Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
J Xray Sci Technol ; 19(2): 229-47, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21606585

RESUMEN

We propose a multiresolution X-ray imaging method designed for non-destructive testing/evaluation (NDT/NDE) applications which can also be used for small animal imaging studies. Two sets of projections taken at different magnifications are combined and a multiresolution image is reconstructed. A geometrical relation is introduced in order to combine properly the two sets of data and the processing using wavelet transforms is described. The accuracy of the reconstruction procedure is verified through a comparison to the standard filtered backprojection (FBP) algorithm on simulated data.


Asunto(s)
Algoritmos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Animales , Artefactos , Modelos Estadísticos , Fantasmas de Imagen
2.
Med Image Comput Comput Assist Interv ; 11(Pt 2): 255-62, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18982613

RESUMEN

Emission tomography has provided a new insight in brain mechanisms past years. Although reconstructions are nowadays mostly static, trend is going toward dynamic acquisitions and reconstructions. This opens a new range of investigations, for instance for drugs discovery. Indeed new drugs are studied through the dynamic ability of tissues to catch them. However, it is required to know radiotracer concentration of blood that irrigates tissues in order to draw conclusions on potentials of these drugs. This concentration is called 'input function' and this paper presents a new method for measuring it in a non-invasive way. Our new method relies on simultaneous estimations of vessels kinetics and vessels spatial distribution. These estimations are performed during the reconstruction process and take into account the statistical nature of measured signals. Indeed, this method is based on the maximisation of the likelihood of counts in detectors. It takes advantages of a non-negative matrix factorisation which separate spatial and temporal components. Results are very promising, since it estimates arterial input function accurately although object emits just a limited amount of photons, especially within the first minutes.


Asunto(s)
Algoritmos , Inteligencia Artificial , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Tomografía Computarizada de Emisión/métodos , Aumento de la Imagen/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA