Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biomacromolecules ; 25(3): 2041-2051, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38380621

RESUMEN

Triple-negative breast cancer (TNBC), accounting for approximately 20% of breast cancer cases, is a particular subtype that lacks tumor-specific targets and is difficult to treat due to its high aggressiveness and poor prognosis. Chemotherapy remains the major systemic treatment for TNBC. However, its applicability and efficacy in the clinic are usually concerning due to a lack of targeting, adverse side effects, and occurrence of multidrug resistance, suggesting that the development of effective therapeutics is still highly demanded nowadays. In this study, an injectable alginate complex hydrogel loaded with indocyanine green (ICG)-entrapped perfluorocarbon nanoemulsions (IPNEs) and camptothecin (CPT)-doped chitosan nanoparticles (CCNPs), named IPECCNAHG, was developed for photochemotherapy against TNBC. IPNEs with perfluorocarbon can induce hyperthermia and generate more singlet oxygen than an equal dose of free ICG upon near-infrared (NIR) irradiation to achieve photothermal and photodynamic therapy. CCNPs with positive charge may facilitate cellular internalization and provide sustained release of CPT to carry out chemotherapy. Both nanovectors can stabilize agents in the same hydrogel system without interactions. IPECCNAHG integrating IPNEs and CCNPs enables stage-wise combinational therapeutics that may overcome the issues described above. With 60 s of NIR irradiation, IPECCNAHG significantly inhibited the growth of MDA-MB-231 tumors in the mice without systemic toxicity within the 21 day treatment. We speculate that such anticancer efficacy was accomplished by phototherapy followed by chemotherapy, where cancer cells were first destroyed by IPNE-derived hyperthermia and singlet oxygen, followed by sustained damage with CPT after internalization of CCNPs; a two-stage tumoricidal process. Taken together, the developed IPECCNAHG is anticipated to be a feasible tool for TNBC treatment in the clinic.


Asunto(s)
Fluorocarburos , Nanopartículas , Fotoquimioterapia , Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Hidrogeles/uso terapéutico , Oxígeno Singlete , Fototerapia , Verde de Indocianina/farmacología , Línea Celular Tumoral
2.
Opt Express ; 29(12): 18865-18875, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34154133

RESUMEN

This paper proposed an effective multi-objective design procedure, called light field management, for a single multi-segment reflector that can simultaneously project low beams and high beams for bicycle and e-bike applications. Furthermore, two different regulations can be met, including the K-mark and the ECE Class B regulations. Through light field management, the etendue and flux density of each segment can be effectively managed, so that the design successfully meets the multiple regulations. In the experimental verification, two mockup samples including a plastic reflector with aluminum coating and an aluminum reflector were fabricated to verify the validity of the design. The experiment showed that the contrast across the cutoff line reached 100 and above, where the brightest point for low beams reached 200 lux and the whole pattern reached 250 lux. The supreme behavior of the head lamp shows that the proposed design procedure is valuable and helpful to an optical designer.

3.
J Clin Nurs ; 29(17-18): 3494-3505, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32567140

RESUMEN

AIMS AND OBJECTIVES: To examine how changes in physical activity, sitting time and sleep duration through pre-, mid- and late pregnancy are in association with Caesarean section, medically indicated Caesarean section and small for gestational age. BACKGROUND: While circadian activities could change throughout pregnancy, studies exploring the effect of change in those activities on pregnancy outcomes remain limited. DESIGN: This study applied a prospective panel design. METHODS: A self-reported questionnaire was used to assess the three activities before and during pregnancy and was administered three times from August 2015-July 2017. Multiple logistic regression models were used. The analysis included 488, 477 and 455 participants in the models for Caesarean section, medically indicated Caesarean section and small for gestational age, respectively. This study followed the STROBE guidelines. RESULTS: The mean age of participants was 32.18 years, and more than half (54.90%) were primiparous. Sleep duration of >8 hr/day before pregnancy and experiencing a decrease in mid-pregnancy was a risk factor for Caesarean section and medically indicated Caesarean section. Sitting ≥8 hr/weekday in pre-, mid- and late pregnancy had a protective effect for Caesarean section and medically indicated Caesarean section. Sitting <8 hr in mid-pregnancy and experiencing a decrease in late pregnancy was a risk factor for small-for-gestational-age infants. Physical activity was not significantly related to pregnancy outcomes. CONCLUSION: Sleep duration of 7-8 hr and sitting time of more than 8 hr/day seem beneficial for women both before and during pregnancy. RELEVANCE TO CLINICAL PRACTICE: Health professionals could assess pregnant women or those intending to become pregnant regarding their sleep and sitting behaviour and provide relevant interventions.


Asunto(s)
Ejercicio Físico , Resultado del Embarazo , Sedestación , Sueño/fisiología , Adulto , Cesárea/estadística & datos numéricos , Femenino , Humanos , Embarazo , Estudios Prospectivos , Autoinforme , Factores de Tiempo , Adulto Joven
4.
PLoS Pathog ; 13(7): e1006485, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28671985

RESUMEN

Inflammasome is an intracellular protein complex that serves as cytosolic pattern recognition receptor (PRR) to engage with pathogens and to process cytokines of the interleukin-1 (IL-1) family into bioactive molecules. It has been established that interleukin-1ß (IL-1ß) is important to host defense against Histoplasma capsulatum infection. However, the detailed mechanism of how H. capsulatum induces inflammasome activation leading to IL-1ß production has not been studied. Here, we showed in dendritic cells (DCs) that H. capsulatum triggers caspase-1 activation and IL-1ß production through NLRP3 inflammasome. By reciprocal blocking of Dectin-1 or Dectin-2 in single receptor-deficient DCs and cells from Clec4n-/-, Clec7a-/-, and Clec7a-/-Clec4n-/- mice, we discovered that while Dectin-2 operates as a primary receptor, Dectin-1 serves as a secondary one for NLRP3 inflammasome. In addition, both receptors trigger Syk-JNK signal pathway to activate signal 1 (pro-IL-1ß synthesis) and signal 2 (activation of caspase-1). Results of pulmonary infection with H. capsulatum showed that CD103+ DCs are one of the major producers of IL-1ß and Dectin-2 and Dectin-1 double deficiency abolishes their IL-1ß response to the fungus. While K+ efflux and cathepsin B (but not ROS) function as signal 2, viable but not heat-killed H. capsulatum triggers profound lysosomal rupture leading to cathepsin B release. Interestingly, cathepsin B release is regulated by ERK/JNK downstream of Dectin-2 and Dectin-1. Our study demonstrates for the first time the unique roles of Dectin-2 and Dectin-1 in triggering Syk-JNK to activate signal 1 and 2 for H. capsulatum-induced NLRP3 inflammasome activation.


Asunto(s)
Células Dendríticas/inmunología , Histoplasma/fisiología , Histoplasmosis/inmunología , Inflamasomas/inmunología , Lectinas Tipo C/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Animales , Caspasa 1/genética , Caspasa 1/inmunología , Células Dendríticas/microbiología , Histoplasma/genética , Histoplasmosis/genética , Histoplasmosis/microbiología , Humanos , Inflamasomas/genética , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Lectinas Tipo C/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética
5.
Bioprocess Biosyst Eng ; 42(10): 1591-1601, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31190282

RESUMEN

An enhanced greenhouse effect due to high CO2 emissions has become one of the most concerning issues worldwide. Although plant/algae-mediated approaches have been extensively used for CO2 segregation in the last decades, these methods are generally aimed at environment protection. In contrast, less attention has been given to CO2 manipulation that has regrettably caused a decrease in the commercial availability of the associated technologies. To generate a system for practical use, a synthetic fluorocarbon photobioreactor system (FCPBRS) consisting of a CO2 isolation unit, a gas modulation unit, an O2 collection unit, and a microalgal culture chamber was developed in this study. After injecting a 60%-N2/40%-CO2 gas mixture into the CO2 isolation unit for 10 days, the results showed that the FCPBRS enabled a > 93% CO2 separation efficiency using a fluorocarbon liquid FC-40 as the CO2 adsorbent. In addition, the growth rate of Nannochloropsis oculata was significantly enhanced when cultured with 20 mL min-1 of the FC-40 flow containing 2% CO2 throughout the time course, resulting in 4.7-, 4.6-, and 4.5-fold (P < 0.05 for each) increases in biomass, total lipid, and eicosapentaenoic acid yields, respectively, compared to the aerated group without FC-40. Moreover, approximately 1600 mL of photosynthetic O2 with a ~ 80% collection efficiency was obtained in the O2 collection unit within 10 days of FCPBRS operation. These outcomes indicate that the FCPBRS may provide a feasible means to simultaneously achieve CO2 isolation, O2 collection, and enhanced microalgae bioproductions.


Asunto(s)
Reactores Biológicos , Dióxido de Carbono/metabolismo , Hidrocarburos Fluorados , Microalgas/crecimiento & desarrollo , Oxígeno/metabolismo , Estramenopilos/crecimiento & desarrollo , Ácidos Araquidónicos/biosíntesis , Biomasa
6.
J Nanobiotechnology ; 15(1): 41, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28521752

RESUMEN

BACKGROUND: Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among females worldwide. Among various types of breast cancer, the human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer is known to be more aggressive and often resistant to medicinal treatment, leading to an insufficient prognosis and poor susceptibility to chemotherapy and/or hormonal therapy in the current clinic. These circumstances implicate that developing an improved therapeutic strategy rather than persistently changing the anticancer drugs for trying is truly needed to successfully cure this type of breast cancer. In this study, we aimed to fabricate anti-HER2 indocyanine green (ICG)-doxorubicin (DOX)-loaded polyethyleneimine-coated perfluorocarbon double nanoemulsions (HIDPPDNEs) to explore the co-administration of phototherapy and chemotherapy for HER2-overexpressing breast cancer in vitro. RESULTS: The HIDPPDNE was first characterized as a sphere-like nanoparticle with surface charge of -57.1 ± 5.6 mV and size of 340.6 ± 4.5 nm, whereas the DOX release rates for the nanodroplets within 48 h in 4 and 37 °C were obtained by 8.13 ± 2.46% and 19.88 ± 2.75%, respectively. We then examined the target-ability of the nanostructure and found that the adhesion efficiency of the HIDPPDNEs onto HER2+ MDA-MB-453 cells was threefold higher than the nanodroplets without anti-HER2 antibody, indicating that the HIDPPDNEs are the product with HER2 binding specificity. In comparison to freely dissolved ICG, the HIDPPDNEs conferred an enhanced thermal stability to the entrapped ICG, and were able to provide a comparable hyperthermia effect and markedly increased production of singlet oxygen under near infrared irradiation (808 nm; 6 W/cm2). Based on the viability analyses, the results showed that the HIDPPDNEs were effective on cell eradication upon near infrared irradiation (808 nm; 6 W/cm2), and the resulting cell mortality was even higher than that caused by using twice amount of encapsulated DOX or ICG alone. CONCLUSIONS: This work demonstrates that the HIDPPDNEs are able to provide improved ICG stability, binding specificity, and enhanced anticancer efficacy as compared to equal dosage of free ICG and/or DOX, showing a high potential for use in HER2 breast cancer therapy with reduced chemotoxicity.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Doxorrubicina/administración & dosificación , Fluorocarburos/química , Inmunoconjugados/química , Verde de Indocianina/administración & dosificación , Polietileneimina/química , Receptor ErbB-2/metabolismo , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Hipertermia Inducida/métodos , Verde de Indocianina/farmacocinética , Verde de Indocianina/farmacología , Fotoquimioterapia/métodos , Poloxámero/análogos & derivados , Oxígeno Singlete/metabolismo
7.
Bioprocess Biosyst Eng ; 37(8): 1669-77, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24522612

RESUMEN

To promote the economic feasibility of Nannochloropsis oculata, efficacy of using polyethylene glycol (PEG) to increase microalgal growth and lipid accumulation was investigated. We first examined the effects of PEG concentrations on microalgal growth using 0-5 % (w/v) PEG-6000, and followed by exploring the effects of PEG molecular weights (400, 600, 2,000, 4,000, 6,000, and 20,000) on microalgal growth, size, as well as on yields of biomass, total lipids, and eicosapentaenoic acid. In addition, the capacity of PEG to reduce the effect of oxygen inhibition on microalgal growth was also investigated to evaluate its adaptability for use in large-scale and closed setting. Our results showed that PEG-induced osmotic stress (Π) in the range of 2.465-2.472 MPa can raise microalgal growth. The PEG with higher molecular weight exhibited greater efficacy of growth promotion but less lipid content under equal concentration. In this study, 0.5 % (w/v) PEG-20000 (Π = 2.466 MPa) remarkably enhanced microalgal growth without interference of intracellular lipid productivity and cellular size, yielding >50 % (w/w) increases in biomass, total lipid, and eicosapentaenoic acid amounts after 7 days that provided the optimal condition for microalgal cultivation. These positive effects possibly resulted from the moderate enhancement of osmotic stress in the medium and stronger chaotrope-like behavior from higher molecular weight PEG. With further verification that 0.5 % (w/v) PEG-20000 enabled to reduce the effect of oxygen inhibition on microalgal growth, the PEG-20000-mediated cultivation offers a feasible means for mass culture of N. oculata in closed setting.


Asunto(s)
Lípidos/biosíntesis , Presión Osmótica/efectos de los fármacos , Polietilenglicoles/farmacología , Solventes/farmacología , Estramenopilos/crecimiento & desarrollo , Biomasa
8.
iScience ; 27(2): 108887, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38318376

RESUMEN

UB-612 pan-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine targets the monomeric Spike S1-receptor binding domain (RBD) subunit protein along with five sequence-conserved T cell epitopes found on Spike S2 and non-Spike M and N proteins. UB-612 vaccination safely induces potent, broad, and long-lasting immunity against SARS-CoV-2. A phase-2 trial-extended observational study during the Omicron BA.2-/BA.5-dominated outbreak was conducted to investigate UB-612's protective effect against COVID-19 hospitalization and intensive care unit (ICU) admission (H-ICU). Additionally, memory viral-neutralizing titer and T cell immunity behind disease protection were explored. No cases of H-ICU were reported beyond 14 months post-second dose or beyond 10 months post-booster (third dose). The positive outcome correlates with strong cytotoxic CD8 T cell immunity, in line with the results of an ongoing phase-3 heterologous booster trial showing that UB-612 can enhance anti-BA.5 seroconversion rate and viral-neutralizing titer for mRNA, adeno-vectored, and virus-inactivated vaccine platforms. The UB-612 multitope vaccine may serve as an effective primer and booster for those at risk of SARS-CoV-2 infection.

9.
Bioprocess Biosyst Eng ; 36(8): 1071-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23178985

RESUMEN

The commercial value of marine Nannochloropsis oculata has been recognized due to its high content of eicosapentaenoic acid (>50% w/w). To make it as a profitable bioresource, one of the most desirable goals is to develop a quality-controlled, cost-effective, and large-scale photobioreactor for N. oculata growth. Generally, closed culture system can offer many advantages over open system such as small space requirement, controllable process and low risk of contamination. However, oxygen accumulation is often a detrimental factor for enclosed microalgal culture that has seriously hampered the development of microalga-related industries. In this study, we proposed to use fluorochemical as oxygen carrier to overcome the challenge where four liquid fluorochemicals namely perfluorooctyl bromide, perfluorodecalin, methoxynonafluorobutane, and ethoxynonafluorobutane were investigated separately. Our results showed that the microalgal proliferation with different fluorinated liquids was similar and comparable to the culture without a fluorochemical. When cultured in the photobioreactor with 60% oxygen atmosphere, the N. oculata can grow up in all the fluorochemical photobioreactors, but completely inhibited in the chamber without a fluorochemical. Moreover, the perfluorooctyl bromide system exhibited the most robust efficacy of oxygen removal in the culture media (perfluorooctyl bromide > perfluorodecalin > methoxynonafluorobutane > ethoxynonafluorobutane), and yielded a >3-fold increase of biomass production after 5 days. In summary, the developed fluorochemical photobioreactors offer a feasible means for N. oculata growth in closed and large-scale setting without effect of oxygen inhibition.


Asunto(s)
Microalgas/metabolismo , Oxígeno/química , Fotobiorreactores , Biomasa , Biotecnología , Butanos/química , Medios de Cultivo , Diseño de Equipo , Fluorocarburos/química , Hidrocarburos Bromados , Hidrocarburos Fluorados/química , Fotoquímica , Factores de Tiempo
10.
Biomedicines ; 11(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36979656

RESUMEN

The mechanism behind how flavin mononucleotide (FMN)-producing bacteria attach to a host intestine remains unclear. In order to address this issue, this study isolated the Gram-positive bacteria Lactobacillus plantarum from Mongolian fermented Airag, named L. plantarum MA. These bacteria were further employed as the model microbes, and their electrogenic properties were first identified by their significant expression of type II NADH-quinone oxidoreductase. This study also demonstrated that the electrical activity of L. plantarum MA can be conducted through flavin mononucleotide (FMN)-based extracellular electron transfer, which is highly dependent on the presence of a carbon source in the medium. Our data show that approximately 15 µM of FMN, one of the key electron donors for the generation of electricity, can be produced from L. plantarum MA, as they were cultured in the presence of lactulose for 24 h. We further demonstrated that the electrical activity of L. plantarum MA can promote microbial adhesion and can thus enhance the colonization effectiveness of Caco-2 cells and mouse cecum. Such enhanced adhesiveness was attributed to the increased expression of type I collagens in the intestinal epithelium after treatment with L. plantarum MA. This study reveals the mechanism behind the electrogenic activity of L. plantarum MA and shows how the bacteria utilize electricity to modulate the protein expression of gut tissue for an enhanced adhesion process.

11.
Biomater Sci ; 11(19): 6650-6662, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37609825

RESUMEN

Liver fibrosis is generally preceded by various liver injuries and often leads to chronic liver diseases and even cirrhosis. Therefore, a liver fibrosis animal model is the cornerstone for the development of therapeutic strategies for hepatic diseases. Although administration of hepatotoxic substances and/or bile duct ligation have been widely performed to construct the in vivo model over the last decades, they are seriously hindered by time-consuming protocols, high mortality, and instability, indicating that an effective and safe approach for the induction of liver fibrosis is still urgently needed nowadays. In this study, we have developed asialoglycoprotein receptor (ASGPR)-targeted lipopolysaccharide (LPS)-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles named ALPNPs for establishing an animal model of liver fibrosis. The ALPNPs are characterized as having a spherical nanostructure with size of 182.9 ± 8.89 nm and surface charge of -8.3 ± 1.48 mV. An anti-ASGPR antibody bound to the surface of the nanoparticles with a crosslinking efficiency of 95.03% allows ALPNPs to have hepatocyte-binding specificity. In comparison to free LPSs, the ALPNPs can induce higher aspartate aminotransferase and total bilirubin concentrations in plasma, reduce the blood flow rate in the portal system and the kidneys, and increase vascular resistance in the liver, kidneys, and collateral shunting vasculature. Based on histological and RNA-seq analyses, the ALPNPs can provide similar capability on inducing hepatic inflammation and fibrosis compared to free LPS but possess higher liver targetability than the naked drug. In addition, the ALPNPs are less toxic in organs other than the liver in comparison to free LPS, demonstrating that the ALPNPs do not elicit off-target effects in vivo. Given the aforementioned efficacies with other merits such as biocompatibility and drug release controllability provided by PLGA, we anticipate that the developed ALPNPs are highly applicable in establishing animal models of liver fibrosis in pre-clinical studies.


Asunto(s)
Lipopolisacáridos , Nanopartículas , Animales , Receptor de Asialoglicoproteína/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Modelos Animales , Nanopartículas/química
12.
Pharmaceutics ; 14(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35335913

RESUMEN

Diabetic foot ulcers remain one of the most difficult-to-treat complications of diabetes and may seriously threaten the life of patients since it frequently results in limb loss due to amputation, suggesting that an effective therapeutic strategy is still urgently needed. In this study, a chitosan-based heterogeneous composite hydrogel encapsulating perfluorocarbon emulsions, epidermal growth factor (EGF)-loaded chitosan nanoparticles, and polyhexamethylene biguanide (PHMB) named PEENPPCH was developed for diabetic wound healing. The PEENPPCH could sustainably release EGF and PHMB in an ion-rich environment to exert antibacterial effects and promote cell growth for wound repair. In addition, the PEENPPCH can provide anti-inflammatory effects functioned by its main constituent of chitosan. Moreover, the PEENPPCH can proactively offer oxygen delivery through the incorporation of perfluorocarbon and, therefore, is able to alleviate hypoxia conditions on diabetic wounds. These functionalities enabled a markedly enhanced wound healing efficacy on diabetic rats treated with the PEENPPCHs, including thorough re-epithelization, a reduced inflammatory response, faster collagen deposition, and advanced collagen maturation resulting in a 95% of wound closure degree after 15 days that was 12.6% (p < 0.05) higher than the value of the group treated with the commercial dressing HeraDerm. Given the aforementioned advantages, together with the known merits of hydrogels, the developed PEENPPCH is anticipated to be a feasible tool for clinical diabetic wound treatment.

13.
Clin Chem ; 57(9): 1295-302, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21791578

RESUMEN

BACKGROUND: Current standard operating procedures for salivary transcriptomic analysis require low temperatures and lengthy mRNA isolation, which substantially hamper its use in the clinic. We developed a streamlined, ambient-temperature processing, stabilization, and storage protocol for clinical analysis of salivary RNA. METHODS: The direct saliva transcriptome analysis (DSTA) used cell-free saliva supernatant instead of isolated mRNA for saliva transcriptomic detection, and all procedures, including processing, stabilization, and storage of saliva samples, were performed at ambient temperature without a stabilizing reagent. We evaluated this streamlined protocol by comparing the mRNA expression levels of 3 saliva internal reference genes [glyceraldehyde-3-phosphate dehydrogenase (GAPDH); actin, beta (ACTB); and ribosomal protein S9 (RPS9)] to levels measured with standard procedures, and detecting the variation of their expression levels under long-term ambient temperature storage. The clinical utility of DSTA was assessed by use of 7 oral cancer salivary mRNA biomarkers in a clinical study. RESULTS: Each saliva internal reference gene mRNA showed similar expression levels when assayed by the DSTA or standard procedures, and remained stable under ambient temperature storage for at least 10 weeks without significant degradation (P = 0.918, 0.288, and 0.242 for GAPDH, ACTB, and RPS9, respectively). Compared with standard procedures, the performance characteristics of oral cancer salivary transcriptomic markers were retained as assayed by DSTA after 10 weeks of storage at ambient temperature. These results indicate that the DSTA is a suitable alternative method for saliva transcriptomic analysis and is feasible for use in clinical cancer research applications. CONCLUSIONS: The streamlined DSTA protocol can impact the saliva-handling method and improve the standard operating procedures for clinical saliva transcriptomic diagnostics.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Saliva/química , Adulto , Anciano , Biomarcadores/análisis , Carcinoma de Células Escamosas/química , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias de la Boca/química , ARN Mensajero/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
Biomater Sci ; 9(5): 1739-1753, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33432933

RESUMEN

Today, prosthetic joint infection (PJI) is still a relatively rare but devastating complication following total hip and/or knee arthroplasty. The treatment of PJI is difficult due to a number of obstacles, such as microbial drug resistance, biofilm protection, and insufficient immune activity, which dramatically diminish the cure rate of PJI to <50%. To efficiently eradicate the bacteria hiding in the implant, photo-chemical joint antibacterial therapeutics based on indocyanine green (ICG) and rifampicin (RIF) co-loaded PLGA nanoparticles (IRPNPs) were developed in this study. The IRPNPs were first characterized as a spherical nanostructure with a size of 266 ± 18.2 nm and a surface charge of -28 ± 1.6 mV. In comparison with freely dissolved ICG, the IRPNPs may confer enhanced thermal stability to the encapsulated ICG and are able to provide a comparable hyperthermic effect and increased production of singlet oxygen under 808 nm near infrared (NIR) exposure with an intensity of 6 W cm-2. Based on the spectrophotometric analysis, the IRPNPs with ≥20-/3.52 µM ICG/RIF were able to provide remarkable antibiofilm and antimicrobial effects against bacteria in a porous silicon bead upon NIR exposure in vitro. Through the analysis of the microbial population index in an animal study, ≥70% Staphylococcus capitis subsp. urealyticus grown in a porous silicon bead in vivo can be successfully eliminated without organ damage or inflammatory lesions around the implant by using IRPNPs + NIR irradiation every 72 h for 9 days. The resulting bactericidal efficacy was approximately three-fold higher than that resulting from using an equal amount of free RIF alone. Taken together, we anticipate that IRPNP-mediated photochemotherapy can serve as a feasible antibacterial approach for PJI treatment in the clinic.


Asunto(s)
Infecciones Bacterianas , Hipertermia Inducida , Nanocompuestos , Animales , Biopelículas , Porosidad
15.
Mater Sci Eng C Mater Biol Appl ; 118: 111385, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33254992

RESUMEN

Diabetic foot ulcer, one of the most common diabetic complications, is a progressive wound occurred on the skin with irregularly delayed wound healing rate due to impaired metabolism and weak immune responses. Such chronic wound remains a serious healthcare burden to the diabetics since it is often associated with high risk of limb loss due to amputation and leads to a reduced survival consequently. To improve the efficiency of diabetic wound healing, a synthetic chitosan-based composite hydrogel named SNPECHG incorporating silver ions (Ag+) and nanoparticle-encapsulated epidermal growth factor (EGF) was developed in this study. The optimal effective dosages of 24-mM Ag+ and 60-µg mL-1 EGF for the SNPECHG manufacture were first determined based on the results of antibacterial, cytotoxicity, and cell growth examinations. We then characterized the optimized SNPECHG and found that the composite hydrogel was able to provide sustained release of Ag+ and EGF, and exhibited a significantly higher hydration capacities, including the swelling degree and equilibrium water content, in PBS than those in deionized water, showing that the developed SNPECHG is highly applicable in the ion-rich environment such as chronic wound site. According to the results of in vivo study using diabetic rats, the one with SNPECHG exhibited a markedly enhanced wound healing effect compared with the other settings since day 3, and may reach a degree of wound closure of 97% at day 14 that was 7.4% (P < 0.05) and 18.9% (P < 0.05) higher than the values gained from the groups with the commercial dressing HeraDerm and gauze, respectively. Moreover, the wound treated with the SNPECHG exhibited thorough re-epithelization, sufficient collagen deposition, and accelerated collagen maturation confirmed by the histological analysis. Taken all together, we anticipate that the SNPECHG is highly advantageous for use in the clinical diabetic/chronic wound treatment.


Asunto(s)
Quitosano , Diabetes Mellitus Experimental , Nanopartículas , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Hidrogeles , Ratas , Plata , Cicatrización de Heridas
16.
Pharmaceutics ; 13(9)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34575572

RESUMEN

Breast cancer remains the most frequently diagnosed cancer and is the leading cause of neoplastic disease burden for females worldwide, suggesting that effective therapeutic and/or diagnostic strategies are still urgently needed. In this study, a type of indocyanine green (ICG) and camptothecin (CPT) co-loaded perfluorocarbon double-layer nanocomposite named ICPNC was developed for detection and photochemotherapy of breast cancer. The ICPNCs were designed to be surface modifiable for on-demand cell targeting and can serve as contrast agents for fluorescence diffuse optical tomography (FDOT). Upon near infrared (NIR) irradiation, the ICPNCs can generate a significantly increased production of singlet oxygen compared to free ICG, and offer a comparable cytotoxicity with reduced chemo-drug dosage. Based on the results of animal study, we further demonstrated that the ICPNCs ([ICG]/[CPT] = 40-/7.5-µM) in association with 1-min NIR irradiation (808 nm, 6 W/cm2) can provide an exceptional anticancer effect to the MDA-MB-231 tumor-bearing mice whereby the tumor size was significantly reduced by 80% with neither organ damage nor systemic toxicity after a 21-day treatment. Given a number of aforementioned merits, we anticipate that the developed ICPNC is a versatile theranostic nanoagent which is highly promising to be used in the clinic.

17.
Nanomaterials (Basel) ; 10(6)2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32492862

RESUMEN

Acne vulgaris is one of the most prevalent dermatological diseases among adolescents and is often associated with overgrowth of Cutibacterium acnes (C. acnes) in the pilosebaceous units. In this study, we aimed to develop novel rifampicin (RIF) and indocyanine green (ICG) co-loaded perfluorocarbon nanodroplets named RIPNDs which can simultaneously provide photo-, chemo-, and probiotic-antimicrobility, and explore their efficacy in treatment of C. acnes in vitro and in vivo. The RIPNDs were first characterized as being spherical in shape, with a size of 238.6 ± 7.51 nm and surface charge of -22.3 ± 3.5 mV. Then, the optimal dosages of Staphylococcus epidermidis-produced fermentation product medium (FPM) and RIPND were determined as 25% (v/v) and [RIF]/[ICG] = 3.8/20 µM, respectively, based on the analyses of inhibition zone and cytotoxicity in vitro. Through the in vivo study using C. acnes-inoculated mice, our data showed that the group treated with FPM followed by RIPNDs + near infrared (NIR) irradiation obtained the least granulocytes/macrophage-inflammatory protein 2 expression level in the epidermis, and showed a significantly lower microbial colony population compared to the groups treated with equal amount of RIF, FPM, RIPNDs, and/or combination of the above ± NIR. These results indicated that the RIPND-mediated photo-chemo-probiotic therapeutics was indeed able to rapidly suppress inflammatory response of the skin and provide a robust antibacterial effect against C. acnes with limited use of antibiotics. Taken altogether, we anticipate that the RIPND is highly potential for use in the clinical treatment of acne vulgaris.

18.
Biochem Biophys Res Commun ; 390(4): 1367-71, 2009 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-19895787

RESUMEN

Short half-life has long been known as a main barrier for retroviral gene delivery due to quick degradation that seriously limited application of retrovirus-mediated methodology in the clinical use. To circumvent this challenge, many physical and chemical approaches have been developed to maximize contact opportunity of retroviruses and cells before viral vectors decay. However, most of methods are not easy to be followed due to complicated equipment settings and/or long procedures. In this study, we introduced an easy, cost-effective, efficient, and scalable strategy to enhance retroviral transduction by hypo-osmotic stress. It has been demonstrated that under hypotonic exposure, cell membrane is permeabilized to allow numerous exterior molecules accessing to cytoplasm through an intensive endocytosis, yielding high efficiency of cellular uptake. We hypothesized this hypotonic stress-induced internalization may provide a unique opportunity of cell entry for retroviruses without the need of receptor binding, and thus overcome the insufficient transduction rate due to loss of envelope protein. Indeed, our results showed that with assistance of hypotonic stress, retroviral transduction rates dramatically increased about 5.6- and 17.7-fold using fresh and decayed retroviruses, respectively, in comparison with corresponding groups without hypotonic stress. In summary, hypotonic stress was shown as a promising tool for enhancement of retroviral transduction efficiency without limitation of short half-life.


Asunto(s)
Permeabilidad de la Membrana Celular , Retroviridae , Transducción Genética/métodos , Animales , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Soluciones Hipotónicas/farmacología , Ratones , Células 3T3 NIH , Presión Osmótica
19.
Am J Dent ; 22(4): 241-8, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19824562

RESUMEN

The capability to assess physiological states, detect morbidity initiation and progression, and monitor posttreatment therapeutic outcomes through a noninvasive approach is one of the most desirable goals for healthcare research and delivery. Saliva, a multi-constituent oral fluid, has high potential for the surveillance of general health and disease. To reach the above goal through saliva-based diagnostics, two prerequisites must be fulfilled: (1) discovering biomarker(s) for different diseases among the complicated components of saliva, and (2) advancing sensitivity and specificity of biomarker(s) through persistent development of technologies. Under the support and research blueprint initiated by the National Institute of Dental and Craniofacial Research (NIDCR), salivary diagnostics has not only steadily progressed with respect to accuracy and availability, but has also bridged up-to-date nanotechnology to expand the areas of application. With collective efforts over several years, saliva has been demonstrated to be a promising bodily fluid for early detection of diseases, and salivary diagnostics has exhibited tremendous potential in clinical applications. This review presents an overview of the value of saliva as a credible diagnostic tool, the discovery of salivary biomarkers, and the development of salivary diagnostics now and in the future.


Asunto(s)
Biomarcadores/análisis , Diagnóstico Precoz , Saliva/química , Técnicas y Procedimientos Diagnósticos , Enfermedad , Humanos , Sensibilidad y Especificidad
20.
In Vitro Cell Dev Biol Anim ; 55(6): 395-404, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31089950

RESUMEN

Bladder cancer is the 13th leading cause of cancer death worldwide, and its mortality rate is highly associated with the motility of the malignant cells. Although the techniques of urothelial cancer treatment have been continuously advanced in the last decade, the invasive bladder cancer remains incurable and the mean survival time of the patients with high-grade malignancy after cancer relapse is still < 6 months, indicating a new strategy which can reduce bladder cancer cell motility and/or progression is urgently needed. Quercetin is a polyphenolic flavonoid with approved anti-tumor effect. However, the drawbacks of quercetin, including low absorption, extensive metabolism, and rapid elimination, severely hamper its availability in the clinic. In this study, we aim to synthesize the quercetin-zinc complex (Q-ZnCPX) and explore its anti-cancer and anti-metastasis efficacies on human bladder cancer cells in vitro. Based on the results of cell movement and protein expressions in BFTC-905 cells, we found that both cell migratability and invasiveness were markedly reduced by the Q-ZnCPX with concentration of ≥ 12.5 µM through p-AKT and MT1-MMP regulations compared to the cells without treatment (P < 0.05). Moreover, the synthesized Q-ZnCPX with ≥ 75 µM can even provide > 50% of mortality rate (P < 0.05) to the cancer cell after 24-h treatment. These results demonstrated that the synthetic Q-ZnCPX may serve as feasible tool for both anti-cancer and anti-metastasis on human bladder cancer cells dependent on the dosage.


Asunto(s)
Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Quercetina/química , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Zinc/química , Antineoplásicos , Antineoplásicos Fitogénicos/síntesis química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Espectroscopía de Resonancia Magnética , Metaloproteinasa 14 de la Matriz/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quercetina/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Neoplasias de la Vejiga Urinaria/patología , Zinc/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA