Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Alcohol Clin Exp Res ; 46(5): 891-906, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35347730

RESUMEN

BACKGROUND: Individuals with fetal alcohol spectrum disorders (FASD) often show processing deficits in all sensory modalities. Using an operant light reinforcement model, we tested whether prenatal ethanol exposure (PE) alters operant responding to elicit a contingent sensory stimulus-light onset (turning on the light) and habituation to this behavior in rats. We also explored whether postnatal environmental enrichment could ameliorate PE-induced deficits. METHODS: Pregnant Sprague Dawley rats were gavaged twice/day with 0 or 3 g/kg/treatment ethanol (15% w/v) during gestational days 8-20, mimicking second-trimester heavy PE in humans. The offspring were reared in a standard housing condition or an enriched condition. Adult male and female offspring underwent an operant light reinforcement experiment with either a short-access or a long-access procedure. A dishabituation test was also conducted to characterize the habituation process. RESULTS: In the short-access procedure, PE led to increased operant responding to the contingent light onset in both sexes reared in the standard housing condition. Such an effect was not observed in rats reared in enriched conditions due to an overall decrease in responding. Moreover, rats reared in enriched conditions showed greater short-term habituation. In the long access procedure, PE rats showed increased responding and impaired long-term habituation. The long-access procedure facilitated both short-term and long-term habituation in control and PE rats. CONCLUSION: Prenatal ethanol exposure increases responding to contingent light onset and impairs the long-term habituation process. The PE-induced deficits were ameliorated by rearing in the enriched environment and increasing the duration and frequency of exposure to light onset. The PE-induced effects are like increased sensation-seeking, a subtype of sensory-processing deficit that is often observed in individuals with FASD. Our findings could inform a suitable animal model for investigating the underlying mechanisms and possible intervention strategies for sensory deficits in FASD.


Asunto(s)
Trastornos del Espectro Alcohólico Fetal , Animales , Etanol/toxicidad , Femenino , Habituación Psicofisiológica , Humanos , Masculino , Percepción , Embarazo , Ratas , Ratas Sprague-Dawley , Sensación
2.
Alcohol Clin Exp Res ; 45(5): 1122-1135, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33730380

RESUMEN

BACKGROUND: Attention deficits caused by prenatal ethanol (EtOH) exposure (PE) are a prevalent condition in fetal alcohol spectrum disorders (FASDs). Importantly, the deficits are observed in individuals with FASD who have normal IQs and show no dysmorphic facial features caused by heavy PE. These observations suggest that even moderate PE could lead to attention deficits. This possibility was investigated in the present study using a rat model. METHODS: Pregnant Sprague Dawley rats were administered EtOH (3 g/kg/day) or vehicle via intragastric gavage on gestational days 8 to 20. The blood EtOH concentration (BEC) in EtOH-treated rats was 87.7 ± 1.2 mg/dl (1 h after the gavage), similar to the BECs reported in other moderate PE studies in rodents. Moderate PE did not produce teratogenic effects on birthweight or litter size. The adult offspring underwent a 2-choice reaction time task. RESULTS: Moderate PE led to augmented action impulsivity in both sexes, indicated by more rapid response initiation and more premature responses. Deficits were more marked in males than in females. No greater lapses of attention, assessed by incorrect or relatively slow responses, were observed in rats of either sex with moderate PE. In addition, no deficits in learning or motor function were detected after moderate PE. Interestingly, rats with moderate PE completed more trials than controls. CONCLUSIONS: Our results confirm that moderate PE leads to attention deficits in both sexes, which is demonstrated by greater action impulsivity, but not more lapses of attention. This effect differs from that of heavy PE, as shown in our previous study, which is manifested as impaired action impulsivity and lapses of attention in both sexes.


Asunto(s)
Atención/fisiología , Depresores del Sistema Nervioso Central , Etanol , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Animales , Femenino , Trastornos del Espectro Alcohólico Fetal/fisiopatología , Masculino , Embarazo , Ratas , Tiempo de Reacción/fisiología
3.
Nature ; 527(7577): 179-85, 2015 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-26536109

RESUMEN

Anxiety-related conditions are among the most difficult neuropsychiatric diseases to treat pharmacologically, but respond to cognitive therapies. There has therefore been interest in identifying relevant top-down pathways from cognitive control regions in medial prefrontal cortex (mPFC). Identification of such pathways could contribute to our understanding of the cognitive regulation of affect, and provide pathways for intervention. Previous studies have suggested that dorsal and ventral mPFC subregions exert opposing effects on fear, as do subregions of other structures. However, precise causal targets for top-down connections among these diverse possibilities have not been established. Here we show that the basomedial amygdala (BMA) represents the major target of ventral mPFC in amygdala in mice. Moreover, BMA neurons differentiate safe and aversive environments, and BMA activation decreases fear-related freezing and high-anxiety states. Lastly, we show that the ventral mPFC-BMA projection implements top-down control of anxiety state and learned freezing, both at baseline and in stress-induced anxiety, defining a broadly relevant new top-down behavioural regulation pathway.


Asunto(s)
Amígdala del Cerebelo/fisiología , Ansiedad/fisiopatología , Miedo/fisiología , Vías Nerviosas/fisiología , Amígdala del Cerebelo/citología , Animales , Ansiedad/psicología , Extinción Psicológica/fisiología , Miedo/psicología , Femenino , Reacción Cataléptica de Congelación/fisiología , Aprendizaje/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Estrés Psicológico/fisiopatología
4.
Immun Ageing ; 17: 28, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042204

RESUMEN

BACKGROUND: The immune system undergoes a myriad of changes with age. While it is known that antibody-secreting plasma and long-lived memory B cells change with age, it remains unclear how the binding profile of the circulating antibody repertoire is impacted. RESULTS: To understand humoral immunity changes with respect to age, we characterized serum antibody binding to high density peptide microarrays in a diverse cohort of 1675 donors. We discovered thousands of peptides that bind antibodies in age-dependent fashion, many of which contain di-serine motifs. Peptide binding profiles were aggregated into an "immune age" by a machine learning regression model that was highly correlated with chronological age. Applying this regression model to previously-unobserved donors, we found that a donor's predicted immune age is longitudinally consistent over years, suggesting it could be a robust long-term biomarker of humoral immune ageing. Finally, we assayed serum from donors with autoimmune disease and found a significant association between "accelerated immune ageing" and autoimmune disease activity. CONCLUSIONS: The circulating antibody repertoire has increased binding to thousands of di-serine peptide containing peptides in older donors, which can be represented as an immune age. Increased immune age is associated with autoimmune disease, acute inflammatory disease severity, and may be a broadly relevant biomarker of immune function in health, disease, and therapeutic intervention.

5.
PLoS Genet ; 11(7): e1005307, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26132408

RESUMEN

Daily rhythms in gene expression play a critical role in the progression of circadian clocks, and are under regulation by transcription factor binding, histone modifications, RNA polymerase II (RNAPII) recruitment and elongation, and post-transcriptional mechanisms. Although previous studies have shown that clock-controlled genes exhibit rhythmic chromatin modifications, less is known about the functions performed by chromatin remodelers in animal clockwork. Here we have identified the Brahma (Brm) complex as a regulator of the Drosophila clock. In Drosophila, CLOCK (CLK) is the master transcriptional activator driving cyclical gene expression by participating in an auto-inhibitory feedback loop that involves stimulating the expression of the main negative regulators, period (per) and timeless (tim). BRM functions catalytically to increase nucleosome density at the promoters of per and tim, creating an overall restrictive chromatin landscape to limit transcriptional output during the active phase of cycling gene expression. In addition, the non-catalytic function of BRM regulates the level and binding of CLK to target promoters and maintains transient RNAPII stalling at the per promoter, likely by recruiting repressive and pausing factors. By disentangling its catalytic versus non-catalytic functions at the promoters of CLK target genes, we uncovered a multi-leveled mechanism in which BRM fine-tunes circadian transcription.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ritmo Circadiano/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulación de la Expresión Génica/genética , Regiones Promotoras Genéticas/genética , Transactivadores/metabolismo , Transcripción Genética/genética , Animales , Sitios de Unión/genética , Proteínas CLOCK/genética , Línea Celular , Ensamble y Desensamble de Cromatina/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , ARN Polimerasa II/genética
6.
Front Neurosci ; 14: 12, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32038156

RESUMEN

BACKGROUND: Prenatal ethanol exposure (PE) causes multiple behavioral and cognitive deficits, collectively referred to as fetal alcohol spectrum disorders (FASD). Studies show that 49-94% of FASD children exhibit attention deficits, even when they have normal IQs or lack severe facial deformities, suggesting that attention deficits could be caused by even moderate prenatal exposure to alcohol, of which the underlying neural mechanisms are still unclear. A valid rodent model could help elucidate this phenomenon. MATERIALS AND METHODS: A second-trimester equivalent binge drinking PE model was utilized. Pregnant Sprague Dawley rats were administered with 15% (w/v) ethanol (6 g/kg/day, via gastric gavage) during gestational days 8-20, and their offspring were the subjects in the present study. A modified 2-choice reaction time (2-CRT) task was used to illustrate possible attention deficits, including increased action impulsivity and lapses of attention. Enhanced impulsivity was reflected by more premature responses while increased lapses of attention were manifested as more incorrect responses and/or greater variability of reaction time, demonstrated by more skewed distributions of reaction time. Ten-week-old male and female rats were tested for three sessions following 16-19 days of training. RESULTS: Our PE paradigm caused no major teratogenic effects. PE led to increased impulsivity exhibited as greater premature responses and augmented lapses of attention shown by greater skewnesses of reaction time distributions, relative to controls. The deficits were observed in both PE male and female rats. Interestingly, in males, the attention deficits were detected only when the 2-CRT task was relatively difficult whereas in females they were detected even when the task was at a less demanding level. CONCLUSION: We show that the binge drinking pattern of PE led to attention deficits in both sexes of rats even though no major teratogenic effects were observed. Therefore, this rodent model can be used to study neural mechanisms underlying attention deficits caused by PE and to explore effective intervention approaches for FASD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA