Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39388169

RESUMEN

The development of a bifunctional electrocatalyst with high efficiency, high stability, and low cost is of great significance in practical applications of electrocatalytic water splitting. Herein, a self-supporting bifunctional electrocatalyst with a NiFe layered double hydroxide/Fe2O3/Ni3S2 heterostructure (NiFe LDH/Fe2O3/Ni3S2/IF) for hydrogen evolution and oxygen evolution reactions (HER/OER) is synthesized by the self-corrosion of iron foam (IF) and hydrothermal strategies. The constructed NiFe LDH/Fe2O3/Ni3S2/IF hierarchical heterostructure was not only beneficial to expose active sites and promote charge/mass transfer but also generate a superhydrophilic/superaerophobic surface, thereby accelerating the reaction kinetics to improve the HER/OER activity. Therefore, NiFe LDH/Fe2O3/Ni3S2/IF exhibited superior overpotentials of 226.2 and 162.8 mV for the OER and HER at 100 mA cm-2, respectively. NiFe LDH/Fe2O3/Ni3S2/IF was employed as both the cathode and the anode to assemble a device for overall water splitting and displayed a voltage of 1.55 V at 10 mA cm-2. The overall water splitting device was coupled with a solar cell to simulate a solar-powered water splitting system, resulting in a superior solar-to-hydrogen conversion efficiency of 15.16%. This work can promote the development of clean energy sources such as solar hydrogen production.

2.
J Colloid Interface Sci ; 651: 818-828, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37572617

RESUMEN

In the context of hydrogen production through water electrolysis, the development of efficient and stable electrocatalysts is of paramount importance. However, the creation of cost-effective electrocatalysts poses a significant challenge. In this study, a P and Nb co-doped NiFe2O4 nanosheet is designed and grown on Fe foam (referred to as P, Nb-NiFe2O4/FF). The P, Nb-NiFe2O4/FF exhibits a distinctive crystalline/amorphous heterostructure, and the co-doping of P and Nb in the material leads to the exposure of additional catalytic active sites, optimization of the electronic structure, and enhancement of charge conductivity. Additionally, the P, Nb-NiFe2O4/FF possesses a superhydrophilic surface for the enhancement of charge/mass transfer at interface and a superaerophobic surface, facilitating the efficient release of gas. The P, Nb-NiFe2O4/FF demonstrates remarkable oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) activities, achieving overpotential as low as 247 mV and 127 mV, respectively, to attain the current density response of 100 mA cm-2. Based on the high bifunctional activities, the P, Nb-NiFe2O4/FF requires only a working voltage of 1.56 V to obtain the current density of 10 mA cm-2 in overall water splitting. Furthermore, the overall water splitting device of P, Nb-NiFe2O4/FF is integrated with a commercial solar cell to simulate a solar-powered water splitting system, resulting in as superior solar-to-hydrogen conversion efficiency of 15.11%.

3.
J Colloid Interface Sci ; 631(Pt A): 56-65, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36370497

RESUMEN

Hydrogen production by electrocatalytic water splitting is considered to be an effective and environmental method, and the design of an electrocatalyst with high efficiency, low cost, and multifunction is of great importance. Herein, we developed a crystalline NiFe phosphide (NiFeP)/amorphous P-doped FeOOH (P-FeOOH) heterostructure (defined as P-NiFeOxHy) as a high-efficiency multifunctional electrocatalyst for water electrolysis. The NiFeP nanocrystals provide remarkable electronic conductivity and plenty of active sites, the amorphous P-FeOOH improves the adsorption energy of oxygen-containing species, and the crystalline/amorphous heterostructure with superhydrophilic and superaerophobic surface generates synergistic effects, providing plentiful active sites and efficient charge/mass transfer. Benefiting from this, the designed P-NiFeOxHy displays ultralow overpotentials of 159.2 and 20.8 mV to achieve 10 mA cm-2 for oxygen evolution reaction and hydrogen evolution reaction, and also shows the superior performance of urea oxidation reaction with a low voltage of 1.37 V at 10 mA cm-2 in 1 M KOH with 0.33 M urea. In-situ Raman spectra and ex-situ XPS analysis were also used to investigate the catalytic process and reveal the surface structure evolution of P-NiFeOxHy under electrochemical oxidation. Accordingly, the designed P-NiFeOxHy is employed as both cathode and anode to assemble into the urea-assisted water electrolysis device, which can reach 10 mA cm-2 with a low 1.36 V and could be further driven by a solar cell. The work reveals a design of superior activity, cost-effective and multifunctional electrocatalysts for water splitting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA