Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 21035, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36471004

RESUMEN

To confirm whether machine learning algorithms (MLA) can achieve an effective risk stratification of dying within 7 days after basal ganglia hemorrhage (BGH). We collected patients with BGH admitted to Sichuan Provincial People's Hospital between August 2005 and August 2021. We developed standard ML-supervised models and fusion models to assess the prognostic risk of patients with BGH and compared them with the classical logistic regression model. We also use the SHAP algorithm to provide clinical interpretability. 1383 patients with BGH were included and divided into the conservative treatment group (CTG) and surgical treatment group (STG). In CTG, the Stack model has the highest sensitivity (78.5%). In STG, Weight-Stack model achieves 58.6% sensitivity and 85.1% specificity, and XGBoost achieves 61.4% sensitivity and 82.4% specificity. The SHAP algorithm shows that the predicted preferred characteristics of the CTG are consciousness, hemorrhage volume, prehospital time, break into ventricles, brain herniation, intraoperative blood loss, and hsCRP were also added to the STG. XGBoost, Stack, and Weight-Stack models combined with easily available clinical data enable risk stratification of BGH patients with high performance. These ML classifiers could assist clinicians and families to identify risk states timely when emergency admission and offer medical care and nursing information.


Asunto(s)
Hemorragia de los Ganglios Basales , Aprendizaje Automático , Humanos , Algoritmos , Modelos Logísticos , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA