Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 315(4): H978-H988, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30028198

RESUMEN

Neonatal asphyxia leads to cerebrovascular disease and neurological complications via a mechanism that may involve oxidative stress. Carbon monoxide (CO) is an antioxidant messenger produced via a heme oxygenase (HO)-catalyzed reaction. Cortical astrocytes are the major cells in the brain that express constitutive HO-2 isoform. We tested the hypothesis that CO, produced by astrocytes, has cerebroprotective properties during neonatal asphyxia. We developed a survival model of prolonged asphyxia in newborn pigs that combines insults of severe hypoxia, hypercapnia, and acidosis while avoiding extreme hypotension and cerebral blood flow reduction. During the 60-min asphyxia, CO production by brain and astrocytes was continuously elevated. Excessive formation of reactive oxygen species during asphyxia/reventilation was potentiated by the HO inhibitor tin protoporphyrin, suggesting that endogenous CO has antioxidant effects. Cerebral vascular outcomes tested 24 and 48 h after asphyxia demonstrated the sustained impairment of cerebral vascular responses to astrocyte- and endothelium-specific vasodilators. Postasphyxia cerebral vascular dysfunction was aggravated in newborn pigs pretreated with tin protoporphyrin to inhibit brain HO/CO. The CO donor CO-releasing molecule-A1 (CORM-A1) reduced brain oxidative stress during asphyxia/reventilation and prevented postasphyxia cerebrovascular dysfunction. The antioxidant and antiapoptotic effects of HO/CO and CORM-A1 were confirmed in primary cultures of astrocytes from the neonatal pig brain exposed to glutamate excitotoxicity. Overall, prolonged neonatal asphyxia leads to neurovascular injury via an oxidative stress-mediated mechanism that is counteracted by an astrocyte-based constitutive antioxidant HO/CO system. We propose that gaseous CO or CO donors can be used as novel approaches for prevention of neonatal brain injury caused by prolonged asphyxia. NEW & NOTEWORTHY Asphyxia in newborn infants may lead to lifelong neurological disabilities. Using the model of prolonged asphyxia in newborn piglets, we propose novel antioxidant therapy based on systemic administration of low doses of a carbon monoxide donor that prevent loss of cerebral blood flow regulation and may improve the neurological outcome of asphyxia.


Asunto(s)
Arteriolas/efectos de los fármacos , Asfixia Neonatal/tratamiento farmacológico , Astrocitos/efectos de los fármacos , Boranos/farmacología , Dióxido de Carbono/metabolismo , Carbonatos/farmacología , Circulación Cerebrovascular/efectos de los fármacos , Trastornos Cerebrovasculares/prevención & control , Fármacos Neuroprotectores/farmacología , Piamadre/irrigación sanguínea , Animales , Animales Recién Nacidos , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Arteriolas/metabolismo , Arteriolas/fisiopatología , Asfixia Neonatal/complicaciones , Asfixia Neonatal/metabolismo , Asfixia Neonatal/fisiopatología , Astrocitos/metabolismo , Astrocitos/patología , Velocidad del Flujo Sanguíneo , Células Cultivadas , Trastornos Cerebrovasculares/etiología , Trastornos Cerebrovasculares/metabolismo , Trastornos Cerebrovasculares/fisiopatología , Modelos Animales de Enfermedad , Femenino , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Sus scrofa , Factores de Tiempo , Vasodilatación/efectos de los fármacos
2.
Am J Physiol Heart Circ Physiol ; 315(6): H1759-H1764, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30265150

RESUMEN

H2S is an endogenous gasotransmitter that increases cerebral blood flow. In the cerebral vascular endothelium, H2S is produced by cystathionine δ-lyase (CSE). Endothelin-1 (ET-1) has constrictor and dilator influences on the cerebral circulation. The mechanism of the vasodilation caused by ET-1 may involve endothelium-derived factors. We hypothesize that ET-1-elicited dilation of pial arterioles requires an elevation of H2S production in the cerebral vascular endothelium. We investigated the effects of ET-1 on CSE-catalyzed brain H2S production and pial arteriolar diameter using cranial windows in newborn pigs in vivo. H2S was measured in periarachnoid cerebrospinal fluid. ET-1 (10-12-10-8 M) caused an elevation of H2S that was reduced by the CSE inhibitors propargylglycine (PPG) and ß-cyano-l-alanine (BCA). Low doses of ET-1 (10-12-10-11 M) produced vasodilation of pial arterioles that was blocked PPG and BCA, suggesting the importance of H2S influences. The vasodilator effects of H2S may require activation of smooth muscle cell membrane ATP-sensitive K+ (KATP) channels and large-conductance Ca2+-activated K+ (BK) channels. The KATP inhibitor glibenclamide and the BK inhibitor paxilline blocked CSE/H2S-dependent dilation of pial arterioles to ET-1. In contrast, the vasoconstrictor response of pial arterioles to 10-8 M ET-1 was not modulated by PPG, BCA, glibenclamide, or paxilline and, therefore, was independent of CSE/H2S influences. Pial arteriolar constriction response to higher levels of ET-1 was independent of CSE/H2S and KATP/BKCa channel activation. These data suggest that H2S is an endothelium-derived factor that mediates the vasodilator effects of ET-1 in the cerebral circulation via a mechanism that involves activation of KATP and BK channels in vascular smooth muscle. NEW & NOTEWORTHY Disorders of the cerebral circulation in newborn infants may lead to lifelong neurological disabilities. We report that vasoactive peptide endothelin-1 exhibits vasodilator properties in the neonatal cerebral circulation by stimulating production of H2S, an endothelium-derived messenger with vasodilator properties. The ability of endothelin-1 to stimulate brain production of H2S may counteract the reduction in cerebral blood flow and prevent the cerebral vascular dysfunction caused by stroke, asphyxia, cerebral hypoxia, ischemia, and vasospasm.


Asunto(s)
Encéfalo/irrigación sanguínea , Circulación Cerebrovascular , Endotelina-1/farmacología , Sulfitos/líquido cefalorraquídeo , Vasodilatación , Alanina/análogos & derivados , Alanina/farmacología , Alquinos/farmacología , Animales , Arteriolas/efectos de los fármacos , Arteriolas/metabolismo , Arteriolas/fisiología , Endotelio Vascular/metabolismo , Inhibidores Enzimáticos/farmacología , Glicina/análogos & derivados , Glicina/farmacología , Canales KATP/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Músculo Liso Vascular/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Porcinos
3.
Pediatr Res ; 84(2): 290-295, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29907849

RESUMEN

BACKGROUND: Hypercapnia causes cerebral vasodilation and increased cerebral blood flow (CBF). During prolonged hypercapnia it is unknown whether cerebral vasodilation persists and whether cerebrovascular function is preserved. We investigated the effects of prolonged severe hypercapnia on pial arteriolar diameters (PAD) and cerebrovascular reactivity to vasodilators and vasoconstrictors. METHODS: Piglets were anesthetized, intubated and ventilated. Closed cranial windows were implanted to measure PAD. Changes in PAD were documented during hypercapnia (PaCO2 75-80 mm Hg). Cerebrovascular reactivity was documented during normocapnia and at 30, 60, and 120 min of hypercapnia. RESULTS: Cerebral vasodilation to hypercapnia was sustained over 120 min. Cerebrovascular responses to vasodilators and vasoconstrictors were preserved during hypercapnia. During hypercapnia, vasodilatory responses to second vasodilators were similar to normocapnia, while exposure to vasoconstrictors caused significant vasoconstriction. CONCLUSIONS: Prolonged severe hypercapnia causes sustained vasodilation of pial arteriolar diameters indicative of hyperperfusion. During hypercapnia, cerebral vascular responses to vasodilators and vasoconstrictors were preserved, suggesting that cerebral vascular function remained intact. Of note, cerebral vessels during hypercapnia were capable of further dilation when exposed to additional cerebral vasodilators and, significant vasoconstriction when exposed to vasoconstrictors. Extrapolating these findings to infants, we suggest that severe hypercapnia should be avoided, because it could cause/increase cerebrovascular injury.


Asunto(s)
Arteriolas/fisiopatología , Circulación Cerebrovascular , Hipercapnia/fisiopatología , Vasodilatación/efectos de los fármacos , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Animales , Animales Recién Nacidos , Biomarcadores , Dióxido de Carbono/sangre , Modelos Animales de Enfermedad , Endotelinas/farmacología , Femenino , Ácido Glutámico/farmacología , Isoproterenol/farmacología , Masculino , Nitroprusiato/farmacología , Piamadre/irrigación sanguínea , Porcinos , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología , Vasodilatadores/farmacología
4.
Pediatr Res ; 82(5): 881-887, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28665933

RESUMEN

BackgroundThe potential contribution of sex-related variables to cerebrovascular functions in neonates remains elusive. Newborn piglets provide a translationally relevant model for studying the effects of seizures in the neonatal brain. The present study investigated whether sex differences contribute to cerebrovascular functions in healthy and epileptic newborn pigs.MethodsEpileptic seizures were induced in female and male newborn pigs by bicuculline. An antioxidant drug, the carbon monoxide-releasing molecule CORM-A1, was administered enterally before or during seizures. The responses of pial arterioles to endothelium-, astrocyte-, and vascular smooth muscle-dependent vasodilators were tested in intact and 48-h postictal piglets using the cranial window technique.ResultsIn intact newborn pigs, we did not observe any sex-related differences in cerebrovascular functions. In the postictal male and female newborn pigs, a marked reduction in responses of pial arterioles to endothelium- and astrocyte-dependent vasodilators was detected. CORM-A1, administered before or during seizures, greatly improved the outcome of seizures on cerebrovascular functions in both male and female piglets.ConclusionWe found no evidence of sex-related differences in cerebral vasodilator functions in control and epileptic newborn pigs. In both male and female newborns, epileptic seizures lead to prolonged cerebral vascular dysfunction that is effectively prevented by CORM-A1 therapy.


Asunto(s)
Antioxidantes/farmacología , Boranos/farmacología , Carbonatos/farmacología , Arterias Cerebrales/efectos de los fármacos , Arterias Cerebrales/fisiopatología , Trastornos Cerebrovasculares/prevención & control , Piamadre/irrigación sanguínea , Convulsiones/tratamiento farmacológico , Vasodilatación/efectos de los fármacos , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Bicuculina , Arterias Cerebrales/metabolismo , Trastornos Cerebrovasculares/etiología , Trastornos Cerebrovasculares/fisiopatología , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Femenino , Humanos , Masculino , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Convulsiones/fisiopatología , Factores Sexuales , Sus scrofa , Factores de Tiempo , Vasodilatadores/farmacología
5.
Am J Physiol Heart Circ Physiol ; 311(5): H1202-H1213, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27591217

RESUMEN

Epileptic seizures in neonates cause cerebrovascular injury and impairment of cerebral blood flow (CBF) regulation. In the bicuculline model of seizures in newborn pigs, we tested the hypothesis that selective head cooling prevents deleterious effects of seizures on cerebral vascular functions. Preventive or therapeutic ictal head cooling was achieved by placing two head ice packs during the preictal and/or ictal states, respectively, for the ∼2-h period of seizures. Head cooling lowered the brain and core temperatures to 25.6 ± 0.3 and 33.5 ± 0.1°C, respectively. Head cooling had no anticonvulsant effects, as it did not affect the bicuculline-evoked electroencephalogram parameters, including amplitude, duration, spectral power, and spike frequency distribution. Acute and long-term cerebral vascular effects of seizures in the normothermic and head-cooled groups were tested during the immediate (2-4 h) and delayed (48 h) postictal periods. Seizure-induced cerebral vascular injury during the immediate postictal period was detected as terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive staining of cerebral arterioles and a surge of brain-derived circulating endothelial cells in peripheral blood in the normothermic group, but not in the head-cooled groups. During the delayed postictal period, endothelium-dependent cerebral vasodilator responses were greatly reduced in the normothermic group, indicating impaired CBF regulation. Preventive or therapeutic ictal head cooling mitigated the endothelial injury and greatly reduced loss of postictal cerebral vasodilator functions. Overall, head cooling during seizures is a clinically relevant approach to protecting the neonatal brain by preventing cerebrovascular injury and the loss of the endothelium-dependent control of CBF without reducing epileptiform activity.


Asunto(s)
Arteriolas/fisiopatología , Arterias Cerebrales/fisiopatología , Circulación Cerebrovascular , Trastornos Cerebrovasculares/fisiopatología , Cabeza , Hipotermia Inducida/métodos , Convulsiones/fisiopatología , Vasodilatación/fisiología , Animales , Animales Recién Nacidos , Bicuculina/toxicidad , Trastornos Cerebrovasculares/etiología , Trastornos Cerebrovasculares/prevención & control , Convulsivantes/toxicidad , Electroencefalografía , Células Endoteliales/citología , Femenino , Etiquetado Corte-Fin in Situ , Masculino , Convulsiones/inducido químicamente , Convulsiones/complicaciones , Porcinos
6.
J Pharmacol Exp Ther ; 356(1): 106-15, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26555891

RESUMEN

Despite preventive education, the combined consumption of alcohol and caffeine (particularly from "energy drinks") continues to rise. Physiologic perturbations by separate intake of ethanol and caffeine have been widely documented. However, the biologic actions of the alcohol-caffeine combination and their underlying subcellular mechanisms have been scarcely studied. Using intravital microscopy on a closed-cranial window and isolated, pressurized vessels, we investigated the in vivo and in vitro action of ethanol-caffeine mixtures on cerebral arteries from rats and mice, widely recognized models to address cerebrovascular pathophysiology and pharmacology. Caffeine at concentrations found in human circulation after ingestion of one to two cups of coffee (10 µM) antagonized the endothelium-independent constriction of cerebral arteries evoked by ethanol concentrations found in blood during moderate-heavy alcohol intoxication (40-70 mM). Caffeine antagonism against alcohol was similar whether evaluated in vivo or in vitro, suggesting independence of systemic factors and drug metabolism, but required a functional endothelium. Moreover, caffeine protection against alcohol increased nitric oxide (NO•) levels over those found in the presence of ethanol alone, disappeared upon blocking NO• synthase, and could not be detected in pressurized cerebral arteries from endothelial nitric-oxide synthase knockout (eNOS(-/-)) mice. Finally, incubation of de-endothelialized cerebral arteries with the NO• donor sodium nitroprusside (10 µM) fully restored the protective effect of caffeine. This study demonstrates for the first time that caffeine antagonizes ethanol-induced cerebral artery constriction and identifies endothelial NO• as the critical caffeine effector on smooth muscle targets. Conceivably, situations that perturb endothelial function and/or NO• availability will critically alter caffeine antagonism of alcohol-induced cerebrovascular constriction without significantly disrupting endothelium-independent, alcohol-induced cerebral artery constriction itself.


Asunto(s)
Cafeína/farmacología , Depresores del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Arterias Cerebrales/efectos de los fármacos , Endotelio Vascular/fisiología , Etanol/antagonistas & inhibidores , Etanol/farmacología , Óxido Nítrico/fisiología , Vasoconstricción/efectos de los fármacos , Animales , Cafeína/sangre , Depresores del Sistema Nervioso Central/sangre , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/enzimología , Etanol/sangre , Masculino , Ratones , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo III/genética , Nitroprusiato/farmacología , Ratas , Ratas Sprague-Dawley
7.
Alcohol Clin Exp Res ; 38(5): 1216-26, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24588122

RESUMEN

BACKGROUND: Binge drinking represents the major form of excessive alcohol (ethanol [EtOH]) consumption in the United States. Episodic (such as binge) drinking results in blood alcohol levels (BAL) of 18 to 80 mM and leads to alcohol-induced cerebral artery constriction (AICAC). AICAC was shown to arise from EtOH-induced inhibition of large-conductance, calcium/voltage-gated potassium (BK) channels in the vascular smooth muscle. Factors that modulate BK channel-mediated AICAC remain largely unknown. METHODS: Male Sprague Dawley rats were placed on high-cholesterol (2% of cholesterol) diet for 18 to 23 weeks. Their littermates were placed on control iso-caloric diet. AICAC was evaluated both in vivo and in vitro, by means of pial arteriole diameter monitoring through a closed cranial window and diameter measurements of isolated, pressurized cerebral arteries. Cholesterol level in the cerebral artery tissue was manipulated by methyl-ß-cyclodextrin to reverse dietary-induced accumulation of cholesterol. BK channel surface presence on the plasma membrane of cerebral artery myocytes was evaluated by immunofluorescence staining. BK channel function in pressurized cerebral artery was assessed using selective BK channel blocker paxilline. RESULTS: Within 5 minutes of 50 mM EtOH injection into carotid artery in vivo, arteriole diameter decreased by 20% in control group. Pial arteriole constriction was significantly reduced in rats on high-cholesterol diet, resulting in only 10% reduction in diameter. BAL in both groups, however, remained the same. Significant reduction in AICAC in group on high-cholesterol diet compared to control was also observed after middle cerebral artery dissection and in vitro pressurization at 60 mmHg, this reduction remaining after endothelium removal. Cholesterol level in de-endothelialized cerebral arteries was significantly increased in rats on high-cholesterol diet. Removal of excessive cholesterol content restored AICAC to the level observed in cerebral arteries of rats on normal diet. Immunofluorescence staining of BK channel-forming and accessory, smooth muscle-specific ß1 subunit in freshly isolated cerebral artery myocyte showed that high-cholesterol diet did not down-regulate surface presence of BK protein. However, paxilline-induced cerebral artery constriction was diminished in arteries from rats on high-cholesterol diet. CONCLUSIONS: Our data indicate that dietary cholesterol protects against AICAC. This protection is caused by cholesterol buildup in the arterial tissue and diminished function (but not surface presence) of EtOH target-BK channel.


Asunto(s)
Arterias Cerebrales/efectos de los fármacos , Colesterol en la Dieta/farmacología , Etanol/farmacología , Vasoconstricción/efectos de los fármacos , Animales , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Canales de Potasio de Gran Conductancia Activados por el Calcio/efectos de los fármacos , Masculino , Ratas Sprague-Dawley
8.
Am J Physiol Cell Physiol ; 304(11): C1105-15, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23576575

RESUMEN

In cerebral microvascular endothelial cells (CMVEC) of newborn pigs, glutamate at excitotoxic concentrations (mM) causes apoptosis mediated by reactive oxygen species (ROS). Carbon monoxide (CO) produced by CMVEC or delivered by a CO-releasing molecule, CORM-A1, has antioxidant properties. We tested the hypothesis that CORM-A1 prevents cerebrovascular endothelial barrier dysfunction caused by glutamate excitotoxicity. First, we identified the glutamate receptors (GluRs) and enzymatic sources of ROS involved in the mechanism of endothelial apoptosis. In glutamate-exposed CMVEC, ROS formation and apoptosis were blocked by rotenone, 2-thenoyltrifluoroacetone (TTFA), and antimycin, indicating that mitochondrial complexes I, II, and III are the major sources of oxidative stress. Agonists of ionotropic GluRs (iGluRs) N-methyl-D-aspartate (NMDA), cis-ACPD, AMPA, and kainate increased ROS production and apoptosis, whereas iGluR antagonists exhibited antiapoptotic properties, suggesting that iGluRs mediate glutamate-induced endothelial apoptosis. The functional consequences of endothelial injury were tested in the model of blood-brain barrier (BBB) composed of CMVEC monolayer on semipermeable membranes. Glutamate and iGluR agonists reduced transendothelial electrical resistance and increased endothelial paracellular permeability to 3-kDa dextran. CORM-A1 exhibited potent antioxidant and antiapoptotic properties in CMVEC and completely prevented BBB dysfunction caused by glutamate and iGluR agonists. Overall, the endothelial component of the BBB is a cellular target for excitotoxic glutamate that, via a mechanism involving a iGluR-mediated activation of mitochondrial ROS production and apoptosis, leads to BBB opening that may be prevented by the antioxidant and antiapoptotic actions of CORMs. Antioxidant CORMs therapy may help preserve BBB functional integrity in neonatal cerebrovascular disease.


Asunto(s)
Apoptosis/fisiología , Barrera Hematoencefálica/metabolismo , Boranos/metabolismo , Carbonatos/metabolismo , Células Endoteliales/metabolismo , Estrés Oxidativo/fisiología , Receptores Ionotrópicos de Glutamato/metabolismo , Animales , Barrera Hematoencefálica/patología , Encéfalo/metabolismo , Encéfalo/patología , Fragmentación del ADN , Células Endoteliales/patología , Aminoácidos Excitadores/metabolismo , Aminoácidos Excitadores/toxicidad , Femenino , Ácido Glutámico/metabolismo , Ácido Glutámico/toxicidad , Masculino , Especies Reactivas de Oxígeno/metabolismo , Porcinos
9.
Mol Pharmacol ; 83(5): 1030-44, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23455312

RESUMEN

The Ca(2+)/voltage-gated K(+) large conductance (BK) channel ß1 subunit is particularly abundant in vascular smooth muscle. By determining their phenotype, BK ß1 allows the BK channels to reduce myogenic tone, facilitating vasodilation. The endogenous steroid lithocholic acid (LCA) dilates cerebral arteries via BK channel activation, which requires recognition by a BK ß1 site that includes Thr169. Whether exogenous nonsteroidal agents can access this site to selectively activate ß1-containing BK channels and evoke vasodilation remain unknown. We performed a chemical structure database similarity search using LCA as a template, along with a two-step reaction to generate sodium 3-hydroxyolean-12-en-30-oate (HENA). HENA activated the BK (cbv1 + ß1) channels cloned from rat cerebral artery myocytes with a potency (EC50 = 53 µM) similar to and an efficacy (×2.5 potentiation) significantly greater than that of LCA. This HENA action was replicated on native channels in rat cerebral artery myocytes. HENA failed to activate the channels made of cbv1 + ß2, ß3, ß4, or ß1T169A, indicating that this drug selectively targets ß1-containing BK channels via the BK ß1 steroid-sensing site. HENA (3-45 µM) dilated the rat and C57BL/6 mouse pressurized cerebral arteries. Consistent with the electrophysiologic results, this effect was larger than that of LCA. HENA failed to dilate the arteries from the KCNMB1 knockout mouse, underscoring BK ß1's role in HENA action. Finally, carotid artery-infusion of HENA (45 µM) dilated the pial cerebral arterioles via selective BK-channel targeting. In conclusion, we have identified for the first time a nonsteroidal agent that selectively activates ß1-containing BK channels by targeting the steroid-sensing site in BK ß1, rendering vasodilation.


Asunto(s)
Arterias Cerebrales/efectos de los fármacos , Colanos/farmacología , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Esteroides/farmacología , Vasodilatación/efectos de los fármacos , Animales , Arterias Cerebrales/metabolismo , Colanos/química , Femenino , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/química , Ácido Litocólico/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Ratas , Ratas Sprague-Dawley , Esteroides/química , Xenopus laevis
10.
J Physiol ; 590(11): 2709-20, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22508960

RESUMEN

Hydrogen sulfide (H2S) is a gaseous vasodilator produced by endothelial cells. Mechanisms by which H2S induces vasodilatation are unclear. We tested the hypothesis that H2S dilates cerebral arterioles by modulating local and global intracellular Ca²âº signals in smooth muscle cells. High-speed confocal imaging revealed that Na2S, an H2S donor, increased Ca²âº spark frequency ∼1.43-fold and decreased global intracellular Ca²âº concentration ([Ca²âº]i) by ∼37 nM in smooth muscle cells of intact piglet cerebral arterioles. In contrast, H2S did not alter Ca²âº wave frequency. In voltage-clamped (-40 mV) cells, H2S increased the frequency of iberiotoxin-sensitive, Ca²âº spark-induced transient Ca²âº-activated K⁺ (KCa) currents ∼1.83-fold, but did not alter the amplitude of these events. H2S did not alter the activity of single KCa channels recorded in the absence of Ca²âº sparks in arteriole smooth muscle cells. H2S increased SR Ca²âº load ([Ca²âº]SR), measured as caffeine (10 and 20mM)-induced [Ca²âº]i transients, ∼1.5-fold. H2S hyperpolarized (by ∼18 mV) and dilated pressurized (40 mmHg) cerebral arterioles. Iberiotoxin, a KCa channel blocker, reduced H2S-induced hyperpolarization by ∼51%. Iberiotoxin and ryanodine, a ryanodine receptor channel inhibitor, reduced H2S-induced vasodilatation by ∼38 and ∼37%, respectively. In summary, our data indicate that H2S elevates [Ca²âº]SR, leading to Ca²âº spark activation in cerebral arteriole smooth muscle cells. The subsequent elevation in transient KCa current frequency leads to membrane hyperpolarization, a reduction in global [Ca²âº]i and vasodilatation.


Asunto(s)
Encéfalo/irrigación sanguínea , Calcio/fisiología , Sulfuro de Hidrógeno/farmacología , Miocitos del Músculo Liso/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Animales , Arteriolas/efectos de los fármacos , Arteriolas/fisiología , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Miocitos del Músculo Liso/fisiología , Canales de Potasio Calcio-Activados/fisiología , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Retículo Sarcoplasmático/fisiología , Porcinos
11.
Am J Physiol Heart Circ Physiol ; 302(11): H2257-66, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22467311

RESUMEN

In newborn pigs, vasodilation of pial arterioles in response to glutamate is mediated via carbon monoxide (CO), a gaseous messenger endogenously produced from heme degradation by a heme oxygenase (HO)-catalyzed reaction. We addressed the hypothesis that ionotropic glutamate receptors (iGluRs), including N-methyl-D-aspartic acid (NMDA)- and 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid (AMPA)/kainate-type receptors, expressed in cortical astrocytes mediate glutamate-induced astrocyte HO activation that leads to cerebral vasodilation. Acute vasoactive effects of topical iGluR agonists were determined by intravital microscopy using closed cranial windows in anesthetized newborn pigs. iGluR agonists, including NMDA, (±)1-aminocyclopentane-cis-1,3-dicarboxylic acid (cis-ACPD), AMPA, and kainate, produced pial arteriolar dilation. Topical L-2-aminoadipic acid, a gliotoxin that selectively disrupts glia limitans, reduced vasodilation caused by iGluR agonists, but not by hypercapnia, bradykinin, or sodium nitroprusside. In freshly isolated and cultured cortical astrocytes constitutively expressing HO-2, iGluR agonists NMDA, cis-ACPD, AMPA, and kainate rapidly increased CO production two- to threefold. Astrocytes overexpressing inducible HO-1 had high baseline CO but were less sensitive to glutamate stimulation of CO production when compared with HO-2-expressing astrocytes. Glutamate-induced astrocyte HO-2-mediated CO production was inhibited by either the NMDA receptor antagonist (R)-3C4HPG or the AMPA/kainate receptor antagonist DNQX. Accordingly, either antagonist abolished pial arteriolar dilation in response to glutamate, NMDA, and AMPA, indicating functional interaction among various subtypes of astrocytic iGluRs in response to glutamate stimulation. Overall, these data indicate that the astrocyte component of the neurovascular unit is responsible for the vasodilation response of pial arterioles to topically applied glutamate via iGluRs that are functionally linked to activation of constitutive HO in newborn piglets.


Asunto(s)
Arteriolas/efectos de los fármacos , Astrocitos/metabolismo , Monóxido de Carbono/metabolismo , Circulación Cerebrovascular/fisiología , Glutamatos/farmacología , Receptores de Glutamato/metabolismo , Vasodilatación/efectos de los fármacos , Animales , Animales Recién Nacidos , Arteriolas/fisiología , Astrocitos/citología , Astrocitos/efectos de los fármacos , Células Cultivadas , Femenino , Hemo Oxigenasa (Desciclizante)/metabolismo , Técnicas In Vitro , Ácido Kaínico/farmacología , Masculino , Modelos Animales , N-Metilaspartato/farmacología , Receptores de Glutamato/efectos de los fármacos , Porcinos , Vasodilatación/fisiología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
12.
Am J Physiol Cell Physiol ; 300(2): C256-65, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21123734

RESUMEN

We investigated the role of reactive oxygen species (ROS) in promoting cell survival during oxidative stress induced by the inflammatory mediator tumor necrosis factor-α (TNF-α) in cerebral microvascular endothelial cells (CMVEC) from newborn piglets. Nox4 is the major isoform of NADPH oxidase responsible for TNF-α-induced oxidative stress and apoptosis in CMVEC. We present novel data that Nox4 NADPH oxidase-derived ROS also initiate a cell survival mechanism by increasing production of a gaseous antioxidant mediator carbon monoxide (CO) by constitutive heme oxygenase-2 (HO-2). TNF-α rapidly enhanced endogenous CO production in a superoxide- and NADPH oxidase-dependent manner in CMVEC with innate, but not with small interfering RNA (siRNA)-downregulated Nox4 activity. CORM-A1, a CO-releasing compound, inhibited Nox4-mediated ROS production and enhanced cell survival in TNF-α-challenged CMVEC. The ROS-induced CO-mediated survival mechanism requires functional interactions between the protein kinase B/Akt and extracellular signal-related kinase (ERK)/p38 MAPK signaling pathways activated by TNF-α. In Akt siRNA-transfected CMVEC and in cells with pharmacologically inhibited Akt, Erk1/2, and p38 mitogen-activated protein kinase (MAPK) activities, CORM-A1 was no longer capable of blocking Nox4 activation and apoptosis caused by TNF-α. Overall, Nox4 NADPH oxidase-derived ROS initiate both death and survival pathways in TNF-α-challenged CMVEC. The ROS-dependent cell survival pathway is mediated by an endogenous antioxidant CO, which inhibits Nox4 activation via a mechanism that includes Akt, ERK1/2, and p38 MAPK signaling pathways. The ability of CO to inhibit TNF-α-induced ERK1/2 and p38 MAPK activities in an Akt-dependent manner appears to be the key element in ROS-dependent survival of endothelial cells during TNF-α-mediated brain inflammatory disease.


Asunto(s)
Apoptosis , Encéfalo/metabolismo , Monóxido de Carbono/metabolismo , Células Endoteliales/metabolismo , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Animales Recién Nacidos , Boranos/administración & dosificación , Encéfalo/efectos de los fármacos , Carbonatos/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Humanos , Isoenzimas/metabolismo , Microvasos/efectos de los fármacos , Microvasos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Porcinos/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
Am J Physiol Heart Circ Physiol ; 301(6): H2482-7, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21984542

RESUMEN

Arachidonic acid (AA) and prostaglandin (PG) E(2) stimulate carbon monoxide (CO) production, and AA metabolism is known to be associated with the generation of reactive oxygen species (ROS). This study was conducted to address the hypothesis that CO and/or ROS mediate cerebrovascular dilation in newborn pigs. Experiments were performed on anesthetized newborn pigs with closed cranial windows. Different concentrations of AA (10(-8)-10(-6) M), PGE(2) (10(-8)-10(-6) M), iloprost (10(-8)-10(-6) M), and their vehicle (artificial cerebrospinal fluid) were given. Piglets with PGE(2) and iloprost received indomethacin (5 mg/kg iv) to inhibit cyclooxygenase. AA, PGE(2), and iloprost caused concentration-dependent increases in pial arteriolar diameter. The effects of both AA and PGE(2) in producing cerebral vascular dilation and associated CO production were blocked by the heme oxygenase inhibitor chromium mesoporphyrin (2 × 10(-5) M), but not by the prostacyclin analog, iloprost. ROS inhibitor tempol (SOD mimetic) (1 × 10(-5) M) and the H(2)O(2) scavenger catalase (1,000 U/ml) also do not block these vasodilator effects of AA and PGE(2). Heme-L-lysinate-induced cerebrovascular dilation and CO production was blocked by chromium mesoporphyrin. Hypoxanthine plus xanthine oxidase, a combination that is known to generate ROS, caused pial arteriolar dilation and CO production that was inhibited by tempol and catalase. These data suggest that AA- and PGE(2)-induced cerebral vascular dilation is mediated by CO, independent of ROS.


Asunto(s)
Ácido Araquidónico/metabolismo , Monóxido de Carbono/metabolismo , Dinoprostona/metabolismo , Piamadre/irrigación sanguínea , Especies Reactivas de Oxígeno/metabolismo , Vasodilatación , Administración Tópica , Animales , Animales Recién Nacidos , Antioxidantes/administración & dosificación , Arteriolas/efectos de los fármacos , Arteriolas/metabolismo , Inhibidores de la Ciclooxigenasa/administración & dosificación , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/administración & dosificación , Hemo Oxigenasa (Desciclizante)/antagonistas & inhibidores , Hemo Oxigenasa (Desciclizante)/metabolismo , Transducción de Señal , Porcinos , Vasodilatación/efectos de los fármacos , Vasodilatadores/administración & dosificación , Xantina Oxidasa/metabolismo
14.
Am J Physiol Heart Circ Physiol ; 301(1): H1-H11, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21498777

RESUMEN

Carbon monoxide (CO) is produced by heme oxygenase (HO)-catalyzed heme degradation to CO, iron, and biliverdin. HO has two active isoforms, HO-1 (inducible) and HO-2 (constitutive). HO-2, but not HO-1, is highly expressed in endothelial and smooth muscle cells and in adjacent astrocytes in the brain. HO-1 is expressed basally only in the spleen and liver but can be induced to a varying extent in most tissues. Elevating heme, protein phosphorylation, Ca(2+) influx, and Ca(2+)/calmodulin-dependent processes increase HO-2 activity. CO dilates cerebral arterioles and may constrict or dilate skeletal muscle and renal arterioles. Selected vasodilatory stimuli, including seizures, glutamatergic stimulation, hypoxia, hypotension, and ADP, increase CO, and the inhibition of HO attenuates the dilation to these stimuli. Astrocytic HO-2-derived CO causes glutamatergic dilation of pial arterioles. CO dilates by activating smooth muscle cell large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels. CO binds to BK(Ca) channel-bound heme, leading to an increase in Ca(2+) sparks-to-BK(Ca) channel coupling. Also, CO may bind directly to the BK(Ca) channel at several locations. Endothelial nitric oxide and prostacyclin interact with HO/CO in circulatory regulation. In cerebral arterioles in vivo, in contrast to dilation to acute CO, a prolonged exposure of cerebral arterioles to elevated CO produces progressive constriction by inhibiting nitric oxide synthase. The HO/CO system is highly protective to the vasculature. CO suppresses apoptosis and inhibits components of endogenous oxidant-generating pathways. Bilirubin is a potent reactive oxygen species scavenger. Still many questions remain about the physiology and biochemistry of HO/CO in the circulatory system and about the function and dysfunction of this gaseous mediator system.


Asunto(s)
Vasos Sanguíneos/fisiología , Monóxido de Carbono/fisiología , Fenómenos Fisiológicos Cardiovasculares , Animales , Vasos Sanguíneos/metabolismo , Monóxido de Carbono/metabolismo , Circulación Cerebrovascular/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Hemo Oxigenasa (Desciclizante)/biosíntesis , Hemo Oxigenasa (Desciclizante)/genética , Hemo-Oxigenasa 1/biosíntesis , Hemo-Oxigenasa 1/genética , Humanos , Vasodilatación/fisiología
15.
Am J Physiol Heart Circ Physiol ; 301(2): H428-33, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21572018

RESUMEN

Glutamate-stimulated, astrocyte-derived carbon monoxide (CO) causes cerebral arteriole dilation by activating smooth muscle cell large-conductance Ca(2+)-activated K(+) channels. Here, we examined the hypothesis that glutamate activates heme oxygenase (HO)-2 and CO production via the intracellular Ca(2+) concentration ([Ca(2+)](i))/Ca(2+)-calmodulin signaling pathway in newborn pig astrocytes. The major findings are: 1) glutamate stimulated Ca(2+) transients and increased steady-state [Ca(2+)](i) in cerebral cortical astrocytes in primary culture, 2) in astrocytes permeabilized with ionomycin, elevation of [Ca(2+)](i) concentration-dependently increased CO production, 3) glutamate did not affect CO production at any [Ca(2+)](i) when the [Ca(2+)](i) was held constant, 4) thapsigargin, a sarco/endoplasmic reticulum Ca(2+)-ATPase blocker, decreased basal CO production and blocked glutamate-induced increases in CO, and 5) calmidazolium, a calmodulin inhibitor, blocked CO production induced by glutamate and by [Ca(2+)](i) elevation. Taken together, our data are consistent with the hypothesis that glutamate elevates [Ca(2+)](i) in astrocytes, leading to Ca(2+)- and calmodulin-dependent HO-2 activation, and CO production.


Asunto(s)
Astrocitos/metabolismo , Señalización del Calcio , Monóxido de Carbono/metabolismo , Ácido Glutámico/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Calmodulina/antagonistas & inhibidores , Calmodulina/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Hemo Oxigenasa (Desciclizante)/metabolismo , Imidazoles/farmacología , Ionomicina/farmacología , Ionóforos/farmacología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Porcinos , Tapsigargina/farmacología , Factores de Tiempo , Regulación hacia Arriba
16.
Am J Physiol Heart Circ Physiol ; 300(2): H440-7, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21131483

RESUMEN

Hydrogen sulfide (H2S) is a gaseous signaling molecule that appears to be involved in numerous biological processes, including regulation of blood pressure and vascular tone. The present study is designed to address the hypothesis that H2S is a functionally significant, endogenous dilator in the newborn cerebrovascular circulation. In vivo experiments were conducted using newborn pigs with surgically implanted, closed, cranial windows. Topical application of H2S concentration-dependently (10(-6) to 2×10(-4) M) dilated pial arterioles. This dilation was blocked by glibenclamide (10(-6) M). L-cysteine, the substrate of the H2S-producing enzymes cystathionine γ-lyase (CSE) and cystathionine ß-synthase (CBS), also dilated pial arterioles. The dilation to L-cysteine was blocked by the CSE inhibitor d,l-propargylglycine (PPG, 10 mM) but was unaffected by the CBS inhibitor amino-oxyacetate (AOA, 1 mM). Western blots detected CSE, but not CBS, in cerebral microvessels, whereas CBS is detected in brain parenchyma. Immunohistological CSE expression is predominantly vascular while CBS is expressed mainly in neurons and astrocytes. L-cysteine (5 mM) increased H2S concentration in cerebrospinal fluid (CSF), measured by GC-MS, from 561±205 to 2,783±818 nM before but not during treatment with PPG (1,030±70 to 622±78 nM). Dilation to hypercapnia was inhibited by PPG but not AOA. Hypercapnia increased CSF H2S concentration from 763±243 to 4,337±1789 nM before but not during PPG treatment (357±178 vs. 425±217 nM). These data show that H2S is a dilator of the newborn cerebral circulation and that endogenous CSE can produce sufficient H2S to decrease vascular tone. H2S appears to be a physiologically significant dilator in the cerebral circulation.


Asunto(s)
Animales Recién Nacidos/fisiología , Capilares/efectos de los fármacos , Circulación Cerebrovascular/efectos de los fármacos , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Músculo Liso Vascular/efectos de los fármacos , Animales , Arteriolas/efectos de los fármacos , Arteriolas/fisiología , Química Encefálica/fisiología , Cisteína/farmacología , Gliburida/farmacología , Hipercapnia/fisiopatología , Hipoxia/fisiopatología , Inmunohistoquímica , Isoproterenol/farmacología , Canales KATP/antagonistas & inhibidores , Tono Muscular/efectos de los fármacos , Nitroprusiato/farmacología , Porcinos , Vasodilatación/efectos de los fármacos
17.
Am J Physiol Heart Circ Physiol ; 300(6): H2088-95, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21421823

RESUMEN

Hydrogen sulfide (H(2)S) is a gaseous signaling molecule that appears to contribute to the regulation of vascular tone and blood pressure. Multiple potential mechanisms of vascular regulation by H(2)S exist. Here, we tested the hypothesis that piglet cerebral arteriole smooth muscle cells generate ATP-sensitive K(+) (K(ATP)) currents and that H(2)S induces vasodilation by activating K(ATP) currents. Gas chromatography/mass spectrometry data demonstrated that after placing Na(2)S, an H(2)S donor, in solution, it rapidly (1 min) converts to H(2)S. Patch-clamp electrophysiology indicated that pinacidil (a K(ATP) channel activator), Na(2)S, and NaHS (another H(2)S donor) activated K(+) currents at physiological steady-state voltage (-50 mV) in isolated cerebral arteriole smooth muscle cells. Glibenclamide, a selective K(ATP) channel inhibitor, fully reversed pinacidil-induced K(+) currents and partially reversed (∼58%) H(2)S-induced K(+) currents. Western blot analysis indicated that piglet arterioles expressed inwardly rectifying K(+) 6.1 (K(ir)6.1) channel and sulfonylurea receptor 2B (SUR2B) K(ATP) channel subunits. Pinacidil dilated pressurized (40 mmHg) piglet arterioles, and glibenclamide fully reversed this effect. Na(2)S also induced reversible and repeatable vasodilation with an EC(50) of ∼30 µM, and this effect was partially reversed (∼55%) by glibenclamide. Vasoregulation by H(2)S was also studied in pressurized resistance-size cerebral arteries of mice with a genetic deletion in the gene encoding SUR2 (SUR2 null). Pinacidil- and H(2)S-induced vasodilations were smaller in arterioles of SUR2 null mice than in wild-type controls. These data indicate that smooth muscle cell K(ATP) currents control newborn cerebral arteriole contractility and that H(2)S dilates cerebral arterioles by activating smooth muscle cell K(ATP) channels containing SUR2 subunits.


Asunto(s)
Membrana Celular/metabolismo , Arterias Cerebrales/efectos de los fármacos , Sulfuro de Hidrógeno/farmacología , Canales KATP/metabolismo , Músculo Liso Vascular/metabolismo , Vasodilatación/efectos de los fármacos , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Arteriolas/efectos de los fármacos , Arteriolas/fisiología , Arterias Cerebrales/fisiología , Femenino , Gliburida/farmacología , Canales KATP/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Técnicas de Placa-Clamp , Pinacidilo/farmacología , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Receptores de Droga/genética , Receptores de Droga/metabolismo , Receptores de Sulfonilureas , Porcinos , Vasodilatación/fisiología , Vasodilatadores/farmacología
18.
Am J Physiol Heart Circ Physiol ; 298(6): H1687-98, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20363895

RESUMEN

Circulating endothelial cells (CECs) are nonhematopoetic mononuclear cells in peripheral blood that are dislodged from injured vessels during cardiovascular disease, systemic vascular disease, and inflammation. Their occurrence during cerebrovascular insults has not been previously described. Epileptic seizures cause the long-term loss of cerebrovascular endothelial dilator function. We hypothesized that seizures cause endothelial sloughing from cerebral vessels and the appearance of brain-derived CECs (BCECs), possible early indicators of cerebral vascular damage. Epileptic seizures were induced by bicuculline in newborn pigs; venous blood was then sampled during a 4-h period. CECs were identified in the fraction of peripheral blood mononuclear cells by the expression of endothelial antigens (CD146, CD31, and endothelial nitric oxide synthase) and by Ulex europeaus lectin binding. In control animals, few CECs were detected. Seizures caused a time-dependent increase in CECs 2-4 h after seizure onset. Seizure-induced CECs coexpress glucose transporter-1, a blood-brain barrier-specific glucose transporter, indicating that these cells originate in the brain vasculature and are thus BCECs. Seizure-induced BCECs cultured in EC media exhibited low proliferative potential and abnormal cell contacts. BCEC appearance during seizures was blocked by a CO-releasing molecule (CORM-A1) or cobalt protoporphyrin (heme oxygenase-1 inducer), which prevented apoptosis in cerebral arterioles and the loss of cerebral vascular endothelial function during the late postictal period. These findings suggest that seizure-induced BCECs are injured ECs dislodged from cerebral microvessels during seizures. The correlation between the appearance of BCECs in peripheral blood, apoptosis in cerebral vessels, and the loss of postictal cerebral vascular function suggests that BCECs are early indicators of late cerebral vascular damage.


Asunto(s)
Arterias Cerebrales/patología , Trastornos Cerebrovasculares/sangre , Trastornos Cerebrovasculares/diagnóstico , Endotelio Vascular/patología , Epilepsia/sangre , Microvasos/patología , Animales , Apoptosis/fisiología , Bicuculina/efectos adversos , Antígeno CD146/metabolismo , Comunicación Celular/fisiología , Proliferación Celular , Células Cultivadas , Trastornos Cerebrovasculares/etiología , Convulsivantes/efectos adversos , Modelos Animales de Enfermedad , Endotelio Vascular/inmunología , Epilepsia/inducido químicamente , Epilepsia/complicaciones , Femenino , Inmunofenotipificación , Masculino , Valor Predictivo de las Pruebas , Porcinos
19.
Am J Physiol Heart Circ Physiol ; 298(2): H562-9, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19966053

RESUMEN

Glutamate is the principal cerebral excitatory neurotransmitter and dilates cerebral arterioles to match blood flow to neural activity. Arterial contractility is regulated by local and global Ca(2+) signals that occur in smooth muscle cells, but modulation of these signals by glutamate is poorly understood. Here, using high-speed confocal imaging, we measured the Ca(2+) signals that occur in arteriole smooth muscle cells of newborn piglet tangential brain slices, studied signal regulation by glutamate, and investigated the physiological function of heme oxygenase (HO) and carbon monoxide (CO) in these responses. Glutamate elevated Ca(2+) spark frequency by approximately 188% and reduced global intracellular Ca(2+) concentration ([Ca(2+)](i)) to approximately 76% of control but did not alter Ca(2+) wave frequency in brain arteriole smooth muscle cells. Isolation of cerebral arterioles from brain slices abolished glutamate-induced Ca(2+) signal modulation. In slices treated with l-2-alpha-aminoadipic acid, a glial toxin, glutamate did not alter Ca(2+) sparks or global [Ca(2+)](i) but did activate Ca(2+) waves. This shift in Ca(2+) signal modulation by glutamate did not occur in slices treated with d-2-alpha-aminoadipic acid, an inactive isomer of l-2-alpha-aminoadipic acid. In the presence of chromium mesoporphyrin, a HO blocker, glutamate inhibited Ca(2+) sparks and Ca(2+) waves and did not alter global [Ca(2+)](i). In isolated arterioles, CORM-3 [tricarbonylchloro(glycinato)ruthenium(II)], a CO donor, activated Ca(2+) sparks and reduced global [Ca(2+)](i). These effects were blocked by 1H-(1,2,4)-oxadiazolo-(4,3-a)-quinoxalin-1-one, a soluble guanylyl cyclase inhibitor. Collectively, these data indicate that glutamate can modulate Ca(2+) sparks, Ca(2+) waves, and global [Ca(2+)](i) in arteriole smooth muscle cells via mechanisms that require astrocytes and HO. These data also indicate that soluble guanylyl cyclase is involved in CO activation of Ca(2+) sparks in arteriole smooth muscle cells.


Asunto(s)
Arteriolas/metabolismo , Astrocitos/metabolismo , Encéfalo/irrigación sanguínea , Señalización del Calcio/fisiología , Ácido Glutámico/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Músculo Liso Vascular/metabolismo , Animales , Animales Recién Nacidos , Arteriolas/citología , Arteriolas/efectos de los fármacos , Astrocitos/citología , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Monóxido de Carbono/metabolismo , Comunicación Celular , Hemo Oxigenasa (Desciclizante)/antagonistas & inhibidores , Mesoporfirinas/farmacología , Modelos Animales , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Compuestos Organometálicos/farmacología , Porcinos
20.
Am J Physiol Heart Circ Physiol ; 299(1): H70-5, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20435844

RESUMEN

Carbon monoxide (CO) causes cerebral arteriolar dilation in newborn pigs by the activation of large-conductance Ca(2+)-activated K(+) channels. In adult rat cerebral and skeletal muscle arterioles, CO has been reported to produce constriction caused by the inhibition of nitric oxide (NO) synthase (NOS). We hypothesized that, in contrast to dilation to acute CO, more prolonged exposure of newborn cerebral arterioles to elevated CO produces constriction by reducing NO. In piglets with closed cranial windows, pial arteriolar responses to isoproterenol (10(-6) M), sodium nitroprusside (SNP; 10(-7) and 3 x 10(-7) M), and L-arginine ethyl ester (L-Arg; 10(-5) and 10(-4) M) were determined before and after 2 h of treatment with CO. CO (10(-7) M) caused transient dilation and had no further effects. CO (2 x 10(-7) and 10(-6) M) initially caused vasodilation, but over the 2-h exposure, pial arterioles constricted and removal of the CO caused dilation. Exposure to elevated CO (2 h) did not alter dilation to SNP or isoproterenol. Conversely, the NOS substrate L-Arg caused dilation before CO that was progressively lost over 90 min of elevated CO. If NO was held constant, CO caused dilation that was sustained for 2 h. We conclude that in neonates, cerebral arteriole responses to CO are biphasic: dilation to acute elevation with subsequent constriction from NOS inhibition after more prolonged exposure. As a result, short episodic production of CO allows function as a dilator gasotransmitter, whereas prolonged elevation can reduce NO to elevate cerebrovascular tone. The interaction between heme oxygenase/CO and NOS/NO could form a negative feedback system in the control of cerebral vascular tone.


Asunto(s)
Monóxido de Carbono/farmacología , Circulación Cerebrovascular/efectos de los fármacos , Piamadre/irrigación sanguínea , Vasoconstricción/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Animales , Animales Recién Nacidos , Arginina/análogos & derivados , Arginina/farmacología , Arteriolas/efectos de los fármacos , Arteriolas/metabolismo , Relación Dosis-Respuesta a Droga , Retroalimentación Fisiológica , Isoproterenol/farmacología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Nitroprusiato/farmacología , Canales de Potasio Calcio-Activados/metabolismo , Porcinos , Factores de Tiempo , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA