fruit trees in Korea. At the end of October 2019, bleeding canker was observed in a pear orchard located in Naju, Jeonnam Province (34°53'50.54″ N, 126°39'00.32″ E). The canker was observed on trunks and branches of two 25-year-old trees, and the diseased trunks and branches displayed partial die-back or complete death. When the bark was peeled off from the diseased trunks or branches, brown spots or red streaks were found in the trees. Bacterial ooze showed a rusty color and the lesion was sap-filled with a yeasty smell. Trunks displaying bleeding symptoms were collected from two trees. Infected bark tissues (3 × 3 mm) from the samples were immersed in 70% ethanol for 1 minute, rinsed three times in sterilized water, ground to fine powder using a mortar and pestle, and suspended in sterilized water. After streaking each suspension on Luria-Bertani (LB) agar, the plates were incubated at 25°C without light for 2 days. Small yellow-white bacterial colonies with irregular margins were predominantly obtained from all the samples. Three representative isolates (ECM-1, ECM-2 and ECM-3) were subjected to further characterization. These isolates were cultivated at 39 C, and utilized (-)-D-arabinose, (+) melibiose, (+)raffinose, mannitol and myo-inositol but not 5-keto-D-gluconate, -gentiobiose, or casein. These isolates were identified as Dickeya sp. based on the sequence of 16S rRNA (MT820458-820460) gene amplified using primers 27f and 1492r (Heuer et al. 2000). The 16S rRNA sequences matched with D. fangzhongdai strain ND14b (99.93%; CP009460.1) and D. fangzhongdai strain PA1(99.86%; CP020872.1). The recA, fusA, gapA, purA, rplB, and dnaX genes and the intergenic spacer (IGS) regions were also sequenced as described in Van der wolf et al. (2014). The recA (MT820437-820439), fusA (MT820440-820442), gapA (MT820443-820445), purA (MT820446-820448), rplB (MT820449-820451), dnaX (MT820452-820454) and IGS (MT820455-820457) sequences matched with D. fangzhongdai strains JS5, LN1 and QZH3 (KT992693-992695, KT992697-992699, KT992701-992703, KT992705-992707, KT992709-992711, KT992713-992715, and KT992717-992719, respectively). A neighbor-joining phylogenetic analysis based on the concatenated recA, fusA, gapA, purA, rplB, dnaX and IGS sequences placed the representative isolates within a clade comprising D. fangzhongdai. ECM-1 to 3 were grouped into a clade with one strain isolated from waterfall, D. fangzhongdai ND14b from Malaysia. Pathogenicity test was performed using isolate ECM-1. Three two-year-old branches and flower buds on 10-year-old pear tree (cv. Nittaka), grown at the National Institute of Horticultural and Herbal Science Pear Research Institute (Naju, Jeonnam Province in Korea), were inoculated with 10 µl and 2 µl of a bacterial suspension (108 cfu/ml), respectively, after wounding inoculation site with a sterile scalpel (for branch) or injecting with syringe (for flower bud). Control plants were inoculated with water. Inoculated branches and buds in a plastic bag were placed in a 30℃ incubator without light for 2 days (Chen et al. 2020). Both colorless and transparent bacterial ooze and typical bleeding canker were observed on both branches and buds at 3 and 2 weeks post inoculation, respectively. No symptoms were observed on control branches and buds. This pathogenicity assay was conducted three times. We reisolated three colonies from samples displaying the typical symptoms and checked the identity of one by sequencing the dnaX locus. Dickeya fangzhongdai has been reported to cause bleeding canker on pears in China (Tian et al. 2016; Chen et al. 2020). This study will contribute to facilitate identification and control strategies of this disease in Korea. This is the first report of D. fangzhongdai causing bleeding canker on pears in Korea.

6.
Korean J Physiol Pharmacol ; 25(2): 167-175, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33602887

RESUMEN

Far-infrared rays (FIR) are known to have various effects on atoms and molecular structures within cells owing to their radiation and vibration frequencies. The present study examined the effects of FIR on gene expression related to glucose transport through microarray analysis in rat skeletal muscle cells, as well as on mitochondrial biogenesis, at high and low glucose conditions. FIR were emitted from a bio-active material coated fabric (BMCF). L6 cells were treated with 30% BMCF for 24 h in medium containing 25 or 5.5 mM glucose, and changes in the expression of glucose transporter genes were determined. The expression of GLUT3 (Slc2a3) increased 2.0-fold (p < 0.05) under 5.5 mM glucose and 30% BMCF. In addition, mitochondrial oxygen consumption and membrane potential (ΔΨm) increased 1.5- and 3.4-fold (p < 0.05 and p < 0.001), respectively, but no significant change in expression of Pgc-1a, a regulator of mitochondrial biogenesis, was observed in 24 h. To analyze the relationship between GLUT3 expression and mitochondrial biogenesis under FIR, GLUT3 was down-modulated by siRNA for 72 h. As a result, the ΔΨm of the GLUT3 siRNA-treated cells increased 3.0-fold (p < 0.001), whereas that of the control group increased 4.6-fold (p < 0.001). Moreover, Pgc-1a expression increased upon 30% BMCF treatment for 72 h; an effect that was more pronounced in the presence of GLUT3. These results suggest that FIR may hold therapeutic potential for improving glucose metabolism and mitochondrial function in metabolic diseases associated with insufficient glucose supply, such as type 2 diabetes.

7.
Int J Syst Evol Microbiol ; 67(2): 391-395, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27902263

RESUMEN

The novel isolate belonging to the genus Terrimonas, designated CR94T, was isolated from rhizosphere soil of a ginseng field in Geumsan, Korea. Cells of strain CR94T were strictly aerobic, Gram-stain-negative, non-motile, non-filamentous single rods. Growth was observed at 10-37 °C (optimum 28 °C) and at pH 4.0-10.0 (optimum pH 6.0). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain CR94T belonged to the genus Terrimonas, showing highest sequence similarity to Terrimonas lutea DYT (97.3 %), Terrimonas pekingensis QHT (97.1 %), Terrimonas aquatica RIB1-6T (95.6 %), Terrimonas rubra M-8T (94.7 %) and Terrimonas ferruginea ATCC 13524T (93.8 %). DNA-DNA relatedness values between strain CR94T and T. lutea KACC 13047T, T. pekingensis KACC 18795T, T. ferruginea KACC 11310T and T. aquatica LMG 24825T were 30.5, 28.9, 17.8 and 13.5 %, respectively. The DNA G+C content was 46.5 mol% and the major respiratory quinone was menaquinone-7 (MK-7). The major cellular fatty acids of strain CR94T were iso-C15:1 G and iso-C15 : 0. On the basis of the polyphasic analysis, strain CR94T represents a novel species of the genus Terrimonas, for which the name Terrimonas rhizosphaerae sp. nov. is proposed. The type strain is CR94T (=KACC 17564T=NCAIM B 025317T).


Asunto(s)
Bacteroidetes/clasificación , Panax/microbiología , Filogenia , Rizosfera , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
8.
Antonie Van Leeuwenhoek ; 109(6): 785-92, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27108138

RESUMEN

A denitrifying bacterium, designated strain E4-1(T), was isolated from a bioreactor for tannery wastewater treatment, and its taxonomic position was investigated using a polyphasic approach. Strain E4-1(T), a facultative anaerobic bacterium, was observed to grow between 0 and 12 % (w/v) NaCl, between pH 3.0 and 12.0. Cells were found to be oxidase-positive and catalase-negative. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain E4-1(T) forms a distinct lineage with respect to closely related genera in the family Xanthomonadaceae, and is closely related to Chiayiivirga, Aquimonas and Dokdonella, and the levels of 16S rRNA gene sequence similarity with respect to the type species of related genera are less than 93.9 %. The predominant respiratory quinone was determined to be ubiquinone-8 (Q-8) and the major cellular fatty acids were determined to be iso-C15:0, iso-C17:1 ω9c, iso-C11:0 and iso-C11:0 3OH. Based on physiological, biochemical and chemotaxonomic properties together with results of comparative 16S rRNA gene sequence analysis, strain E4-1(T) is considered to represent a novel species in a new genus, for which the name Denitratimonas tolerans gen. nov., sp. nov. is proposed. The type strain is E4-1(T) (=KACC 17565(T) = NCAIM B 025327(T)).


Asunto(s)
Reactores Biológicos/microbiología , Aguas Residuales/microbiología , Xanthomonadaceae/clasificación , Xanthomonadaceae/aislamiento & purificación , ADN Bacteriano/genética , ADN Ribosómico/genética , Desnitrificación , Ácidos Grasos/metabolismo , Fosfolípidos/metabolismo , Filogenia , Quinonas/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Cloruro de Sodio/metabolismo , Ubiquinona/metabolismo , Xanthomonadaceae/genética , Xanthomonadaceae/metabolismo
9.
Insects ; 15(3)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38535398

RESUMEN

The tribe Tuberolachnini within the Lachninae (Hemiptera: Aphididae) is particularly intriguing due to its morphological traits and various ecological associations. Among the genera within this group, Pyrolachnus stands out as relatively understudied. Currently, only one species, Pyrolachnus imbricatus nipponicus Sorin, 2011, is known from Japan, distinguished by its distinctive characteristics. Through meticulous morphological analyses, we introduce a novel Lachninae genus, Miyalachnusgen. nov., associated with Cerasus and Prunus spp. (Rosaceae) in Japan. This new genus accommodates P. imbricatus nipponicus, now recognized as Miyalachnus nipponicus (Sorin, 2011) comb. nov. Additionally, we present a second species within this genus, Miyalachnus sorinisp. nov., along with comprehensive SEM morphological examination and insights into its biology. Our study describes in detail the morphological characteristics of both viviparous and bisexual generations of Miyalachnus, as well as their relationships with related genera.

10.
Sci Rep ; 14(1): 10379, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710783

RESUMEN

Citizen science (CS) is the most effective tool for overcoming the limitations of government and/or professional data collection. To compensate for quantitative limitations of the 'Winter Waterbird Census of Korea', we conducted a total of four bird monitoring via CS from 2021 to 2022. To use CS data alongside national data, we studied CS data quality and improvement utilizing (1) digit-based analysis using Benford's law and (2) comparative analysis with national data. In addition, we performed bird community analysis using CS-specific data, demonstrating the necessity of CS. Neither CS nor the national data adhered to Benford's law. Alpha diversity (number of species and Shannon index) was lower, and total beta diversity was higher for the CS data than national data. Regarding the observed bird community, the number of species per family was similar; however, the number of individuals per family/species differed. We also identified the necessity of CS by confirming the possibility of predicting bird communities using CS-specific data. CS was influenced by various factors, including the perceptions of the survey participants and their level of experience. Therefore, conducting CS after systematic training can facilitate the collection of higher-quality data.


Asunto(s)
Aves , Censos , Ciencia Ciudadana , Animales , Aves/fisiología , República de Corea , Biodiversidad
11.
Radiother Oncol ; 193: 110111, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38286241

RESUMEN

BACKGROUND AND PURPOSE: To investigate the molecular mechanism by which irradiated macrophages secrete cytosolic double-stranded DNA (c-dsDNA) to increase radiosensitivity of tumors. MATERIALS AND METHODS: Irradiated bone marrow-derived macrophages (BMDM) were co-incubated with irradiated EO771 or MC38 cancer cells to determine clonogenic survival. c-dsDNA were measured by agarose gel or enzyme-linked immunosorbent assay. BMDM or cancer cells were analyzed with immunostaining or western blot. Subcutaneously implanted MC38 cells in myeloid-specific Prkdc knockout (KO) mice or littermate control mice were irradiated with 8 Gy to determine radiosensitivity of tumors. RESULTS: We observed that irradiated BMDM significantly increased radiosensitivity of cancer cells. By performing immunostaining, we found that there was a dose-dependent increase in the formation of c-dsDNA and phosphorylation in DNA-dependent protein kinase (DNA-PK) in irradiated BMDM. Importantly, c-dsDNA in irradiated BMDM could be secreted to the extracellular milieu and this process required DNA-PK, which phosphorylated myosin light chain to regulate the secretion. The secreted c-dsDNA from irradiated BMDM then activated toll-like receptor-9 and subsequent nuclear factor kappa-light-chain-enhancer of activated B cells signaling in the adjacent cancer cells inhibiting radiation-induced DNA double strand break repair. Lastly, we observed that irradiated tumors in vivo had a significantly increased number of tumor-associated macrophages (TAM) with phosphorylated DNA-PK expression in the cytosol. Furthermore, tumors grown in myeloid-specific Prkdc KO mice, in which TAM lacked phosphorylated DNA-PK expression were significantly more radioresistant than those of the wild-type control mice. CONCLUSIONS: Irradiated macrophages can increase antitumor efficacy of radiotherapy through secretion of c-dsDNA under the regulation of DNA-PK.


Asunto(s)
Proteína Quinasa Activada por ADN , Neoplasias , Ratones , Animales , Citosol/metabolismo , Tolerancia a Radiación , Macrófagos , ADN
12.
Int Emerg Nurs ; 74: 101424, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38531213

RESUMEN

BACKGROUND: Emergency departments (ED) nurses experience high mental workloads because of unpredictable work environments; however, research evaluating ED nursing workload using a tool incorporating nurses' perception is lacking. Quantify ED nursing subjective workload and explore the impact of work experience on perceived workload. METHODS: Thirty-two ED nurses at a tertiary academic hospital in the Republic of Korea were surveyed to assess their subjective workload for ED procedures using the National Aeronautics and Space Administration Task Load Index (NASA-TLX). Nonparametric statistical analysis was performed to describe the data, and linear regression analysis was conducted to estimate the impact of work experience on perceived workload. RESULTS: Cardiopulmonary resuscitation (CPR) had the highest median workload, followed by interruption from a patient and their family members. Although inexperienced nurses perceived the 'special care' procedures (CPR and defibrillation) as more challenging compared with other categories, analysis revealed that nurses with more than 107 months of experience reported a significantly higher workload than those with less than 36 months of experience. CONCLUSION: Addressing interruptions and customizing training can alleviate ED nursing workload. Quantified perceived workload is useful for identifying acceptable thresholds to maintain optimal workload, which ultimately contributes to predicting nursing staffing needs and ED crowding.


Asunto(s)
Servicio de Urgencia en Hospital , Carga de Trabajo , Humanos , Carga de Trabajo/psicología , Servicio de Urgencia en Hospital/organización & administración , Femenino , Masculino , República de Corea , Adulto , Encuestas y Cuestionarios , Enfermería de Urgencia , Persona de Mediana Edad , Análisis y Desempeño de Tareas
13.
Metabolites ; 14(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38392994

RESUMEN

Fertilizers are widely used to improve the quality of fruits and vegetables. However, the overuse of fertilizers has become an issue because it causes environmental problems and negatively affects productivity and fruit quality. In this study, we examined the effects of nitrogen, phosphorus, and potassium (NPK) fertilizer levels on the metabolism of cucumber fruit in low- and high-nutrient soils using mass-spectrometry-based metabolomics approaches. Cucumber metabolite content was notably different depending on the initial soil nutrient status. Most amino acids and phenylpropanoids were abundant in the cucumbers raised in low-nutrient soil, whereas organic acids, some amino acids (aspartate, glutamate, and ornithine), and carbohydrates were comparatively higher in fruits from high-nutrient soil. The fertilizer supply resulted in an alteration in the metabolite profile, while no change in fruit yield was observed in either low- or high-nutrient soils. Fertilizer treatment perturbed the metabolite contents in cucumbers from low-nutrient soil. In contrast, treatment with higher concentrations of fertilizer in high-nutrient soil increased phenylpropanoid content in the cucumbers, while most metabolites decreased. In conclusion, fertilization levels should be carefully determined, considering culture conditions such as the original soil status, to increase product yield and fruit quality and avoid environmental problems.

14.
Foods ; 12(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36766169

RESUMEN

In the rice processing industry, wastewater is an inevitable by-product of rice washing. To increase the utilization of washed rice water (WRW), seven types of fermented washed rice water (FWRW) were prepared using lactic acid bacteria (LAB) and carbohydrate hydrolase. The total concentration of small maltooligosaccharides (MOSs) in the amyloglucosidase (AMG) treatment groups was about ten times higher than in the untreated groups. After 6 h of fermentation, six of the seven FWRW samples reached a pH of 4 due to the increased concentration of organic acids and could, therefore, be used as food acidity regulators. To confirm the applicability of FWRW, the traditional Korean rice cake garaetteok was prepared with FWRW and stored at 4 °C for 5 days. A texture profile analysis (TPA) revealed that the hardness of garaetteok treated with FWRW was significantly lower than that of untreated garaetteok following storage. Differential scanning calorimetry (DSC) showed that FWRW retarded the retrogradation of garaetteok during storage. The addition of FWRW using Lactobacillus reuteri with an AMG group was particularly effective for inhibiting microbial activity in garaetteok during storage. These results suggest that FWRW using AMG-added L. reuteri can be used as a novel food additive for improving the quality of traditional Korean starch foods and could also reduce the volume of waste WRW.

15.
bioRxiv ; 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37425838

RESUMEN

Monocytes are members of the mononuclear phagocyte system involved in pathogen clearance and nanoparticle pharmacokinetics. Monocytes play a critical role in the development and progression of cardiovascular disease and, recently, in SARS-CoV-2 pathogenesis. While studies have investigated the effect of nanoparticle modulation on monocyte uptake, their capacity for nanoparticle clearance is poorly studied. In this study, we investigated the impact of ACE2 deficiency, frequently observed in individuals with cardiovascular complications, on monocyte nanoparticle endocytosis. Moreover, we investigated nanoparticle uptake as a function of nanoparticle size, physiological shear stress, and monocyte phenotype. Our Design of Experiment (DOE) analysis found that the THP-1 ACE2 - cells showed a greater preference for 100nm particles under atherosclerotic conditions than THP-1 wild-type cells. Observing how nanoparticles can modulate monocytes in the context of disease can inform precision dosing.

16.
Mol Cells ; 46(4): 200-205, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36756777

RESUMEN

DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a member of the phosphatidylinositol 3-kinase related kinase family is a well-known player in repairing DNA double strand break through non-homologous end joining pathway. This mechanism has allowed us to understand its critical role in T and B cell development through V(D)J recombination and class switch recombination, respectively. We have also learned that the defects in these mechanisms lead to severely combined immunodeficiency (SCID). Here we highlight some of the latest evidence where DNA-PKcs has been shown to localize not only in the nucleus but also in the cytoplasm, phosphorylating various proteins involved in cellular metabolism and cytokine production. While it is an exciting time to unveil novel functions of DNA-PKcs, one should carefully choose experimental models to study DNA-PKcs as the experimental evidence has been shown to differ between cells of defective DNA-PKcs and those of DNA-PKcs knockout. Moreover, while there are several DNA-PK inhibitors currently being evaluated in the clinical trials in attempt to increase the efficacy of radiotherapy or chemotherapy, multiple functions and subcellular localization of DNA-PKcs in various types of cells may further complicate the effects at the cellular and organismal level.


Asunto(s)
Proteína Quinasa Activada por ADN , Proteínas de Unión al ADN , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Dominio Catalítico , Reparación del ADN , ADN
17.
Int J Biol Macromol ; 250: 126107, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37536417

RESUMEN

Amylopectin clusters (APCs) are produced by cyclodextrin glucanotransferase (EC 2.4.1.19). Their solubility rate in aqueous solution was found to be 16.7 %. The weight-average molecular weight of APCs is ∼105 Da, as determined by multiangle laser light scattering analysis. Side chain length analysis indicated that the relative proportions of side chains with a degree of polymerization in the ranges of 2-8 and 25-50 decreased and increased, respectively, during preparation of APCs. In the exercise experiment, the blood glucose level of rats was higher in the APC-treated group than in the groups treated with commercial carbohydrate supplement (CCD) and glucose. In the forced swimming test, the swimming time in the APC and CCD groups increased by 22.6 % and 31.1 %, respectively, compared with the glucose administration group. The insulin levels were also similar between the APC and CCD groups. However, the glycogen levels in the liver and muscles of mice were significantly higher in the APC group than control group. These results suggest that APCs could potentially enhance endurance when added to sports drinks.

18.
Carbohydr Polym ; 310: 120722, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36925261

RESUMEN

To improve the applicability of quercetin (QCT), we produced a QCT and cycloamylose (CA-QCT) inclusion complex based on the cyclization activity of cyclodextrin glucanotransferase (CGTase; EC 2.4.1.19). The encapsulated QCT was purified using recycling preparative high-performance liquid chromatography, and its formation was analyzed using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. The water solubility of CA-QCT was 55,000-fold higher than that of QCT. CA-QCT had 97 % stability for one week at pH 8 in a 4 °C water bath. According to a 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity assay, CA-QCT activity in aqueous solution was 24 times higher than that of an equal amount of QCT in aqueous solution. In an anti-inflammatory assay using lipopolysaccharide-induced RAW264.7 macrophages, CA-QCT in aqueous solution decreased nitric oxide production in a similar manner to QCT in dimethyl sulfoxide (DMSO). Additionally, even under aqueous conditions, CA-QCT more effectively inhibited the production of inflammatory mediators, such as interleukin-1ß, interleukin-6, and cyclooxygenase, compared with QCT dissolved in DMSO.


Asunto(s)
Dimetilsulfóxido , Quercetina , Quercetina/farmacología , Quercetina/química , Antiinflamatorios/farmacología , Oligosacáridos
19.
Brain Tumor Res Treat ; 11(4): 223-231, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37953445

RESUMEN

FLASH radiotherapy (FLASH RT) is a technique to deliver ultra-high dose rate in a fraction of a second. Evidence from experimental animal models suggest that FLASH RT spares various normal tissues including the lung, gastrointestinal track, and brain from radiation-induced toxicity (a phenomenon known as FLASH effect), which is otherwise commonly observed with conventional dose rate RT. However, it is not simply the ultra-high dose rate alone that brings the FLASH effect. Multiple parameters such as instantaneous dose rate, pulse size, pulse repetition frequency, and the total duration of exposure all need to be carefully optimized simultaneously. Furthermore it is critical to validate FLASH effects in an in vivo experimental model system. The exact molecular mechanism responsible for this FLASH effect is not yet understood although a number of hypotheses have been proposed including oxygen depletion and less reactive oxygen species (ROS) production by FLASH RT, and enhanced ability of normal tissues to handle ROS and labile iron pool compared to tumors. In this review, we briefly overview the process of ionization event and history of radiotherapy and fractionation of ionizing radiation. We also highlight some of the latest FLASH RT reviews and results with a special interest to neurocognitive protection in rodent model with whole brain irradiation. Lastly we discuss some of the issues remain to be answered with FLASH RT including undefined molecular mechanism, lack of standardized parameters, low penetration depth for electron beam, and tumor hypoxia still being a major hurdle for local control. Nevertheless, researchers are close to having all answers to the issues that we have raised, hence we believe that advancement of FLASH RT will be made more quickly than one can anticipate.

20.
Exp Mol Med ; 55(11): 2300-2307, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37907745

RESUMEN

Adipose tissues, composed of various cell types, including adipocytes, endothelial cells, neurons, and immune cells, are organs that are exposed to dynamic environmental challenges. During diet-induced obesity, white adipose tissues experience hypoxia due to adipocyte hypertrophy and dysfunctional vasculature. Under these conditions, cells in white adipose tissues activate hypoxia-inducible factor (HIF), a transcription factor that activates signaling pathways involved in metabolism, angiogenesis, and survival/apoptosis to adapt to such an environment. Exposure to cold or activation of the ß-adrenergic receptor (through catecholamines or chemicals) leads to heat generation, mainly in brown adipose tissues through activating uncoupling protein 1 (UCP1), a proton uncoupler in the inner membrane of the mitochondria. White adipose tissues can undergo a similar process under this condition, a phenomenon known as 'browning' of white adipose tissues or 'beige adipocytes'. While UCP1 expression has largely been confined to adipocytes, HIF can be expressed in many types of cells. To dissect the role of HIF in specific types of cells during diet-induced obesity, researchers have generated tissue-specific knockout (KO) mice targeting HIF pathways, and many studies have commonly revealed that intact HIF-1 signaling in adipocytes and adipose tissue macrophages exacerbates tissue inflammation and insulin resistance. In this review, we highlight some of the key findings obtained from these transgenic mice, including Ucp1 KO mice and other models targeting the HIF pathway in adipocytes, macrophages, or endothelial cells, to decipher their roles in diet-induced obesity.


Asunto(s)
Células Endoteliales , Oxígeno , Ratones , Animales , Temperatura , Oxígeno/metabolismo , Células Endoteliales/metabolismo , Termogénesis , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Obesidad/metabolismo , Hipoxia/metabolismo , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA