Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Rep Prog Phys ; 86(5)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36821855

RESUMEN

Hydrides of actinides, their magnetic, electronic, transport, and thermodynamic properties are discussed within a general framework of H impact on bonding, characterized by volume expansion, affecting mainly the 5fstates, and a charge transfer towards H, which influences mostly the 6dand 7sstates. These general mechanisms have diverse impact on individual actinides, depending on the degree of localization of their 5fstates. Hydrogenation of uranium yields UH2and UH3, binary hydrides that are strongly magnetic due to the 5fband narrowing and reduction of the 5f-6dhybridization. Pu hydrides become magnetic as well, mainly as a result of the stabilization of the magnetic 5f5state and elimination of the admixture of the non-magnetic 5f6component.Ab-initiocomputational analyses, which for example suggest that the ferromagnetism ofß-UH3is rather intricate involving two non-collinear sublattices, are corroborated by spectroscopic studies of sputter-deposited thin films, yielding a clean surface and offering a variability of compositions. It is found that valence-band photoelectron spectra cannot be compared directly with the 5fnground-state density of states. Being affected by electron correlations in the excited final states, they rather reflect the atomic 5fn-1multiplets. Similar tendencies can be identified also in hydrides of binary and ternary intermetallic compounds. H absorption can be used as a tool for fine tuning of electronic structure around a quantum critical point. A new direction is represented by actinide polyhydrides with a potential for high-temperature superconductivity.

2.
Chem Rev ; 119(23): 11980-12031, 2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31710485

RESUMEN

In the past decade, two-dimensional (2D) transition metal carbides, nitrides, and carbonitrides (MXenes) have attracted attention and interest from the scientific community due to their superior mechanical strength and flexibility, physical/chemical properties, and multiple exciting functionalities. Among these materials, the ingenious and effective combination of the mechanical and functional properties of MXenes provides a promising opportunity for designing flexible and wearable devices. This review summarizes the recent research progress in the structural stabilities, mechanical strength and deformation mechanism, strain-tunable energy storages, and catalytic and thermoelectric properties along with certain strain modifications and strain-controllable electronic/topological properties of MXenes from a combined theoretical and experimental perspective and illustrates their electronic origins. Taking the design principles as a focus, the theoretical predictions provide guidance, while the experimental work gives a thorough validation, thus setting the foundation for the current scientific achievements, challenges, and prospects in the field of MXenes.

3.
Phys Chem Chem Phys ; 23(35): 19602-19610, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34524301

RESUMEN

Mg-Zn alloys have attracted much attention as biodegradable alloys owing to their superior mechanical properties and excellent biocompatibility. However, their corrosion/degradation behaviour has become a major issue for various biomedical applications. To understand their corrosion behaviours in aqueous environments, the first-principles informed Pourbaix diagrams, that is, electrochemical phase diagrams with respect to electrode potential and solution pH, were constructed for Mg-Zn alloys and compared with experimental observations. It was found that for Mg-rich alloys, the MgZn phase has a higher potential than the Mg matrix and may act as a cathode, resulting in galvanic corrosion, while for Zn-rich alloys, the phase Mg2Zn11 corrodes first. In Zn-rich alloys, Mg(OH)2 preferably precipitates under alkaline conditions, thus hindering the increase in pH and preventing the release of dissolved ZnO22- ions. In a Cl-containing solution, the soluble ZnCl2 eases the corrosion of the Zn matrix by decreasing the corrosion potential. These results are supported by various experimental observations; thus, they provide an in-depth understanding of the degradation behaviour of various Mg-Zn alloys as well as a feasible pathway in the design of biocompatible Mg-Zn alloys with first-principles informed Pourbaix diagrams.

4.
Nano Lett ; 20(8): 6199-6205, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32787187

RESUMEN

Heterostructure engineering is one of the most promising modification strategies toward improving sluggish kinetics for the anode of sodium ion batteries (SIBs). Herein, we report a systemic investigation on the different types of heterostructure interfaces' effects of discharging products (Na2O, Na2S, Na2Se) on the rate performance. First-principle calculations reveal that the Na2S/Na2Se interface possesses the lowest diffusion energy barrier (0.39 eV) of Na among three kinds of interface structures (Na2O/Na2S, Na2O/Na2Se, and Na2S/Na2Se) due to its smallest recorded interface deformation, similar electronegativity, and lattice constant. The experimental evidence confirms that the metal sulfide/metal selenide (SnS/SnSe2) hierarchical anode exhibits outstanding rate performance, where the normalized capacity at 10 A g-1 compared to 0.1 A g-1 is 45.6%. The proposed design strategy in this work is helpful to design high rate performance anodes for advanced battery systems.

5.
Proc Natl Acad Sci U S A ; 114(52): E11082-E11091, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29229853

RESUMEN

Efficient flexible energy storage systems have received tremendous attention due to their enormous potential applications in self-powering portable electronic devices, including roll-up displays, electronic paper, and "smart" garments outfitted with piezoelectric patches to harvest energy from body movement. Unfortunately, the further development of these technologies faces great challenges due to a lack of ideal electrode materials with the right electrochemical behavior and mechanical properties. MXenes, which exhibit outstanding mechanical properties, hydrophilic surfaces, and high conductivities, have been identified as promising electrode material candidates. In this work, taking 2D transition metal carbides (TMCs) as representatives, we systematically explored several influencing factors, including transition metal species, layer thickness, functional group, and strain on their mechanical properties (e.g., stiffness, flexibility, and strength) and their electrochemical properties (e.g., ionic mobility, equilibrium voltage, and theoretical capacity). Considering potential charge-transfer polarization, we employed a charged electrode model to simulate ionic mobility and found that ionic mobility has a unique dependence on the surface atomic configuration influenced by bond length, valence electron number, functional groups, and strain. Under multiaxial loadings, electrical conductivity, high ionic mobility, low equilibrium voltage with good stability, excellent flexibility, and high theoretical capacity indicate that the bare 2D TMCs have potential to be ideal flexible anode materials, whereas the surface functionalization degrades the transport mobility and increases the equilibrium voltage due to bonding between the nonmetals and Li. These results provide valuable insights for experimental explorations of flexible anode candidates based on 2D TMCs.

6.
Sensors (Basel) ; 20(22)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33187158

RESUMEN

The design of new materials for technological applications is increasingly being assisted by online computational tools that facilitate the study of their properties. In this work, based on modern web application frameworks, the online app MAELASviewer has been developed to visualize and analyze magnetostriction via a user-friendly interactive graphical interface. The features and technical details of this new tool are described in detail. Among other applications, it could potentially be used for the design of magnetostrictive materials for sensors and actuators.

7.
Nano Lett ; 19(5): 3122-3130, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30884241

RESUMEN

Graphene/metal oxides (G/MO) composite materials have attracted much attention as the anode of sodium ion batteries (SIBs), because of the high theoretical capacity. However, most metal oxides operate based on the conversion mechanism and the alloying mechanism has changed to Na2O after the first cycle. The influence of G/Na2O (G/N) on the subsequent sodiation process has never been clearly elucidated. In this work, we report a systematic investigation on the G/N interface from both aspects of theoretical simulation and experiment characterization. By applied first-principles simulations, we find that the sluggish kinetics in the G/MO materials is mainly caused by the high diffusion barrier (0.51 eV) inside the Na2O bulk, while the G/N interface shows a much faster transport kinetics (0.25 eV) via unique double-interstitialcy mechanism. G/N interface possesses an interfacial storage of Na atom through the charge separation mechanism. The experimental evidence confirms that high interfacial ratio structure of G/N greatly improves the rate performance and endows G/MO materials the interfacial storage. Furthermore, the experimental investigation finds that the high interfacial ratio structure of G/N also benefits from the reversible reaction between SnO2 and Sn during cycling. Lastly, the effects of (N, O, S) doping in graphene systems at the G/N interface were also explored. This work provides a fundamental comprehension on the G/MO interface structure during the sodiation process, which is helpful to design energy storage materials with high rate performance and large capacity.

8.
Nano Lett ; 19(10): 7487-7493, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31509421

RESUMEN

With the increasing strategies aimed at repressing shuttle problems in the lithium-sulfur battery, dissolved contents of polysulfides are significantly reduced. Except for solid-state Li2S2 and Li2S, aggregated phases of polysulfides remain unexplored, especially in well confined cathode material systems. Here, we report a series of nanosize polysulfide clusters and solid phases from an atomic perspective. The calculated phase diagram and formation energy evolution process demonstrate their stabilities and cohesive tendency. It is interesting to find that Li2S6 can stay in the solid state and contains short S3 chains, further leading to the unique stability and dense structure. Simulated electronic properties indicate reduced band gaps when polysulfides are aggregated, especially for solid phase Li2S6 with a band gap as low as 0.47 eV. Their dissolution behavior and conversion process are also investigated, which provides a more realistic model and gives further suggestions on the future design of the lithium-sulfur battery.

9.
Phys Chem Chem Phys ; 21(40): 22629-22638, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31591617

RESUMEN

Solid solution strengthening has been widely used in designing various high-performance biocompatible Mg-based alloys, but its transferability to other biocompatible metals such as Zn-based alloys is questionable or nearly absent. In the present study, an ab initio informed Peierls-Nabarro model and Leyson et al.'s strengthening model are used for a systematic investigation on solute strengthening in Zn-based alloys, which is compared with the widely studied Mg-based alloys. Although an inverse relationship was revealed between volume misfit εb and chemical misfit εSFE for both Zn-based and Mg-based alloys, most solutes would however result in positive εb and negative εSFE for Zn-based alloys, differing from Mg-based alloys. With εb and εSFE as two key descriptors, a generalized scaling diagram is finally drawn for a fast evaluation of solid solution strengthening in Zn-based alloys, indicating that the alkaline-earth and rare earth elements are better strengtheners for Zn-based alloys, which provides a general rule in designing novel biocompatible materials.

10.
Phys Chem Chem Phys ; 21(29): 16095-16107, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31290502

RESUMEN

Much effort was devoted towards the rational design of ultrastrong transition metal borides (TMBs) with remarkable mechanical properties and excellent stabilities, owing to promising applications in machining, drilling tools and protective coatings for the aerospace industry. Although an enormous number of investigations have been performed on these TMBs under normal conditions, studies on the stability and mechanical strength in harsh high-pressure environments, which are critical for safe service behavior and a realistic understanding of stabilities and strengthening mechanisms, are yet nearly absent. In this work, taking 5d TMB2 (TM = Hf, Ta, W, Re, Os, Ir and Pt) as an illustration, we performed comprehensive high-throughput first-principles screening for thermodynamically stable and metastable structures under various pressures. Four experimentally observed structures are found to be thermodynamically feasible for most 5d TMB2 (TM = Hf, Ta, W, Re, Os and Ir) at 0 and 100 GPa. By exploiting orbital-decomposed electronic structures, we reveal that the pressure-induced stabilization and phase transitions of 5d TMB2 can be rationalized by the splitting of bonding and antibonding states around the Fermi level. Further investigations on the pressure-induced strengthening indicate that 5d TMB2 in the hP6[194] structure exhibit a profound strengthening effect under high pressure, which can be rationalized by the proposed strengthening factor η, but η fails in the oP6[59] structure due to the changed instability modes at different pressures. These findings suggest the necessity to explore the plasticity parameters for a realistic understanding of pressure-induced strengthening in TMBs, providing a strong argument for rules based on bond parameters at equilibrium in designing strong solids.

11.
J Nanosci Nanotechnol ; 19(5): 3016-3018, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30501814

RESUMEN

The density functional theory was used to calculate elastic tensor for the quasi-one-dimensional antiferromagnetic compound Cu(en)(H2O)2SO4, with en = C2H8N2. The bulk, shear, Young moduli, Poisson ratio, and elastic anisotropy were determined for the polycrystalline Cu(en)(H2O)2SO4 by employing the Hill averaging of the single crystal elastic constants. They were compared to the respective quantities for other low-dimensional magnetic systems. The Cu(en)(H2O)2SO4 compound is predicted to be soft and ductile. We have also estimated the Debye temperature for the Cu(en)(H2O)2SO4 single crystal by using the sound velocities obtained from the calculated elastic constants.

12.
Inorg Chem ; 57(23): 14727-14732, 2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30427197

RESUMEN

A new type of uranium binary hydride, UH2, with the CaF2 crystal structure, was synthesized in a thin-film form using reactive sputter deposition at low temperatures. The material has a grain size of 50-100 nm. The lattice parameter a = (535.98 ± 0.14 pm) is close to that in known Np (534.3 pm) and Pu (535.9 pm) iso-types. UH2 is a metallic ferromagnet with the Curie temperature TC ≈ 120 K. A very wide hysteresis loop indicates strong magnetocrystalline anisotropy. X-ray photoelectron spectroscopy reveals similarities with electronic structure of UH3, which is also ferromagnet with higher TC = 165 K.

13.
Phys Chem Chem Phys ; 20(47): 29684-29692, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30475359

RESUMEN

Two-dimensional (2D) transition metal carbides (MXenes) exhibit excellent thermodynamic stability and remarkable mechanical strength and flexibility, as well as rich functionality, which attract considerable interest due to their potential application for high-performance flexible and stretchable devices. However, premature phonon instability of some non-hybrid MXenes was recently found to intrinsically limit their strength and flexibility, evoking passionate curiosity in pursuing an effective solution for more impressive mechanical properties. In this work, on the basis of an alloying strengthening mechanism, a combinational strategy is proposed to build ordered hybrid M2''M'C2O2 (M'' = Mo, W; M' = Ti, Zr, Hf) with remarkable dynamic stability and superior mechanical properties by hindering the premature phonon instability originating from the outer transition metals. By means of comprehensive screening, symmetrical-Mo2TiC2O2 is interestingly found to possess excellent stability at equilibrium and outstanding tolerance to phonon instability during straining compared to its Ti counterpart, being attributed to the character of the robust Mo-dz2 and O-pz hybridization. Although similar optical phonon soft modes appear in Ti3C2O2 and Mo2TiC2O2 under multiple loadings, the latter is much stiffer during straining. An in-depth analysis of deformed electronic structures reveals that a strain-induced increasing density of states in the vicinity of the Fermi level mainly composed of Mo-dz2 states facilitates the fatal phonon softening in Mo2TiC2O2 under biaxial tension, while differing from the mechanical instability in Ti3C2O2 triggered by a Peierls transition. Our findings provide a novel stabilization and strengthening strategy for 2D materials, and pave a new way for searching for 2D material candidates in designing flexible devices.

14.
Phys Chem Chem Phys ; 20(21): 14608-14618, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29766161

RESUMEN

Two-dimensional transition metal carbides (MXenes) exhibit excellent thermodynamic stability, mechanical strength and flexibility, which make them promising candidates in flexible devices and reinforcements in nanocomposites. However, the dynamic stability may intrinsically determine the preferred adsorption sites of functional groups in MXenes and lead to premature failure under finite strain before approaching the elastic limits. It is found interestingly that different adsorption sites of the functional groups correspond to the different phonon stabilities and adsorption energies of MXenes, which can be attributed to different hybridization characteristics between the metal-d and O-pz states and delocalized electron behaviors around the metal atoms. Although both Ti2CO2 and Mo2CO2 possess high ideal strengths and superior flexibility, the premature phonon instabilities appear unexpectedly in distinct manners before approaching their elastic limits. An in-depth exploration of the soft modes and deformed electronic structures reveals that a continuously decreasing gap-opening at the Γ point in Ti2CO2 increases after in-plane phonon instability due to the pseudo Jahn-Teller effect, differing from the out-of-plane phonon instability and semiconductor-metal transition under biaxial tension observed in MoS2. Although Mo2CO2 shows similar failure modes to graphene under uniaxial/biaxial tensions, the band crossings around the Fermi level are found to be responsible for its metallic character and elastic/phonon instabilities by modifying the elastic energy or electronic band energy, different from the gap opening appearing in graphene. Our results shed light onto the profound effect of the phonon instability on the preferable structure and strengths of MXenes, providing theoretical guidance on designing flexible MXene devices, raising a great challenge to the conventional strengthening theory by simply counting bonds.

15.
Proc Natl Acad Sci U S A ; 112(46): 14206-11, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26534992

RESUMEN

We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

16.
Sci Adv ; 10(16): eadk9522, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38630818

RESUMEN

A change of orbital state alters the coupling between ions and their surroundings drastically. Orbital excitations are hence key to understand and control interaction of ions. Rare-earth elements with strong magneto-crystalline anisotropy (MCA) are important ingredients for magnetic devices. Thus, control of their localized 4f magnetic moments and anisotropy is one major challenge in ultrafast spin physics. With time-resolved x-ray absorption and resonant inelastic scattering experiments, we show for Tb metal that 4f-electronic excitations out of the ground-state multiplet occur after optical pumping. These excitations are driven by inelastic 5d-4f-electron scattering, altering the 4f-orbital state and consequently the MCA with important implications for magnetization dynamics in 4f-metals and more general for the excitation of localized electronic states in correlated materials.

17.
J Phys Chem Lett ; 14(34): 7744-7750, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37607348

RESUMEN

In two-dimensional magnets, the ultrafast photoexcited method represents a low-power and high-speed method of switching magnetic states. Bilayer CrI3 (BLC) is an ideal platform for studying ultrafast photoinduced magnetic phase transitions due to its stacking-dependent magnetic properties. Here, by using time-dependent density functional theory, we explore the photoexcitation phase transition in BLC from the R- to M-stacked phase. This process is found to be induced by electron-phonon interactions. The activated Ag and Bg phonon modes in the xy direction drive the horizontal relative displacements between the layers. The activated Ag mode in the z direction leads to a transition potential reduction. Furthermore, this phase transition can invert the sign of the interlayer spin interaction, indicating a photoinduced transition from ferromagnet to antiferromagnet. This investigation has profound implications for magnetic phase engineering strategies.

18.
Sci Rep ; 13(1): 2646, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788267

RESUMEN

The electronic structure, spin and orbital magnetic moments, and the magnetic anisotropy energy in selected U-based compounds are investigated making use of the correlated band theory. First, we demonstrate that the LSDA+U approach with exact atomic limit implemented as a combination of the relativistic density functional theory with the Anderson impurity model provides a good quantitative description for UGa[Formula: see text]. Further, the method is applied to UFe[Formula: see text] and UFe[Formula: see text]Si[Formula: see text] ferromagnets. The calculated positive uniaxial magnetic anisotropy together with negative enthalpy of formation for UFe[Formula: see text]Si[Formula: see text] make it as a candidate for the magnetically hard materials. Our studies suggest a viable route for further development of the rare-earth-lean permanent magnets by replacing a part of U atoms by some rare-earth like Sm in UFe[Formula: see text]Si[Formula: see text].

19.
Sci Rep ; 11(1): 20878, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34686771

RESUMEN

The interaction between phonons and 4f electrons, which is forming a new quantum state (quasi-bound state) beyond Born-Oppenheimer approximation, is very prominent and lattice dynamics plays here a key role. There is only a small number of compounds in which the experimental observation suggest such a scenario. One of these compounds is CePd2Al2. Here the study of phonon dispersion curves of (Ce,La)Pd2Al2 at 1.5, 7.5, 80 and 300 K is presented. The inelastic X-ray scattering technique was used for mapping the phonon modes at X and Z points as well as in Λ and Δ directions, where the symmetry analysis of phonon modes was performed. The measured spectra are compared with the theoretical calculation, showing very good agreement. The measurements were performed in several Brillouin zones allowing the reconstruction of phonon dispersion curves. The results are discussed with respect to the magneto-elastic interaction and are compared with other cerium compounds. The phonon mode symmetry A1g was found to be unaffected by the interaction, which is in contrast to previous assumptions.

20.
Adv Mater ; 33(40): e2102595, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34342921

RESUMEN

Designing highly active and bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts has attracted great interest toward metal-air batteries. Herein, an efficient solution to the search for MXene-based bifunctional catalysts is proposed by introducing non-noble metals such as Fe/Co/Ni at the surfaces. These results indicate that the ultrahigh activities in Ni1/Ni2- and Fe1/Ni2-modified MXene-based double-atom catalysts (DACs) for bifunctional ORR/OER are better than those of well-known unifunctional catalysts with low overpotentials, such as Pt(111) for the ORR and IrO2 (110) for the OER. Strain can profoundly regulate the catalytic activities of MXene-based DACs, providing a novel pathway for tunable catalytic behavior in flexible MXenes. An electrochemical model, based on density functional theory and theoretical polarization curves, is proposed to reveal the underlying mechanisms, in agreement with experimental results. Electronic structure analyses indicate that the excellent catalytic activities in the MXene-based DACs are attributed to the electron-capturing capability and synergistic interactions between Fe/Co/Ni adsorbents and MXene substrate. These findings not only reveal promising candidates for MXene-based bifunctional ORR/OER catalysts but also provide new theoretical insights into rationally designing noble-metal-free bifunctional DACs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA