Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-27207921

RESUMEN

BACKGROUND: Fibroblast growth factor 21, a novel regulator of glucose and lipid metabolism, has robust protective properties in neurons. However, its expression and function in glia are unknown. Valproic acid, a mood stabilizer and anticonvulsant, is a histone deacetylase inhibitor and a dynamic gene regulator. We investigated whether histone deacetylase inhibition by valproic acid and other inhibitors upregulates fibroblast growth factor 21 expression and, if so, sought to identify the histone deacetylase isoform(s) involved and their role in altering glial cell morphology. METHODS: C6 glioma or primary cortical glial cultures were treated with histone deacetylase inhibitors, and fibroblast growth factor 21 levels and length of cell processes were subsequently measured. Histone deacetylase 1, 2, or 3 was also knocked down to detect which isoform was involved in regulating fibroblast growth factor 21 mRNA levels. Finally, knockdown and overexpression of fibroblast growth factor 21 were performed to determine whether it played a role in regulating cell process length. RESULTS: Treatment of C6 cells or primary glial cultures with valproic acid elevated fibroblast growth factor 21 mRNA levels, extended cell process length, and markedly increased acetylated histone-H3 levels. Other histone deacetylase inhibitors including pan- and class I-specific inhibitors, or selective knockdown of histone deacetylase 2 or 3 isoform produced similar effects. Knockdown or overexpression of fibroblast growth factor 21 significantly decreased or increased C6 cell process length, respectively. CONCLUSIONS: In glial cell line and primary glia, using pharmacological inhibition and selective gene silencing of histone deacetylases to boost fibroblast growth factor 21 mRNA levels results in elongation of cell processes. Our study provides a new mechanism via which histone deacetylase 2 and 3 participate in upregulating fibroblast growth factor 21 transcription and extending process outgrowth in glia.


Asunto(s)
Forma de la Célula/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/biosíntesis , Histona Desacetilasa 2/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Regulación hacia Arriba/efectos de los fármacos , Ácido Valproico/farmacología , Acetilación/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Histona Desacetilasas/metabolismo , Humanos , Isoenzimas/antagonistas & inhibidores , Neuroglía/efectos de los fármacos , Cultivo Primario de Células
2.
Mol Cell Neurosci ; 68: 303-13, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26320681

RESUMEN

Astrocyte elevated gene-1 (AEG-1) has been reported to regulate the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and is also regulated by it. This study investigated how AEG-1 participates in the survival pathway of motor neurons in amyotrophic lateral sclerosis (ALS). We found reduced levels of AEG-1 in ALS motor neurons, both in vivo and in vitro, compared to wild type controls. Moreover, AEG-1 silencing demonstrated inhibition of the PI3K/Akt pathway and increased cell apoptosis. Additionally, the PI3K/Akt pathway in mSOD1 cells was unresponsive under serum deprivation conditions compared to wtSOD1 cells. These results suggest that AEG-1 deficiency, together with the inhibited PI3K/Akt pathway was associated with decreased viability of ALS motor neurons. However, the mRNA levels of AEG-1 were still lower in mSOD1 cells compared to the control groups, though the signaling pathway was activated by application of a PI3-K activator. This suggests that in ALS motor neurons, some unknown interruption exists in the PI3K/Akt/CREB/AEG-1 feedback loop, thus attenuating the protection by this signaling pathway. Together, these findings support that AEG-1 is a critical factor for cell survival, and the disrupted PI3K/Akt/CREB/AEG-1cycle is involved in the death of injured motor neurons and pathogenesis of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Proteínas de la Membrana/metabolismo , Neuronas Motoras/patología , Transducción de Señal/fisiología , Esclerosis Amiotrófica Lateral/genética , Animales , Apoptosis/genética , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Embrión de Mamíferos , Femenino , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas Motoras/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN/fisiología , ARN Interferente Pequeño/farmacología , Proteínas de Unión al ARN , Transducción de Señal/efectos de los fármacos , Médula Espinal/patología , Superóxido Dismutasa/genética
3.
Stroke ; 43(9): 2430-6, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22811460

RESUMEN

BACKGROUND AND PURPOSE: Enhanced angiogenesis facilitates neurovascular remodeling processes and promotes brain functional recovery after stroke. Previous studies from our laboratory demonstrated that valproate (VPA), a histone deacetylase inhibitor, protects against experimental brain ischemia. The present study investigated whether VPA could enhance angiogenesis and promote long-term functional recovery after ischemic stroke. METHODS: Male rats underwent middle cerebral artery occlusion for 60 minutes followed by reperfusion for up to 14 days. Assessed parameters were: locomotor function through the Rotarod test; infarct volume through T2-weighted MRI; microvessel density through immunohistochemistry; relative cerebral blood flow through perfusion-weighted imaging; protein levels of proangiogenic factors through Western blotting; and matrix metalloproteinase-2/9 activities through gelatin zymography. RESULTS: Postischemic VPA treatment robustly improved the Rotarod performance of middle cerebral artery occlusion rats on Days 7 and 14 after ischemia and significantly reduced brain infarction on Day 14. Concurrently, VPA markedly enhanced microvessel density, facilitated endothelial cell proliferation, and increased relative cerebral blood flow in the ipsilateral cortex. The transcription factor hypoxia-inducible factor-1α and its downstream proangiogenic factors, vascular endothelial growth factor and matrix metalloproteinase-2/9, were upregulated after middle cerebral artery occlusion and significantly potentiated by VPA in the ipsilateral cortex. Acetylation of histone-H3 and H4 was robustly increased by chronic VPA treatment. The beneficial effects of VPA on Rotarod performance and microvessel density were abolished by hypoxia-inducible factor-1α inhibition. CONCLUSIONS: Chronic VPA treatment enhances angiogenesis and promotes functional recovery after brain ischemia. These effects may involve histone deacetylase inhibition and upregulation of hypoxia-inducible factor-1α and its downstream proangiogenic factors vascular endothelial growth factor and matrix metalloproteinase-2/9.


Asunto(s)
Anticonvulsivantes/farmacología , Isquemia Encefálica/tratamiento farmacológico , Neovascularización Fisiológica/efectos de los fármacos , Accidente Cerebrovascular/tratamiento farmacológico , Ácido Valproico/farmacología , Animales , Anticonvulsivantes/antagonistas & inhibidores , Western Blotting , Isquemia Encefálica/patología , Infarto Cerebral/tratamiento farmacológico , Infarto Cerebral/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Inmunohistoquímica , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Locomoción , Imagen por Resonancia Magnética , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Equilibrio Postural/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Accidente Cerebrovascular/patología , Ácido Valproico/antagonistas & inhibidores
4.
Stroke ; 42(10): 2932-9, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21836090

RESUMEN

BACKGROUND AND PURPOSE: The migratory efficiency of mesenchymal stem cells (MSC) toward cerebral infarct after transplantation is limited. Valproate (VPA) and lithium enhance in vitro migration of MSC by upregulating CXC chemokine receptor 4 and matrix metalloproteinase-9, respectively. Ability of VPA and lithium to promote MSC homing and to improve functional recovery was assessed in a rat model of cerebral ischemia. METHODS: MSC primed with VPA (2.5 mmol/L, 3 hours) and/or lithium chloride (2.5 mmol/L, 24 hours) were transplanted into rats 24 hours after transient middle cerebral artery occlusion (MCAO). Neurological function was assessed via rotarod test, Neurological Severity Score, and body asymmetry test for 2 weeks. Infarct volume was analyzed by MRI. The number of homing MSC and microvessel density in the infarcted regions were measured 15 days after MCAO using immunohistochemistry. RESULTS: Priming with VPA or lithium increased the number of MSC homing to the cerebral infarcted regions, and copriming with VPA and lithium further enhanced this effect. MCAO rats receiving VPA-primed and/or lithium-primed MSC showed improved functional recovery, reduced infarct volume, and enhanced angiogenesis in the infarcted penumbra regions. These beneficial effects of VPA or lithium priming were reversed by AMD3100, a CXC chemokine receptor 4 antagonist, and GM6001, a matrix metalloproteinase inhibitor, respectively. CONCLUSIONS: Priming with VPA and/or lithium promoted the homing and migration ability of MSC, improved functional recovery, reduced brain infarct volume, and enhanced angiogenesis in a rat MCAO model. These effects were likely mediated by VPA-induced CXC chemokine receptor 4 overexpression and lithium-induced matrix metalloproteinase-9 upregulation.


Asunto(s)
Movimiento Celular/fisiología , Infarto de la Arteria Cerebral Media/metabolismo , Litio/farmacología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Accidente Cerebrovascular/metabolismo , Ácido Valproico/farmacología , Animales , Movimiento Celular/efectos de los fármacos , Infarto de la Arteria Cerebral Media/terapia , Células Madre Mesenquimatosas/efectos de los fármacos , Ratas , Recuperación de la Función , Accidente Cerebrovascular/terapia
5.
Int J Neuropsychopharmacol ; 14(5): 711-7, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20604988

RESUMEN

Inhibition of glycogen synthase kinase-3 (GSK-3) by pharmacological tools can produce antidepressant-like effects in rodents. However, the GSK-3 isoform(s) and brain region(s) involved in regulating these behavioural effects remain elusive. We studied the effects of bilateral intra-hippocampal injections of lentivirus-expressing short-hairpin (sh)RNA targeting GSK-3ß on behavioural performance in mice subjected to chronic stress. Pre-injection of lentivirus-expressing GSK-3ß shRNA into the hippocampal dentate gyrus significantly decreased immobility time in both forced swim and tail suspension tests, while the locomotor activity of these mice was unchanged. These results suggest that lentiviral GSK-3ß shRNA injection induces antidepressant-like effects in chronically stressed mice. Under these conditions, the expression levels of GSK-3ß were persistently and markedly reduced in the hippocampus following GSK-3ß shRNA injection. To our knowledge, this is the first demonstration that a single injection of lentivirus-expressing GSK-3ß shRNA in the hippocampal dentate gyrus of chronically stressed mice has antidepressant-like effects elicited by gene silencing.


Asunto(s)
Antidepresivos/farmacología , Giro Dentado/fisiología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Hipocampo/fisiología , Estrés Fisiológico/fisiología , Animales , Antidepresivos/metabolismo , Antidepresivos Tricíclicos/uso terapéutico , Conducta Animal/efectos de los fármacos , Desipramina/uso terapéutico , Vectores Genéticos , Glucógeno Sintasa Quinasa 3/fisiología , Glucógeno Sintasa Quinasa 3 beta , Células HEK293 , Humanos , Lentivirus , Masculino , Ratones , Actividad Motora/efectos de los fármacos , ARN Interferente Pequeño/fisiología , Natación
6.
J Neurosci ; 28(10): 2576-88, 2008 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-18322101

RESUMEN

Lithium and valproic acid (VPA) are two primary drugs used to treat bipolar mood disorder and have frequently been used in combination to treat bipolar patients resistant to monotherapy with either drug. Lithium, a glycogen synthase kinase-3 (GSK-3) inhibitor, and VPA, a histone deacetylase (HDAC) inhibitor, have neuroprotective effects. The present study was undertaken to demonstrate synergistic neuroprotective effects when both drugs were coadministered. Pretreatment of aging cerebellar granule cells with lithium or VPA alone provided little or no neuroprotection against glutamate-induced cell death. However, copresence of both drugs resulted in complete blockade of glutamate excitotoxicity. Combined treatment with lithium and VPA potentiated serine phosphorylation of GSK-3 alpha and beta isoforms and inhibition of GSK-3 enzyme activity. Transfection with GSK-3alpha small interfering RNA (siRNA) and/or GSK-3beta siRNA mimicked the ability of lithium to induce synergistic protection with VPA. HDAC1 siRNA or other HDAC inhibitors (phenylbutyrate, sodium butyrate or trichostatin A) also caused synergistic neuroprotection together with lithium. Moreover, combination of lithium and HDAC inhibitors potentiated beta-catenin-dependent, Lef/Tcf-mediated transcriptional activity. An additive increase in GSK-3 serine phosphorylation was also observed in mice chronically treated with lithium and VPA. Together, for the first time, our results demonstrate synergistic neuroprotective effects of lithium and HDAC inhibitors and suggest that GSK-3 inhibition is a likely molecular target for the synergistic neuroprotection. Our results may have implications for the combined use of lithium and VPA in treating bipolar disorder. Additionally, combined use of both drugs may be warranted for clinical trials to treat glutamate-related neurodegenerative diseases.


Asunto(s)
Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas , Litio/farmacología , Neuronas/enzimología , Fármacos Neuroprotectores/farmacología , Ácido Valproico/farmacología , Animales , Animales Recién Nacidos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3/metabolismo , Histona Desacetilasas/metabolismo , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
7.
J Neurochem ; 110(4): 1226-40, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19549282

RESUMEN

In the healthy adult brain, neurogenesis normally occurs in the subventricular zone (SVZ) and hippocampal dentate gyrus (DG). Cerebral ischemia enhances neurogenesis in neurogenic and non-neurogenic regions of the ischemic brain of adult rodents. This study demonstrated that post-insult treatment with a histone deacetylase inhibitor, sodium butyrate (SB), stimulated the incorporation of bromo-2'-deoxyuridine (BrdU) in the SVZ, DG, striatum, and frontal cortex in the ischemic brain of rats subjected to permanent cerebral ischemia. SB treatment also increased the number of cells expressing polysialic acid-neural cell adhesion molecule, nestin, glial fibrillary acidic protein, phospho-cAMP response element-binding protein (CREB), and brain-derived neurotrophic factor (BDNF) in various brain regions after cerebral ischemia. Furthermore, extensive co-localization of BrdU and polysialic acid-neural cell adhesion molecule was observed in multiple regions after ischemia, and SB treatment up-regulated protein levels of BDNF, phospho-CREB, and glial fibrillary acidic protein. Intraventricular injection of K252a, a tyrosine kinase B receptor antagonist, markedly reduced SB-induced cell proliferation detected by BrdU and Ki67 in the ipsilateral SVZ, DG, and other brain regions, blocked SB-induced nestin expression and CREB activation, and attenuated the long-lasting behavioral benefits of SB. Together, these results suggest that histone deacetylase inhibitor-induced cell proliferation, migration and differentiation require BDNF-tyrosine kinase B signaling and may contribute to long-term beneficial effects of SB after ischemic injury.


Asunto(s)
Infarto Encefálico/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico , Butiratos/farmacología , Inhibidores de Histona Desacetilasas , Regeneración Nerviosa/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Animales , Biomarcadores/análisis , Biomarcadores/metabolismo , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Infarto Encefálico/enzimología , Infarto Encefálico/fisiopatología , Isquemia Encefálica/enzimología , Isquemia Encefálica/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Bromodesoxiuridina/metabolismo , Butiratos/uso terapéutico , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Proliferación Celular/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Histona Desacetilasa 1 , Histona Desacetilasas/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Masculino , Regeneración Nerviosa/fisiología , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/metabolismo , Nestina , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Neurogénesis/fisiología , Ratas , Ratas Sprague-Dawley , Receptor trkB/antagonistas & inhibidores , Receptor trkB/metabolismo , Ácidos Siálicos/metabolismo
8.
J Neurochem ; 111(4): 976-87, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19765194

RESUMEN

Neuroprotective properties of the mood stabilizer valproic acid (VPA) are implicated in its therapeutic efficacy. Heat-shock protein 70 (HSP70) is a molecular chaperone, neuroprotective and anti-inflammatory agent. This study aimed to investigate underlying mechanisms and functional significance of HSP70 induction by VPA in rat cortical neurons. VPA treatment markedly up-regulated HSP70 protein levels, and this was accompanied by increased HSP70 mRNA levels and promoter hyperacetylation and activity. Other HDAC inhibitors--sodium butyrate, trichostatin A, and Class I HDAC-specific inhibitors MS-275 and apicidin, --all mimicked the ability of VPA to induce HSP70. Pre-treatment with phosphatidylinositol 3-kinase inhibitors or an Akt inhibitor attenuated HSP70 induction by VPA and other HDAC inhibitors. VPA treatment increased Sp1 acetylation, and a Sp1 inhibitor, mithramycin, abolished the induction of HSP70 by HDAC inhibitors. Moreover, VPA promoted the association of Sp1 with the histone acetyltransferases p300 and recruitment of p300 to the HSP70 promoter. Further, VPA-induced neuroprotection against glutamate excitotoxicity was prevented by blocking HSP70 induction. Taken together, the data suggest that the phosphatidylinositol 3-kinase/Akt pathway and Sp1 are likely involved in HSP70 induction by HDAC inhibitors, and induction of HSP70 by VPA in cortical neurons may contribute to its neuroprotective and therapeutic effects.


Asunto(s)
Corteza Cerebral/citología , Inhibidores Enzimáticos/farmacología , Proteínas HSP70 de Choque Térmico/metabolismo , Histona Desacetilasas/metabolismo , Inmunoglobulinas/metabolismo , Neuronas/efectos de los fármacos , Ácido Valproico/farmacología , Acetilación/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Inmunoprecipitación de Cromatina/métodos , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Embrión de Mamíferos , Histona Desacetilasa 1 , Ratas , Sales de Tetrazolio , Tiazoles , Factores de Tiempo , Ácido Valproico/análogos & derivados
9.
Curr Opin Genet Dev ; 13(2): 207-14, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12672499

RESUMEN

In eukaryotes, mRNAs are monitored for errors in gene expression by RNA surveillance where untranslatable mRNAs are selectively degraded by the nonsense-mediated mRNA decay (NMD) pathway. Depending on the organism, three to seven genes are required for NMD. Besides RNA surveillance, the genes required for NMD serve a second purpose by controlling the overall abundance of a substantial fraction of the transcriptome.


Asunto(s)
Evolución Molecular , ARN Mensajero/metabolismo , Animales , Humanos , Filogenia , ARN Helicasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Alineación de Secuencia , Análisis de Secuencia de Proteína , Transactivadores
10.
Sci Rep ; 6: 19626, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26790818

RESUMEN

Histone deacetylase (HDAC) 6 exists exclusively in cytoplasm and deacetylates cytoplasmic proteins such as α-tubulin. HDAC6 dysfunction is associated with several pathological conditions in the central nervous system. This study investigated the beneficial effects of tubastatin A (TubA), a novel specific HDAC6 inhibitor, in a rat model of transient middle cerebral artery occlusion (MCAO) and an in vitro model of excitotoxicity. Post-ischemic TubA treatment robustly improved functional outcomes, reduced brain infarction, and ameliorated neuronal cell death in MCAO rats. These beneficial effects lasted at least three days after MCAO. Notably, when given at 24 hours after MCAO, TubA still exhibited significant protection. Levels of acetylated α-tubulin were decreased in the ischemic hemisphere on Days 1 and 3 after MCAO, and were significantly restored by TubA. MCAO markedly downregulated fibroblast growth factor-21 (FGF-21) and TubA significantly reversed this downregulation. TubA also mitigated impaired FGF-21 signaling in the ischemic hemisphere, including up-regulating ß-Klotho, and activating ERK and Akt/GSK-3ß signaling pathways. In addition, both TubA and exogenous FGF-21 conferred neuroprotection and restored mitochondrial trafficking in rat cortical neurons against glutamate-induced excitotoxicity. Our findings suggest that the neuroprotective effects of TubA likely involve HDAC6 inhibition and the subsequent up-regulation of acetylated α-tubulin and FGF-21.


Asunto(s)
Infarto Encefálico/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Indoles/farmacología , Fármacos Neuroprotectores/farmacología , Tubulina (Proteína)/metabolismo , Acetilación , Animales , Infarto Encefálico/tratamiento farmacológico , Infarto Encefálico/genética , Infarto Encefálico/fisiopatología , Muerte Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica , Ácido Glutámico/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuritas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Recuperación de la Función/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
11.
Seishin Shinkeigaku Zasshi ; 105(1): 81-6, 2003.
Artículo en Japonés | MEDLINE | ID: mdl-12701214

RESUMEN

Lithium has long been one of the primary drugs used to treat bipolar mood disorder. However, neither the etiology of this disease nor the therapeutic mechanism(s) of this drug is well understood. Several lines of clinical evidence suggest that lithium has neurotrophic actions. For example chronic lithium treatment increases the volume of gray matter and the content of N-acetyl-aspartate, a cell survival marker, in bipolar mood disorder patients (Moore et al., 2000). Moreover, treatment with this mood-stabilizer suppresses the decrease in the volume of the subgenual pre-frontal cortex found in bipolar patients (Drevets, 2001). To elucidate molecular mechanisms underlying the neuroprotective and neurotrophic actions of lithium, we employed a preparation of cultured cortical neurons prepared form embryonic rats. We found that treatment with therapeutic doses (0.2-1.2 mM) of lithium robustly protects cortical neurons from multiple insults, notably glutamate-induced excitotoxicity. The neuroprotection against glutamate excitotoxicity is time-dependent, requiring treatment for 5-6 days for maximal effect, and is associated with a reduction in NMDA receptor-mediated Ca2+ influx. The latter is correlated with a decrease in Tyrosine 1472 phosphorylation levels in the NR2B subunit of NMDA receptors and a loss of Src kinase activity which is involved in NR2B tyrosine phosphorylation. Neither the activity of total tyrosine protein kinase nor that of tyrosine protein phosphatase is affected by this drug, indicating the selectivity of the modulation. Lithium neuroprotection against excitotoxicity is inhibited by a BDNF-neutralizing antibody and K252a, a Trk antagonist. Lithium treatment time-dependently increases the intracellular level of BDNF in cortical neurons and activates its receptor, TrkB. The neuroprotection can be completely blocked by either heterozygous or homozygous knockout of the BDNF gene. These results suggest a central role of BDNF and TrkB in mediating the neuroprotective effects of this mood-stabilizer. Finally, long-term lithium treatment of cortical neurons stimulates the proliferation of their progenitor cells detected by co-labeling with BrdU and nestin. Lithium pretreatment also blocks the decrease in progenitor proliferation induced by glutamate, glucocorticoids and haloperidol, suggesting a role in CNS neuroplasticity. We used animal models to investigate further therapeutic potentials for lithium. In the MCAO/reperfusion model of stroke, we found that post-insult treatment with lithium robustly reduced infarct volume and neurological deficits. These beneficial effects were evident when therapeutic concentrations of lithium were injected at least up to 3 h after ischemic onset. The neuroprotection was associated with activation of heat-shock factor-1 and induction of heat-shock protein-70, a cytoprotective protein. In a rat excitotoxic model of Huntington's disease, the excitotoxin-induced loss of striatal medium-sized neurons was markedly reduced by lithium. This lithium protection was correlated with up-regulation of cytoprotective Bcl-2 and down-regulation of apoptotic proteins p53 and Bax, and neurons showing DNA damage and caspase-3 activation. Taken together, our results provide a new insight into the molecular mechanisms involved in lithium neuroprotection against glutamate excitotoxicity. Moreover, these novel molecular and cellular actions might contribute to the neurotrophic and neuroprotective actions of this mood-stabilizer in patients, and could be related to its clinical efficacy for treating mood disorder patients. Clearly, mood-stabilizers may have expanded use for treating excitotoxin-related neurodegenerative diseases.


Asunto(s)
Litio/farmacología , Neuronas/efectos de los fármacos , Animales , Técnicas In Vitro , Litio/uso terapéutico , Ratas
12.
ACS Chem Neurosci ; 5(6): 422-33, 2014 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-24697257

RESUMEN

Traumatic brain injury (TBI) is a leading cause of disability and death from trauma to central nervous system (CNS) tissues. For patients who survive the initial injury, TBI can lead to neurodegeneration as well as cognitive and motor deficits, and is even a risk factor for the future development of neurodegenerative disorders such as Alzheimer's disease. Preclinical studies of multiple neuropathological and neurodegenerative disorders have shown that lithium, which is primarily used to treat bipolar disorder, has considerable neuroprotective effects. Indeed, emerging evidence now suggests that lithium can also mitigate neurological deficits incurred from TBI. Lithium exerts neuroprotective effects and stimulates neurogenesis via multiple signaling pathways; it inhibits glycogen synthase kinase-3 (GSK-3), upregulates neurotrophins and growth factors (e.g., brain-derived neurotrophic factor (BDNF)), modulates inflammatory molecules, upregulates neuroprotective factors (e.g., B-cell lymphoma-2 (Bcl-2), heat shock protein 70 (HSP-70)), and concomitantly downregulates pro-apoptotic factors. In various experimental TBI paradigms, lithium has been shown to reduce neuronal death, microglial activation, cyclooxygenase-2 induction, amyloid-ß (Aß), and hyperphosphorylated tau levels, to preserve blood-brain barrier integrity, to mitigate neurological deficits and psychiatric disturbance, and to improve learning and memory outcome. Given that lithium exerts multiple therapeutic effects across an array of CNS disorders, including promising results in preclinical models of TBI, additional clinical research is clearly warranted to determine its therapeutic attributes for combating TBI. Here, we review lithium's exciting potential in ameliorating physiological as well as cognitive deficits induced by TBI.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Compuestos de Litio/farmacología , Fármacos Neuroprotectores/farmacología , Animales , Lesiones Encefálicas/fisiopatología , Humanos , Compuestos de Litio/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico
13.
J Neurosurg ; 119(3): 766-73, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23848820

RESUMEN

OBJECT: Although traumatic brain injury (TBI) is the leading cause of death and morbidity in young adults, no effective pharmaceutical treatment is available. By inhibiting glycogen synthase kinase-3 (GSK-3) and histone deacetylases (HDACs), respectively, lithium and valproate (VPA) have beneficial effects in diverse neurodegenerative diseases. Furthermore, in an excitotoxic neuronal model and in animal models of amyotrophic lateral sclerosis, Huntington disease, and stroke, combined treatment with lithium and VPA produces more robust neuroprotective effects than treatment with either agent alone. Building on previous work that establishes that therapeutic doses of either lithium or VPA have beneficial effects in mouse models of TBI, this study evaluated the effects of combined treatment with subeffective doses of lithium and VPA in a mouse model of TBI. METHODS: Male C57BL/6 mice underwent TBI and were subsequently treated with lithium, VPA, or a combination of lithium and VPA 15 minutes post-TBI and once daily thereafter for up to 3 weeks; all doses were subeffective (1 mEq/kg of lithium and 200 mg/kg of VPA). Assessed parameters included lesion volume via H & E staining; blood-brain barrier (BBB) integrity via immunoglobulin G extravasation; neurodegeneration via Fluoro-Jade B staining; motor coordination via a beam-walk test; and protein levels of acetylhistone H3, phospho-GSK-3ß, and ß-catenin via Western blotting. RESULTS: Posttrauma treatment with combined subeffective doses of lithium and VPA significantly reduced lesion volume, attenuated BBB disruption, and mitigated hippocampal neurodegeneration 3 days after TBI. As expected, subeffective doses of lithium or VPA alone did not have these beneficial effects. Combined treatment also improved motor coordination starting from Day 7 and persisting at least 21 days after TBI. Acetylation of histone H3, an index of HDAC inhibition, was robustly increased by the combined treatment 3 days after TBI. CONCLUSIONS: Cotreatment with subeffective doses of lithium and VPA significantly attenuated TBI-induced brain lesion, BBB disruption, and neurodegeneration, and robustly improved long-term functional recovery. These findings suggest that potentiating histone acetylation by HDAC inhibition is probably part of the mechanism underlying the beneficial effects associated with this combined treatment for TBI. Because both lithium and VPA have a long history of safe clinical use, the results suggest that using a combination of these 2 agents at subtherapeutic doses to treat patients with TBI may also reduce side effects and enhance tolerability.


Asunto(s)
Antimaníacos/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Lesiones Encefálicas/tratamiento farmacológico , Litio/farmacología , Trastornos del Movimiento/tratamiento farmacológico , Ácido Valproico/farmacología , Animales , Antimaníacos/administración & dosificación , Barrera Hematoencefálica/metabolismo , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/etiología , Modelos Animales de Enfermedad , Quimioterapia Combinada , Litio/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Trastornos del Movimiento/etiología , Ácido Valproico/administración & dosificación
14.
Neuropharmacology ; 60(7-8): 1109-15, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20888352

RESUMEN

The mood-stabilizing and anticonvulsant drug valproic acid (VPA) inhibits histone deacetylases (HDACs). The aim of the present study was to determine the effect of HDAC inhibition on overall and target gene promoter-associated histone methylation in rat cortical neurons and astrocytes. We found that VPA and other HDAC inhibitors, including sodium butyrate (SB), trichostatin A (TSA), and the Class I HDAC inhibitors MS-275 and apicidin all increased levels of histone 3 lysine 4 dimethylation and trimethylation (H3K4Me2 and H3K4Me3); these processes are linked to transcriptional activation in rat cortical neurons and astrocytes. VPA, SB, TSA, MS-275, and apicidin also upregulated levels of the neuroprotective heat shock protein 70 (HSP70) in rat astrocytes. Moreover, Class I HDAC inhibition by VPA and MS-275 increased H3K4Me2 levels at the HSP70 promoter in astrocytes and neurons. We also found that VPA treatment facilitated the recruitment of acetyltransferase p300 to the HSP70 promoter and that p300 interacted with the transcription factor NF-Y in astrocytes. Taken together, the results suggest that Class I HDAC inhibition is key to upregulating overall and gene-specific H3K4 methylation in primary neuronal and astrocyte cultures. In addition, VPA-induced activation of the HSP70 promoter in astrocytes appears to involve an increase in H3K4Me2 levels and recruitment of p300. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.


Asunto(s)
Astrocitos/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/fisiología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Metilación/efectos de los fármacos , Neuronas/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de los fármacos , Animales , Astrocitos/fisiología , Benzamidas/farmacología , Factor de Unión a CCAAT/efectos de los fármacos , Factor de Unión a CCAAT/fisiología , Inmunoprecipitación de Cromatina , Proteínas HSP70 de Choque Térmico/efectos de los fármacos , Histonas/metabolismo , Histonas/fisiología , Neuronas/fisiología , Regiones Promotoras Genéticas/fisiología , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Factores de Transcripción p300-CBP/efectos de los fármacos , Factores de Transcripción p300-CBP/fisiología
15.
J Cereb Blood Flow Metab ; 31(1): 52-7, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20978517

RESUMEN

Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, is known to protect against cerebral ischemia. The effects of VPA on blood-brain barrier (BBB) disruption were investigated in rats subjected to transient middle cerebral artery occlusion (MCAO). Postischemic VPA treatment remarkably attenuated MCAO-induced BBB disruption and brain edema. Meanwhile, VPA significantly reduced MCAO-induced elevation of matrix metalloproteinase-9 (MMP-9), degradation of tight junction proteins, and nuclear translocation of nuclear factor-κB (NF-κB). Sodium butyrate, another HDAC inhibitor, mimicked these effects of VPA. Our findings suggest that BBB protection by VPA involves HDAC inhibition-mediated suppression of NF-κB activation, MMP-9 induction, and tight junction degradation.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/uso terapéutico , Ataque Isquémico Transitorio/tratamiento farmacológico , Ataque Isquémico Transitorio/patología , Inhibidores de la Metaloproteinasa de la Matriz , Fármacos Neuroprotectores , Inhibidores de Proteasas , Ácido Valproico/farmacología , Animales , Western Blotting , Agua Corporal/metabolismo , Química Encefálica/efectos de los fármacos , Química Encefálica/fisiología , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/etiología , Butiratos/farmacología , Colorantes , Azul de Evans , Histona Desacetilasas/metabolismo , Inmunoglobulina G/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Masculino , FN-kappa B/biosíntesis , FN-kappa B/genética , Ratas , Ratas Sprague-Dawley , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/patología
16.
Neuropsychopharmacology ; 36(12): 2406-21, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21796107

RESUMEN

Emerging evidence suggests that the mood stabilizers lithium and valproate (VPA) have broad neuroprotective and neurotrophic properties, and that these occur via inhibition of glycogen synthase kinase 3 (GSK-3) and histone deacetylases (HDACs), respectively. Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by impaired movement, cognitive and psychiatric disturbances, and premature death. We treated N171-82Q and YAC128 mice, two mouse models of HD varying in genetic backgrounds and pathological progressions, with a diet containing therapeutic doses of lithium, VPA, or both. Untreated, these transgenic mice displayed a decrease in levels of GSK-3ß serine 9 phosphorylation and histone H3 acetylation in the striatum and cerebral cortex around the onset of behavioral deficits, indicating a hyperactivity of GSK-3ß and HDACs. Using multiple well-validated behavioral tests, we found that co-treatment with lithium and VPA more effectively alleviated spontaneous locomotor deficits and depressive-like behaviors in both models of HD mice. Furthermore, compared with monotherapy with either drug alone, co-treatment more successfully improved motor skill learning and coordination in N171-82Q mice, and suppressed anxiety-like behaviors in YAC128 mice. This combined treatment consistently inhibited GSK-3ß and HDACs, and caused a sustained elevation in striatal as well as cortical brain-derived neurotrophic factor and heat shock protein 70. Importantly, co-treatment markedly prolonged median survival of N171-82Q mice from 31.6 to 41.6 weeks. Given that there is presently no proven treatment for HD, our results suggest that combined treatment with lithium and VPA, two mood stabilizers with a long history of safe use in humans, may have important therapeutic potential for HD patients.


Asunto(s)
Afecto/efectos de los fármacos , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/genética , Litio/administración & dosificación , Ácido Valproico/administración & dosificación , Afecto/fisiología , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Quimioterapia Combinada , Femenino , Masculino , Ratones , Ratones Transgénicos
17.
Neuropsychopharmacology ; 35(11): 2225-37, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20613717

RESUMEN

Mesenchymal stem cells (MSCs) show high potential for the therapy of several human diseases; however, the effectiveness of MSC transplantation has been hampered by the relatively poor migratory capacity of these cells toward disease target sites. This study investigated whether treatment of MSCs with two mood stabilizers-valproic acid (VPA) and lithium-would enhance cell migration and, if so, to explore the mechanisms underlying their effects. Short-term (3 h) exposure of MSCs to a relatively high concentration (2.5 mM) of VPA markedly increased the transcript and protein levels of CXC chemokine receptor 4 (CXCR4). VPA-induced CXCR4 expression required inhibition of histone deacetylases (HDACs), including the HDAC1 isoform, and involved histone hyperacetylation at the promoter region of the CXCR4 gene. Notably, VPA treatment enhanced stromal cell-derived factor-1α (SDF-1α)-mediated MSC migration, which was completely blocked by AMD3100, a CXCR4 antagonist. Treatment of MSCs with lithium (2.5 mM for 1 day) selectively elevated the transcript and protein levels of matrix metalloproteinase-9 (MMP-9) and its enzymatic activity; these effects were mimicked by inhibition or gene silencing of glycogen synthase kinase-3ß (GSK-3ß). Lithium treatment also potentiated SDF-1α-dependent MSC migration across the extracellular matrix, which was suppressed by two MMP-9 inhibitors, doxycycline and GM6001. Combining VPA and lithium treatment further increased MSC migration. Overall, VPA and lithium stimulated MSC migration through distinct targets and mediators: HDAC-CXCR4 and GSK-3ß-MMP-9, respectively.


Asunto(s)
Afecto , Movimiento Celular/efectos de los fármacos , Litio/administración & dosificación , Células Madre Mesenquimatosas/efectos de los fármacos , Ácido Valproico/administración & dosificación , Afecto/efectos de los fármacos , Afecto/fisiología , Animales , Movimiento Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Quimioterapia Combinada , Técnicas de Silenciamiento del Gen , Metaloproteinasa 9 de la Matriz/biosíntesis , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Ratas , Receptores CXCR4/biosíntesis
18.
J Neurochem ; 89(6): 1358-67, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15189338

RESUMEN

Growing evidence from in vitro studies supports that valproic acid (VPA), an anti-convulsant and mood-stabilizing drug, has neuroprotective effects. The present study investigated whether VPA reduces brain damage and improves functional outcome in a transient focal cerebral ischemia model of rats. Subcutaneous injection of VPA (300 mg/kg) immediately after ischemia followed by repeated injections every 12 h, was found to markedly decrease infarct size and reduce ischemia-induced neurological deficit scores measured at 24 and 48 h after ischemic onset. VPA treatment also suppressed ischemia-induced neuronal caspase-3 activation in the cerebral cortex. VPA treatments resulted in a time-dependent increase in acetylated histone H3 levels in the cortex and striatum of both ipsilateral and contralateral brain hemispheres of middle cerebral artery occlusion (MCAO) rats, as well as in these brain areas of normal, non-surgical rats, supporting the in vitro finding that VPA is a histone deacetylase (HDAC) inhibitor. Similarly, heat shock protein 70 (HSP70) levels were time-dependently up-regulated by VPA in the cortex and striatum of both ipsilateral and contralateral sides of MCAO rats and in these brain areas of normal rats. Altogether, our results demonstrate that VPA is neuroprotective in the cerebral ischemia model and suggest that the protection mechanisms may involve HDAC inhibition and HSP induction.


Asunto(s)
Infarto Cerebral/prevención & control , Proteínas de Choque Térmico/metabolismo , Inhibidores de Histona Desacetilasas , Ataque Isquémico Transitorio/tratamiento farmacológico , Ácido Valproico/uso terapéutico , Acetilación , Animales , Conducta Animal/efectos de los fármacos , Caspasa 3 , Caspasas/metabolismo , Corteza Cerebral/metabolismo , Infarto Cerebral/patología , Modelos Animales de Enfermedad , GABAérgicos/farmacología , Proteínas HSP70 de Choque Térmico/metabolismo , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Ataque Isquémico Transitorio/patología , Ataque Isquémico Transitorio/fisiopatología , Masculino , Neostriado/metabolismo , Examen Neurológico/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba/efectos de los fármacos
19.
J Neurochem ; 84(3): 566-75, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12558976

RESUMEN

In rat cerebellar granule cells, glutamate induced rapid activation of c-Jun N-terminal kinase (JNK) and p38 kinase to phosphorylate c-Jun (at Ser63) and p53 (at Ser15), respectively, and a subsequent marked increase in activator protein-1 (AP-1) binding that preceded apoptotic death. These glutamate-induced effects and apoptosis could largely be prevented by long-term (7 days) pretreatment with 0.5-2 mm lithium, an antibipolar drug. Glutamate's actions could also be prevented by known blockers of this pathway, MK-801 (an NMDA receptor blocker), SB 203580 (a p38 kinase inhibitor) and curcumin (an AP-1 binding inhibitor). The concentration- and time-dependent suppression of glutamate's effects by lithium and curcumin correlated well with their neuroprotective effects. These results suggest a prominent role of JNK and p38, as well as their downstream AP-1 binding activation and p53 phosphorylation in mediating glutamate excitotoxicity. Moreover, the neuroprotective effects of lithium are mediated, at least in part, by suppressing NMDA receptor-mediated activation of the mitogen-activated protein kinase pathway.


Asunto(s)
ADN/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuronas/metabolismo , Factor de Transcripción AP-1/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Células Cultivadas , Cerebelo/citología , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/toxicidad , Proteínas Quinasas JNK Activadas por Mitógenos , Litio/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Neuronas/citología , Fármacos Neuroprotectores/farmacología , Fosforilación/efectos de los fármacos , Unión Proteica/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Tiempo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos
20.
Bipolar Disord ; 4(2): 129-36, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12071510

RESUMEN

Lithium, the major drug used to treat manic depressive illness, robustly protects cultured rat brain neurons from glutamate excitotoxicity mediated by N-methyl-D-aspartate (NMDA) receptors. The lithium neuroprotection against glutamate excitotoxiciy is long-lasting, requires long-term pretreatment and occurs at therapeutic concentrations of this drug. The neuroprotective mcchanisms involve inactivation of NMDA receptors, decreased expression of pro-apoptotic proteins, p53 and Bax, enhanced expression of the cytoprotective protein, Bcl-2, and activation of the cell survival kinase, Akt. In addition, lithium pretreatment suppresses glutamate-induced loss of the activities of Akt, cyclic AMP-response element binding protein (CREB), c-Jun - N-terminal kinase (JNK) and p38 kinase. Lithium also reduces brain damage in animal models of neurodegenerative diseases in which excitotoxicity has been implicated. In the rat model of stroke using middle cerebral artery occlusion, lithium markedly reduces neurologic deficits and decreases brain infarct volume even when administered after the onset of ischemia. In a rat Huntington's disease model, lithium significantly reduces brain lesions resulting from intrastriatal infusion of quinolinic acid, an excitotoxin. Our results suggest that lithium might have utility in the treatment of neurodegenerative disorders in addition to its common use for the treatment of bipolar depressive patients.


Asunto(s)
Carbonato de Litio/farmacología , Animales , Trastorno Bipolar/tratamiento farmacológico , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/efectos de los fármacos , Modelos Animales de Enfermedad , Ácido Glutámico/metabolismo , Neuronas/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Accidente Cerebrovascular/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA