Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
2.
BMC Genomics ; 21(1): 20, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31906850

RESUMEN

BACKGROUND: The domestic cat (Felis catus) is an important companion animal and is used as a large animal model for human disease. However, the comprehensive study of adaptive immunity in this species is hampered by the lack of data on lymphocyte antigen receptor genes and usage. The objectives of this study were to annotate the feline T cell receptor (TR) loci and to characterize the expressed repertoire in lymphoid organs of normal cats using high-throughput sequencing. RESULTS: The Felis catus TRG locus contains 30 genes: 12 TRGV, 12 TRGJ and 6 TRGC, the TRB locus contains 48 genes: 33 TRBV, 2 TRBD, 11 TRBJ, 2 TRBC, the TRD locus contains 19 genes: 11 TRDV, 2 TRDD, 5 TRDJ, 1 TRDC, and the TRA locus contains 127 genes: 62 TRAV, 64 TRAJ, 1 TRAC. Functional feline V genes form monophyletic clades with their orthologs, and clustering of multimember subgroups frequently occurs in V genes located at the 5' end of TR loci. Recombination signal (RS) sequences of the heptamer and nonamer of functional V and J genes are highly conserved. Analysis of the TRG expressed repertoire showed preferential intra-cassette over inter-cassette rearrangements and dominant usage of the TRGV2-1 and TRGJ1-2 genes. The usage of TRBV genes showed minor bias but TRBJ genes of the second J-C-cluster were more commonly rearranged than TRBJ genes of the first cluster. The TRA/TRD V genes almost exclusively rearranged to J genes within their locus. The TRAV/TRAJ gene usage was relatively balanced while the TRD repertoire was dominated by TRDJ3. CONCLUSIONS: This is the first description of all TR loci in the cat. The genomic organization of feline TR loci was similar to that of previously described jawed vertebrates (gnathostomata) and is compatible with the birth-and-death model of evolution. The large-scale characterization of feline TR genes provides comprehensive baseline data on immune repertoires in healthy cats and will facilitate the development of improved reagents for the diagnosis of lymphoproliferative diseases in cats. In addition, these data might benefit studies using cats as a large animal model for human disease.


Asunto(s)
Gatos/genética , Sitios Genéticos/genética , Tejido Linfoide/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Inmunidad Adaptativa/genética , Secuencia de Aminoácidos , Animales , Gatos/inmunología , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Filogenia , Receptores de Antígenos de Linfocitos T/clasificación , Homología de Secuencia de Aminoácido
3.
Eur J Immunol ; 49(12): 2146-2158, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31355919

RESUMEN

The rabbit has been widely used in immunology and infectiology. Rabbit immunoglobulins have been extensively studied, leading to the discovery of their idiotypes, allotypic diversity, and of the diversification of the primary repertoire by hyperconversion. Much less is known about rabbit T cell receptors (TR), especially TRA. This isotype is particularly important for innate-like T cells, which typically express invariant TRA (iTRA). The presence of such cells in the rabbit remains an enigma. Rabbit NKT cells seem to be very rare, and lagomorphs lack MAIT cells. TRAV1, the variable gene expressed in the iTRA of these cells across most mammals, and MR1, the MH1-like receptor that present riboflavin derivatives to MAIT cells, are missing in rabbit. An alternative iTRA has been identified, that may be expressed by new innate-like T cells. To facilitate TRA repertoire analyses in rabbit, we report here a full description of TRA and TRD loci and a subgroup definition based on IMGT® classification. Rabbit TRA rearrangements follow the same temporal pattern that is observed in mouse and human. Rare transcripts expressing TRDV/TRDD/TRDJ rearrangements spliced to TRAC were detected. TRA and TRD genes have been made available in IMGT and IMGT/HighV-QUEST, allowing easy analysis of TRA/TRD RepSeq.


Asunto(s)
Sitios Genéticos , Inmunidad Innata/genética , Células T Asesinas Naturales , Receptores de Antígenos de Linfocitos T/genética , Animales , Humanos , Ratones , Conejos , Receptores de Antígenos de Linfocitos T/inmunología
4.
J Pathol ; 247(4): 416-421, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30484876

RESUMEN

The B cell receptor immunoglobulin (Ig) gene repertoires of marginal zone (MZ) lymphoproliferations were analyzed in order to obtain insight into their ontogenetic relationships. Our cohort included cases with MZ lymphomas (n = 488), i.e. splenic (SMZL), nodal (NMZL) and extranodal (ENMZL), as well as provisional entities (n = 76), according to the WHO classification. The most striking Ig gene repertoire skewing was observed in SMZL. However, restrictions were also identified in all other MZ lymphomas studied, particularly ENMZL, with significantly different Ig gene distributions depending on the primary site of involvement. Cross-entity comparisons of the MZ Ig sequence dataset with a large dataset of Ig sequences (MZ-related or not; n = 65 837) revealed four major clusters of cases sharing homologous ('public') heavy variable complementarity-determining region 3. These clusters included rearrangements from SMZL, ENMZL (gastric, salivary gland, ocular adnexa), chronic lymphocytic leukemia, but also rheumatoid factors and non-malignant splenic MZ cells. In conclusion, different MZ lymphomas display biased immunogenetic signatures indicating distinct antigen exposure histories. The existence of rare public stereotypes raises the intriguing possibility that common, pathogen-triggered, immune-mediated mechanisms may result in diverse B lymphoproliferations due to targeting versatile progenitor B cells and/or operating in particular microenvironments. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Genes de Inmunoglobulinas/genética , Linfoma de Células B de la Zona Marginal/genética , Regiones Determinantes de Complementariedad/genética , Reordenamiento Génico de Linfocito B/genética , Genes de las Cadenas Pesadas de las Inmunoglobulinas/genética , Humanos , Región Variable de Inmunoglobulina/genética , Mutación/genética , Receptores de Antígenos de Linfocitos B/genética , Microambiente Tumoral
5.
J Immunol ; 198(10): 3765-3774, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28416603

RESUMEN

Analysis and interpretation of Ig and TCR gene rearrangements in the conventional, low-throughput way have their limitations in terms of resolution, coverage, and biases. With the advent of high-throughput, next-generation sequencing (NGS) technologies, a deeper analysis of Ig and/or TCR (IG/TR) gene rearrangements is now within reach, which impacts on all main applications of IG/TR immunogenetic analysis. To bridge the generation gap from low- to high-throughput analysis, the EuroClonality-NGS Consortium has been formed, with the main objectives to develop, standardize, and validate the entire workflow of IG/TR NGS assays for 1) clonality assessment, 2) minimal residual disease detection, and 3) repertoire analysis. This concerns the preanalytical (sample preparation, target choice), analytical (amplification, NGS), and postanalytical (immunoinformatics) phases. Here we critically discuss pitfalls and challenges of IG/TR NGS methodology and its applications in hemato-oncology and immunology.


Asunto(s)
Hematología/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunogenética/métodos , Técnicas Inmunológicas , Alelos , Biología Computacional/métodos , Reordenamiento Génico , Genes de Inmunoglobulinas , Genes Codificadores de los Receptores de Linfocitos T/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Inmunogenética/normas
6.
Mol Cell Proteomics ; 16(5): 824-839, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28265047

RESUMEN

Immunoglobulin G (IgG) proteins are known for the huge diversity of the variable domains of their heavy and light chains, aimed at protecting each individual against foreign antigens. The IgG also harbor specific polymorphism concentrated in the CH2 and CH3-CHS constant regions located on the Fc fragment of their heavy chains. But this individual particularity relies only on a few amino acids among which some could make accurate sequence determination a challenge for mass spectrometry-based techniques.The purpose of the study was to bring a molecular validation of proteomic results by the sequencing of encoding DNA fragments. It was performed using ten individual samples (DNA and sera) selected on the basis of their Gm (gamma marker) allotype polymorphism in order to cover the main immunoglobulin heavy gamma (IGHG) gene diversity. Gm allotypes, reflecting part of this diversity, were determined by a serological method. On its side, the IGH locus comprises four functional IGHG genes totalizing 34 alleles and encoding the four IgG subclasses. The genomic study focused on the nucleotide polymorphism of the CH2 and CH3-CHS exons and of the intron. Despite strong sequence identity, four pairs of specific gene amplification primers could be designed. Additional primers were identified to perform the subsequent sequencing. The nucleotide sequences obtained were first assigned to a specific IGHG gene, and then IGHG alleles were deduced using a home-made decision tree reading of the nucleotide sequences. IGHG amino acid (AA) alleles were determined by mass spectrometry. Identical results were found at 95% between alleles identified by proteomics and those deduced from genomics. These results validate the proteomic approach which could be used for diagnostic purposes, namely for a mother-and-child differential IGHG detection in a context of suspicion of congenital infection.


Asunto(s)
Cadenas gamma de Inmunoglobulina/genética , Polimorfismo Genético , Proteómica/métodos , Alelos , Niño , Preescolar , Bases de Datos de Proteínas , Femenino , Humanos , Alotipos de Inmunoglobulina Gm , Masculino , Espectrometría de Masas , Péptidos/metabolismo , Análisis de Secuencia de ADN
7.
Proc Natl Acad Sci U S A ; 113(21): E2983-92, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27170188

RESUMEN

Whereas major histocompatibility class-1 (MH1) proteins present peptides to T cells displaying a large T-cell receptor (TR) repertoire, MH1Like proteins, such as CD1D and MR1, present glycolipids and microbial riboflavin precursor derivatives, respectively, to T cells expressing invariant TR-α (iTRA) chains. The groove of such MH1Like, as well as iTRA chains used by mucosal-associated invariant T (MAIT) and natural killer T (NKT) cells, respectively, may result from a coevolution under particular selection pressures. Herein, we investigated the evolutionary patterns of the iTRA of MAIT and NKT cells and restricting MH1Like proteins: MR1 appeared 170 Mya and is highly conserved across mammals, evolving more slowly than other MH1Like. It has been pseudogenized or independently lost three times in carnivores, the armadillo, and lagomorphs. The corresponding TRAV1 gene also evolved slowly and harbors highly conserved complementarity determining regions 1 and 2. TRAV1 is absent exclusively from species in which MR1 is lacking, suggesting that its loss released the purifying selection on MR1. In the rabbit, which has very few NKT and no MAIT cells, a previously unrecognized iTRA was identified by sequencing leukocyte RNA. This iTRA uses TRAV41, which is highly conserved across several groups of mammals. A rabbit MH1Like gene was found that appeared with mammals and is highly conserved. It was independently lost in a few groups in which MR1 is present, like primates and Muridae, illustrating compensatory emergences of new MH1Like/Invariant T-cell combinations during evolution. Deciphering their role is warranted to search similar effector functions in humans.


Asunto(s)
Regiones Determinantes de Complementariedad , Evolución Molecular , Antígenos de Histocompatibilidad Clase I , Receptores de Antígenos de Linfocitos T alfa-beta , Linfocitos T/inmunología , Animales , Gatos , Regiones Determinantes de Complementariedad/genética , Regiones Determinantes de Complementariedad/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Conejos , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología
8.
Immunogenetics ; 70(4): 223-236, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28924718

RESUMEN

Dogs are an excellent model for human disease. For example, the treatment of canine lymphoma has been predictive of the human response to that treatment. However, an incomplete picture of canine (Canis lupus familiaris) immunoglobulin (IG) and T cell receptor (TR)-or antigen receptor (AR)-gene loci has restricted their utility. This work advances the annotation of the canine AR loci and looks into breed-specific features of the loci. Bioinformatic analysis of unbiased RNA sequence data was used to complete the annotation of the canine AR genes. This annotation was used to query 107 whole genome sequences from 19 breeds and identified over 5500 alleles across the 550 genes of the seven AR loci: the IG heavy, kappa, and lambda loci; and the TR alpha, beta, gamma, and delta loci. Of note was the discovery that half of the IGK variable (V) genes were located downstream of, and inverted with respect to, the rest of the locus. Analysis of the germline sequences of all the AR V genes identified greater conservation between dog and human than mouse with either. This work brings our understanding of the genetic diversity and expression of AR in dogs to the same completeness as that of mice and men, making it the third species to have all AR loci comprehensively and accurately annotated. The large number of germline sequences serves as a reference for future studies, and has allowed statistically powerful conclusions to be drawn on the pressures that have shaped these loci.


Asunto(s)
Perros/genética , Evolución Molecular , Inmunoglobulinas/genética , Receptores de Antígenos de Linfocitos T/genética , Alelos , Animales , Biología Computacional/métodos , Perros/clasificación , Femenino , Frecuencia de los Genes , Humanos , Inmunoglobulinas/clasificación , Masculino , Ratones , Anotación de Secuencia Molecular , Filogenia , Receptores de Antígenos de Linfocitos T/clasificación , Especificidad de la Especie
9.
BMC Immunol ; 18(1): 35, 2017 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-28651553

RESUMEN

BACKGROUND: IMGT®, the international ImMunoGeneTics information system® ( http://www.imgt.org ), was created in 1989 in Montpellier, France (CNRS and Montpellier University) to manage the huge and complex diversity of the antigen receptors, and is at the origin of immunoinformatics, a science at the interface between immunogenetics and bioinformatics. Immunoglobulins (IG) or antibodies and T cell receptors (TR) are managed and described in the IMGT® databases and tools at the level of receptor, chain and domain. The analysis of the IG and TR variable (V) domain rearranged nucleotide sequences is performed by IMGT/V-QUEST (online since 1997, 50 sequences per batch) and, for next generation sequencing (NGS), by IMGT/HighV-QUEST, the high throughput version of IMGT/V-QUEST (portal begun in 2010, 500,000 sequences per batch). In vitro combinatorial libraries of engineered antibody single chain Fragment variable (scFv) which mimic the in vivo natural diversity of the immune adaptive responses are extensively screened for the discovery of novel antigen binding specificities. However the analysis of NGS full length scFv (~850 bp) represents a challenge as they contain two V domains connected by a linker and there is no tool for the analysis of two V domains in a single chain. METHODS: The functionality "Analyis of single chain Fragment variable (scFv)" has been implemented in IMGT/V-QUEST and, for NGS, in IMGT/HighV-QUEST for the analysis of the two V domains of IG and TR scFv. It proceeds in five steps: search for a first closest V-REGION, full characterization of the first V-(D)-J-REGION, then search for a second V-REGION and full characterization of the second V-(D)-J-REGION, and finally linker delimitation. RESULTS: For each sequence or NGS read, positions of the 5'V-DOMAIN, linker and 3'V-DOMAIN in the scFv are provided in the 'V-orientated' sense. Each V-DOMAIN is fully characterized (gene identification, sequence description, junction analysis, characterization of mutations and amino changes). The functionality is generic and can analyse any IG or TR single chain nucleotide sequence containing two V domains, provided that the corresponding species IMGT reference directory is available. CONCLUSION: The "Analysis of single chain Fragment variable (scFv)" implemented in IMGT/V-QUEST and, for NGS, in IMGT/HighV-QUEST provides the identification and full characterization of the two V domains of full-length scFv (~850 bp) nucleotide sequences from combinatorial libraries. The analysis can also be performed on concatenated paired chains of expressed antigen receptor IG or TR repertoires.


Asunto(s)
Inmunogenética/métodos , Inmunoglobulinas/genética , Receptores de Antígenos de Linfocitos T/genética , Anticuerpos de Cadena Única/genética , Inmunidad Adaptativa/genética , Animales , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Programas Informáticos
10.
Blood ; 125(5): 856-9, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25634617

RESUMEN

An unresolved issue in chronic lymphocytic leukemia (CLL) is whether IGHV3-21 gene usage, in general, or the expression of stereotyped B-cell receptor immunoglobulin defining subset #2 (IGHV3-21/IGLV3-21), in particular, determines outcome for IGHV3-21-utilizing cases. We reappraised this issue in 8593 CLL patients of whom 437 (5%) used the IGHV3-21 gene with 254/437 (58%) classified as subset #2. Within subset #2, immunoglobulin heavy variable (IGHV)-mutated cases predominated, whereas non-subset #2/IGHV3-21 was enriched for IGHV-unmutated cases (P = .002). Subset #2 exhibited significantly shorter time-to-first-treatment (TTFT) compared with non-subset #2/IGHV3-21 (22 vs 60 months, P = .001). No such difference was observed between non-subset #2/IGHV3-21 vs the remaining CLL with similar IGHV mutational status. In conclusion, IGHV3-21 CLL should not be axiomatically considered a homogeneous entity with adverse prognosis, given that only subset #2 emerges as uniformly aggressive, contrasting non-subset #2/IGVH3-21 patients whose prognosis depends on IGHV mutational status as the remaining CLL.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Reordenamiento Génico de Cadena Pesada de Linfocito B/inmunología , Cadenas Pesadas de Inmunoglobulina/genética , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/genética , Anciano , Antineoplásicos/uso terapéutico , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos B/patología , Femenino , Heterogeneidad Genética , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/mortalidad , Masculino , Persona de Mediana Edad , Pronóstico , Hipermutación Somática de Inmunoglobulina , Análisis de Supervivencia , Tiempo de Tratamiento , Resultado del Tratamiento
11.
Nucleic Acids Res ; 43(Database issue): D413-22, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25378316

RESUMEN

IMGT(®), the international ImMunoGeneTics information system(®)(http://www.imgt.org) is the global reference in immunogenetics and immunoinformatics. By its creation in 1989 by Marie-Paule Lefranc (Université de Montpellier and CNRS), IMGT(®) marked the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. IMGT(®) is specialized in the immunoglobulins (IG) or antibodies, T cell receptors (TR), major histocompatibility (MH) and proteins of the IgSF and MhSF superfamilies. IMGT(®) is built on the IMGT-ONTOLOGY axioms and concepts, which bridged the gap between genes, sequences and 3D structures. The concepts include the IMGT(®) standardized keywords (identification), IMGT(®) standardized labels (description), IMGT(®) standardized nomenclature (classification), IMGT unique numbering and IMGT Colliers de Perles (numerotation). IMGT(®) comprises 7 databases, 17 online tools and 15,000 pages of web resources, and provides a high-quality and integrated system for analysis of the genomic and expressed IG and TR repertoire of the adaptive immune responses, including NGS high-throughput data. Tools and databases are used in basic, veterinary and medical research, in clinical applications (mutation analysis in leukemia and lymphoma) and in antibody engineering and humanization. The IMGT/mAb-DB interface was developed for therapeutic antibodies and fusion proteins for immunological applications (FPIA). IMGT(®) is freely available at http://www.imgt.org.


Asunto(s)
Bases de Datos Genéticas , Genes de Inmunoglobulinas , Genes Codificadores de los Receptores de Linfocitos T , Antígenos de Histocompatibilidad/química , Inmunoglobulinas/química , Complejo Mayor de Histocompatibilidad , Receptores de Antígenos de Linfocitos T/química , Alelos , Animales , Ontologías Biológicas , Biología Computacional , Antígenos de Histocompatibilidad/genética , Humanos , Inmunogenética , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Internet , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Programas Informáticos
12.
BMC Genomics ; 17(1): 634, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27528257

RESUMEN

BACKGROUND: The bottlenose dolphin (Tursiops truncatus) is a mammal that belongs to the Cetartiodactyla and have lived in marine ecosystems for nearly 60 millions years. Despite its popularity, our knowledge about its adaptive immunity and evolution is very limited. Furthermore, nothing is known about the genomics and evolution of dolphin antigen receptor immunity. RESULTS: Here we report a evolutionary and expression study of Tursiops truncatus T cell receptor gamma (TRG) and alpha/delta (TRA/TRD) genes. We have identified in silico the TRG and TRA/TRD genes and analyzed the relevant mature transcripts in blood and in skin from four subjects. The dolphin TRG locus is the smallest and simplest of all mammalian loci as yet studied. It shows a genomic organization comprising two variable (V1 and V2), three joining (J1, J2 and J3) and a single constant (C), genes. Despite the fragmented nature of the genome assemblies, we deduced the TRA/TRD locus organization, with the recent TRDV1 subgroup genes duplications, as it is expected in artiodactyls. Expression analysis from blood of a subject allowed us to assign unambiguously eight TRAV genes to those annotated in the genomic sequence and to twelve new genes, belonging to five different subgroups. All transcripts were productive and no relevant biases towards TRAV-J rearrangements are observed. Blood and skin from four unrelated subjects expression data provide evidence for an unusual ratio of productive/unproductive transcripts which arise from the TRG V-J gene rearrangement and for a "public" gamma delta TR repertoire. The productive cDNA sequences, shared both in the same and in different individuals, include biases of the TRGV1 and TRGJ2 genes. The high frequency of TRGV1-J2/TRDV1- D1-J4 productive rearrangements in dolphins may represent an interesting oligo-clonal population comparable to that found in human with the TRGV9- JP/TRDV2-D-J T cells and in primates. CONCLUSIONS: Although the features of the TRG and TRA/TRD loci organization reflect those of the so far examined artiodactyls, genomic results highlight in dolphin an unusually simple TRG locus. The cDNA analysis reveal productive TRA/TRD transcripts and unusual ratios of productive/unproductive TRG transcripts. Comparing multiple different individuals, evidence is found for a "public" gamma delta TCR repertoire thus suggesting that in dolphins as in human the gamma delta TCR repertoire is accompanied by selection for public gamma chain.


Asunto(s)
Delfín Mular/genética , Regulación de la Expresión Génica , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Secuencia de Aminoácidos , Animales , Delfín Mular/metabolismo , Perfilación de la Expresión Génica , Sitios Genéticos , Humanos , Datos de Secuencia Molecular , Filogenia , Estructura Secundaria de Proteína , ARN/sangre , ARN/aislamiento & purificación , ARN/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/clasificación , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/clasificación , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Alineación de Secuencia , Piel/metabolismo
13.
Immunogenetics ; 68(6-7): 417-428, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27233955

RESUMEN

Cynomolgus macaques (Macaca fascicularis) have become an important animal model for biomedical research. In particular, it is the animal model of choice for the development of vaccine candidates associated with emerging dangerous pathogens. Despite their increasing importance as animal models, the cynomolgus macaque genome is not fully characterized, hindering molecular studies for this model. More importantly, the lack of knowledge about the immunoglobulin (IG) locus organization directly impacts the analysis of the humoral response in cynomolgus macaques. Recent advances in next generation sequencing (NGS) technologies to analyze IG repertoires open the opportunity to deeply characterize the humoral immune response. However, the IG locus organization for the animal is required to completely dissect IG repertoires. Here, we describe the localization and organization of the rearranging IG heavy (IGH) genes on chromosome 7 of the cynomolgus macaque draft genome. Our annotation comprises 108 functional genes which include 63 variable (IGHV), 38 diversity (IGHD), and 7 joining (IGHJ) genes. For validation, we provide RNA transcript data for most of the IGHV genes and all of the annotated IGHJ genes, as well as proteomic data to validate IGH constant genes. The description and annotation of the rearranging IGH genes for the cynomolgus macaques will significantly facilitate scientific research. This is particularly relevant to dissect the immune response during vaccination or infection with dangerous pathogens such as Ebola, Marburg and other emerging pathogens where non-human primate models play a significant role for countermeasure development.


Asunto(s)
Genes de las Cadenas Pesadas de las Inmunoglobulinas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Región Variable de Inmunoglobulina/genética , Macaca fascicularis/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cromatografía Liquida , Genes de las Cadenas Pesadas de las Inmunoglobulinas/inmunología , Genoma , Humanos , Región Variable de Inmunoglobulina/inmunología , Región Variable de Inmunoglobulina/metabolismo , Macaca fascicularis/inmunología , Anotación de Secuencia Molecular , Filogenia , Proteómica , Especificidad de la Especie , Espectrometría de Masas en Tándem
14.
Biochim Biophys Acta ; 1844(11): 2002-2015, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25110827

RESUMEN

More and more antibody therapeutics are being approved every year, mainly due to their high efficacy and antigen selectivity. However, it is still difficult to identify the antigen, and thereby the function, of an antibody if no other information is available. There are obstacles inherent to the antibody science in every project in antibody drug discovery. Recent experimental technologies allow for the rapid generation of large-scale data on antibody sequences, affinity, potency, structures, and biological functions; this should accelerate drug discovery research. Therefore, a robust bioinformatic infrastructure for these large data sets has become necessary. In this article, we first identify and discuss the typical obstacles faced during the antibody drug discovery process. We then summarize the current status of three sub-fields of antibody informatics as follows: (i) recent progress in technologies for antibody rational design using computational approaches to affinity and stability improvement, as well as ab-initio and homology-based antibody modeling; (ii) resources for antibody sequences, structures, and immune epitopes and open drug discovery resources for development of antibody drugs; and (iii) antibody numbering and IMGT. Here, we review "antibody informatics," which may integrate the above three fields so that bridging the gaps between industrial needs and academic solutions can be accelerated. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.

15.
BMC Genomics ; 16: 709, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26383271

RESUMEN

BACKGROUND: In mammals, T cells develop along two discrete pathways characterized by expression of either the αß or the γδ T cell receptors. Human and mouse display a low peripheral blood γδ T cell percentage ("γδ low species") while sheep, bovine and pig accounts for a high proportion of γδ T lymphocytes ("γδ high species"). While the T cell receptor alpha (TRA) and delta (TRD) genes and the genomic organization of the TRA/TRD locus has been determined in human and mouse, this information is still poorly known in artiodactyl species, such as sheep. RESULTS: The analysis of the current Ovis aries whole genome assembly, Oar_v3.1, revealed that, as in the other mammalian species, the sheep TRD locus is nested within the TRA locus. In the most 5' part the TRA/TRD locus contains TRAV genes which are intermingled with TRDV genes, then TRD genes which include seven TRDD, four TRDJ genes, one TRDC and a single TRDV gene with an inverted transcriptional orientation, and finally in the most 3' part, the TRA locus is completed by 61 TRAJ genes and one TRAC gene. Comparative sequence and analysis and annotation led to the identification of 66 TRAV genes assigned to 34 TRAV subgroups and 25 TRDV genes belonging to the TRDV1 subgroup, while one gene was found for each TRDV2, TRDV3 and TRDV4 subgroups. Multiple duplication events within several TRAV subgroups have generated the sheep TRAV germline repertoire, which is substantially larger than the human one. A significant proportion of these TRAV gene duplications seems to have occurred simultaneously with the amplification of the TRDV1 subgroup genes. This dynamic of expansion has also generated novel multigene subgroups, which are species-specific. Ovis aries TRA and TRD genes identified in this study were assigned IMGT definitive or temporary names and were approved by the IMGT/WHO-IUIS nomenclature committee. The completeness of the genome assembly in the 3' part of the locus has allowed us to interpret rearranged CDR3 of cDNA from both TRA and TRD chain repertoires. The involvement of one up to four TRDD genes into a single transcript makes the potential sheep TRD chain much larger than any known TR chain repertoire. CONCLUSIONS: The sheep genome, as the bovine genome, contains a large and diverse repertoire of TRA and TRD genes when compared to the "γδ T cell low" species genomes. The composition and length of the rearranged CDR3 in TRD V-delta domains influence the three-dimensional configuration of the antigen-combining site thus suggesting that in ruminants, γδ T cells play a more important and specific role in immune recognition.


Asunto(s)
Genoma/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Animales , Bovinos , Humanos , Ratones
16.
Immunogenetics ; 67(1): 61-6, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25388851

RESUMEN

Νext generation sequencing studies in Homo sapiens have identified novel immunoglobulin heavy variable (IGHV) genes and alleles necessitating changes in the international ImMunoGeneTics information system (IMGT) GENE-DB and reference directories of IMGT/V-QUEST. In chronic lymphocytic leukaemia (CLL), the somatic hypermutation (SHM) status of the clonotypic rearranged IGHV gene is strongly associated with patient outcome. Correct determination of this parameter strictly depends on the comparison of the nucleotide sequence of the clonotypic rearranged IGHV gene with that of the closest germline counterpart. Consequently, changes in the reference directories could, in principle, affect the correct interpretation of the IGHV mutational status in CLL. To this end, we analyzed 8066 productive IG heavy chain (IGH) rearrangement sequences from our consortium both before and after the latest update of the IMGT/V-QUEST reference directory. Differences were identified in 405 cases (5 % of the cohort). In 291/405 sequences (71.9 %), changes concerned only the IGHV gene or allele name, whereas a change in the percent germline identity (%GI) was noted in 114/405 (28.1 %) sequences; in 50/114 (43.8 %) sequences, changes in the %GI led to a change in the mutational set. In conclusion, recent changes in the IMGT reference directories affected the interpretation of SHM in a sizeable number of IGH rearrangement sequences from CLL patients. This indicates that both physicians and researchers should consider a re-evaluation of IG sequence data, especially for those IGH rearrangement sequences that, up to date, have a GI close to 98 %, where caution is warranted.


Asunto(s)
Regiones Determinantes de Complementariedad/genética , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/inmunología , Pronóstico , Alelos , Secuencia de Aminoácidos/genética , Humanos , Leucemia Linfocítica Crónica de Células B/patología , Mutación , Alineación de Secuencia
17.
PLoS Pathog ; 9(1): e1003098, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23326228

RESUMEN

Upon infection, B-lymphocytes expressing antibodies specific for the intruding pathogen develop clonal responses triggered by pathogen recognition via the B-cell receptor. The constant region of antibodies produced by such responding clones dictates their functional properties. In teleost fish, the clonal structure of B-cell responses and the respective contribution of the three isotypes IgM, IgD and IgT remain unknown. The expression of IgM and IgT are mutually exclusive, leading to the existence of two B-cell subsets expressing either both IgM and IgD or only IgT. Here, we undertook a comprehensive analysis of the variable heavy chain (VH) domain repertoires of the IgM, IgD and IgT in spleen of homozygous isogenic rainbow trout (Onchorhynchus mykiss) before, and after challenge with a rhabdovirus, the Viral Hemorrhagic Septicemia Virus (VHSV), using CDR3-length spectratyping and pyrosequencing of immunoglobulin (Ig) transcripts. In healthy fish, we observed distinct repertoires for IgM, IgD and IgT, respectively, with a few amplified µ and τ junctions, suggesting the presence of IgM- and IgT-secreting cells in the spleen. In infected animals, we detected complex and highly diverse IgM responses involving all VH subgroups, and dominated by a few large public and private clones. A lower number of robust clonal responses involving only a few VH were detected for the mucosal IgT, indicating that both IgM(+) and IgT(+) spleen B cells responded to systemic infection but at different degrees. In contrast, the IgD response to the infection was faint. Although fish IgD and IgT present different structural features and evolutionary origin compared to mammalian IgD and IgA, respectively, their implication in the B-cell response evokes these mouse and human counterparts. Thus, it appears that the general properties of antibody responses were already in place in common ancestors of fish and mammals, and were globally conserved during evolution with possible functional convergences.


Asunto(s)
Células Clonales/metabolismo , Inmunoglobulina M/metabolismo , Inmunoglobulinas/metabolismo , Novirhabdovirus/inmunología , Oncorhynchus mykiss/inmunología , Bazo/inmunología , Animales , Subgrupos de Linfocitos B , Células Clonales/citología , Células Clonales/inmunología , Evolución Molecular , Enfermedades de los Peces/inmunología , Proteínas de Peces , Humanos , Inmunoglobulina D/genética , Inmunoglobulina D/metabolismo , Inmunoglobulina M/genética , Inmunoglobulinas/genética , Inmunohistoquímica , Ratones , Membrana Mucosa/inmunología , Membrana Mucosa/metabolismo , Análisis de Secuencia de ADN , Especificidad de la Especie , Bazo/citología , Bazo/metabolismo , Coloración y Etiquetado
18.
Immunology ; 141(2): 268-75, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24134819

RESUMEN

In B cells, B-cell receptor (BCR) immunoglobulin revision is a common route for modifying unwanted antibody specificities via a mechanism called VH replacement. This in vivo process, mostly affecting heavy-chain rearrangement, involves the replacement of all or part of a previously rearranged IGHV gene with another germline IGHV gene located upstream. Two different mechanisms of IGHV replacement have been reported: type 1, involving the recombination activating genes complex and requiring a framework region 3 internal recombination signal; and type 2, involving an unidentified mechanism different from that of type 1. In the case of light-chain loci, BCR immunoglobulin editing ensures that a second V-J rearrangement occurs. This helps to maintain tolerance, by generating a novel BCR with a new antigenic specificity. We report that human B cells can, surprisingly, undergo type 2 replacement associated with κ light-chain rearrangements. The de novo IGKV-IGKJ products result from the partial replacement of a previously rearranged IGKV gene by a new germline IGKV gene, in-frame and without deletion or addition of nucleotides. There are wrcy/rgyw motifs at the 'IGKV donor-IGKV recipient chimera junction' as described for type 2 IGHV replacement, but activation-induced cytidine deaminase (AID) expression was not detected. This unusual mechanism of homologous recombination seems to be a variant of gene conversion-like recombination, which does not require AID. The recombination phenomenon described here provides new insight into immunoglobulin locus recombination and BCR immunoglobulin repertoire diversity.


Asunto(s)
Citidina Desaminasa/fisiología , Recombinación Homóloga , Región Variable de Inmunoglobulina/genética , Receptores de Antígenos de Linfocitos B/genética , Secuencia de Aminoácidos , Secuencia de Bases , Línea Celular , Reordenamiento Génico , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas kappa de Inmunoglobulina/genética , Interleucina-1/farmacología , Lipopolisacáridos/farmacología , Datos de Secuencia Molecular
19.
Blood ; 119(19): 4467-75, 2012 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-22415752

RESUMEN

Mounting evidence indicates that grouping of chronic lymphocytic leukemia (CLL) into distinct subsets with stereotyped BCRs is functionally and prognostically relevant. However, several issues need revisiting, including the criteria for identification of BCR stereotypy and its actual frequency as well as the identification of "CLL-biased" features in BCR Ig stereotypes. To this end, we examined 7596 Ig VH (IGHV-IGHD-IGHJ) sequences from 7424 CLL patients, 3 times the size of the largest published series, with an updated version of our purpose-built clustering algorithm. We document that CLL may be subdivided into 2 distinct categories: one with stereotyped and the other with nonstereotyped BCRs, at an approximate ratio of 1:2, and provide evidence suggesting a different ontogeny for these 2 categories. We also show that subset-defining sequence patterns in CLL differ from those underlying BCR stereotypy in other B-cell malignancies. Notably, 19 major subsets contained from 20 to 213 sequences each, collectively accounting for 943 sequences or one-eighth of the cohort. Hence, this compartmentalized examination of VH sequences may pave the way toward a molecular classification of CLL with implications for targeted therapeutic interventions, applicable to a significant number of patients assigned to the same subset.


Asunto(s)
Leucemia Linfocítica Crónica de Células B/clasificación , Leucemia Linfocítica Crónica de Células B/genética , Técnicas de Diagnóstico Molecular/métodos , Terapia Molecular Dirigida , Receptores de Antígenos de Linfocitos B/genética , Secuencia de Aminoácidos , Reordenamiento Génico de Linfocito B/genética , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Inmunofenotipificación , Leucemia Linfocítica Crónica de Células B/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/tendencias , Receptores de Antígenos de Linfocitos B/metabolismo , Hipermutación Somática de Inmunoglobulina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA