Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Clin Chem ; 70(1): 285-296, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175596

RESUMEN

BACKGROUND: More than 95% of cervical cancers and their precancerous lesions are caused by human papillomavirus (HPV). Cell-free (cf) HPV DNA detection in blood samples may serve as a monitoring tool for cervical cancer. METHODS: In our methodological study, an HPV panel for simultaneous detection of 24 types using mass spectrometry-based analysis was developed for liquid biopsy approaches and tested on HPV positive cell lines, plasmid controls, and cervical high-grade squamous intraepithelial lesions (HSIL) in positive smear samples (n = 52). It was validated in cfDNA blood samples (n = 40) of cervical cancer patients. RESULTS: The HPV panel showed proficient results in cell lines and viral plasmids with a limit of detection of 1 IU (international units)/µL for HPV16/18 and 10GE/µL for HPV11/31/33/39/45/51/52/58/59 and a specificity of 100% for the tested HPV types. In cervical smear samples, HPV DNA was detected with a sensitivity of 98.14%. The overall agreement between the new HPV panel and clinical records was 97.2% (κ = 0.84). In cervical cancer cfDNA, 26/40 (65.0%) tested positive for any HPV type, with most infections due to hrHPV (24/26). HPV positive samples were found in all FIGO stages, with the highest positivity ratio in FIGO III and IV. Even the lowest stage, FIGO I, had 12/23 (52.2%) patients with a positive HPV plasma status. CONCLUSIONS: This proof-of-concept paper shows that the described assay produces reliable results for detecting HPV types in a multiplex mass spectrometry-based assay in cervical smear and cfDNA with high specificity and sensitivity in both cohorts. The assay shows potential for liquid biopsy-based applications in monitoring cervical cancer progression.


Asunto(s)
Ácidos Nucleicos Libres de Células , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/diagnóstico , Virus del Papiloma Humano , Papillomavirus Humano 16/genética , Infecciones por Papillomavirus/diagnóstico , Papillomavirus Humano 18 , Biopsia Líquida , ADN
2.
Cancers (Basel) ; 14(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36010947

RESUMEN

Cervical cancer is the fourth most common cancer in women, which is associated in >95% with a high-risk human papillomavirus (HPV) infection. Methylation of specific genes has been closely associated with the progress of cervical high-grade dysplastic lesions to invasive carcinomas. Therefore, DNA methylation has been proposed as a triage for women infected with high-risk HPV. Methylation analyses of cervical cancer tissue have shown that cell adhesion molecule 1 (CADM1) and myelin and lymphocyte protein (MAL) methylation are present in over 90% of all cervical high-grade neoplasias and invasive cervical cancers. Here, we established a liquid biopsy-based assay to detect MAL and CADM1 methylation in cell free (cf)DNA of cervical cancer. Methylation of the target gene was validated on bisulfite converted smear-DNA from cervical dysplasia patients and afterward applied to cfDNA using quantitative real-time PCR. In 52 smears, a combined analysis of CADM1 and/or MAL (CADM1/MAL) showed methylation in 86.5% of the cases. In cfDNA samples of 24 cervical cancer patients, CADM1/MAL methylation was detected in 83.3% of the cases. CADM1/MAL methylation was detected already in 81.8% of stage I-II patients showing the high sensitivity of this liquid biopsy assay. In combination with a specificity of 95.5% towards healthy donors (HD) and an area under the curve (AUC) of 0.872 in the receiver operating characteristic (ROC) analysis, CADM1/MAL cfDNA methylation detection might represent a novel and promising liquid biopsy marker in cervical cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA