RESUMEN
Breakthrough infections by SARS-CoV-2 variants become the global challenge for pandemic control. Previously, we developed the protein subunit vaccine ZF2001 based on the dimeric receptor-binding domain (RBD) of prototype SARS-CoV-2. Here, we developed a chimeric RBD-dimer vaccine approach to adapt SARS-CoV-2 variants. A prototype-Beta chimeric RBD-dimer was first designed to adapt the resistant Beta variant. Compared with its homotypic forms, the chimeric vaccine elicited broader sera neutralization of variants and conferred better protection in mice. The protection of the chimeric vaccine was further verified in macaques. This approach was generalized to develop Delta-Omicron chimeric RBD-dimer to adapt the currently prevalent variants. Again, the chimeric vaccine elicited broader sera neutralization of SARS-CoV-2 variants and conferred better protection against challenge by either Delta or Omicron SARS-CoV-2 in mice. The chimeric approach is applicable for rapid updating of immunogens, and our data supported the use of variant-adapted multivalent vaccine against circulating and emerging variants.
Asunto(s)
COVID-19 , Vacunas , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Ratones , SARS-CoV-2/genéticaRESUMEN
The global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic requires effective therapies against coronavirus disease 2019 (COVID-19), and neutralizing antibodies are a promising therapy. A noncompeting pair of human neutralizing antibodies (B38 and H4) blocking SARS-CoV-2 binding to its receptor, ACE2, have been described previously. Here, we develop bsAb15, a bispecific monoclonal antibody (bsAb) based on B38 and H4. bsAb15 has greater neutralizing efficiency than these parental antibodies, results in less selective pressure and retains neutralizing ability to most SARS-CoV-2 variants of concern (with more potent neutralizing activity against the Delta variant). We also selected for escape mutants of the two parental mAbs, a mAb cocktail and bsAb15, demonstrating that bsAb15 can efficiently neutralize all single-mAb escape mutants. Furthermore, prophylactic and therapeutic application of bsAb15 reduced the viral titer in infected nonhuman primates and human ACE2 transgenic mice. Therefore, this bsAb is a feasible and effective strategy to treat and prevent severe COVID-19.
Asunto(s)
Anticuerpos Biespecíficos/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , SARS-CoV-2/inmunología , Animales , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/genética , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/genética , COVID-19/inmunología , COVID-19/patología , COVID-19/prevención & control , COVID-19/virología , Clonación Molecular , Modelos Animales de Enfermedad , Relación Dosis-Respuesta Inmunológica , Epítopos , Humanos , Macaca mulatta , Ratones , Pruebas de Neutralización , Ingeniería de Proteínas/métodos , Relación Estructura-ActividadRESUMEN
SARS-CoV-2, the causative agent of COVID-19, emerged in December 2019. Its origins remain uncertain. It has been reported that a number of the early human cases had a history of contact with the Huanan Seafood Market. Here we present the results of surveillance for SARS-CoV-2 within the market. From January 1st 2020, after closure of the market, 923 samples were collected from the environment. From 18th January, 457 samples were collected from 18 species of animals, comprising of unsold contents of refrigerators and freezers, swabs from stray animals, and the contents of a fish tank. Using RT-qPCR, SARS-CoV-2 was detected in 73 environmental samples, but none of the animal samples. Three live viruses were successfully isolated. The viruses from the market shared nucleotide identity of 99.99% to 100% with the human isolate HCoV-19/Wuhan/IVDC-HB-01/2019. SARS-CoV-2 lineage A (8782T and 28144C) was found in an environmental sample. RNA-seq analysis of SARS-CoV-2 positive and negative environmental samples showed an abundance of different vertebrate genera at the market. In summary, this study provides information about the distribution and prevalence of SARS-CoV-2 in the Huanan Seafood Market during the early stages of the COVID-19 outbreak.
RESUMEN
Influenza and coronavirus disease 2019 (COVID-19) represent two respiratory diseases that have significantly impacted global health, resulting in substantial disease burden and mortality. An optimal solution would be a combined vaccine capable of addressing both diseases, thereby obviating the need for multiple vaccinations. Previously, we conceived a chimeric protein subunit vaccine targeting both influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), utilizing the receptor binding domain of spike protein (S-RBD) and the stalk region of hemagglutinin protein (HA-stalk) components. By integrating the S-RBD from the SARS-CoV-2 Delta variant with the headless hemagglutinin (HA) from H1N1 influenza virus, we constructed stable trimeric structures that remain accessible to neutralizing antibodies. This vaccine has demonstrated its potential by conferring protection against a spectrum of strains in mouse models. In this study, we designed an mRNA vaccine candidate encoding the chimeric antigen. The resultant humoral and cellular immune responses were meticulously evaluated in mouse models. Furthermore, the protective efficacy of the vaccine was rigorously examined through challenges with either homologous or heterologous influenza viruses or SARS-CoV-2 strains. Our findings reveal that the mRNA vaccine exhibited robust immunogenicity, engendering high and sustained levels of neutralizing antibodies accompanied by robust and persistent cellular immunity. Notably, this vaccine effectively afforded complete protection to mice against H1N1 or heterosubtypic H5N8 subtypes, as well as the SARS-CoV-2 Delta and Omicron BA.2 variants. Additionally, our mRNA vaccine design can be easily adapted from Delta RBD to Omicron RBD antigens, providing protection against emerging variants. The development of two-in-one vaccine targeting both influenza and COVID-19, incorporating the mRNA platform, may provide a versatile approach to combating future pandemics.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Glicoproteínas Hemaglutininas del Virus de la Influenza , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas de ARNm , Animales , Ratones , SARS-CoV-2/inmunología , COVID-19/prevención & control , COVID-19/inmunología , Vacunas de ARNm/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Humanos , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Vacunas contra la COVID-19/inmunología , Vacunas contra la Influenza/inmunología , Anticuerpos Antivirales/inmunología , Ratones Endogámicos BALB C , Femenino , Subtipo H1N1 del Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/inmunología , Vacunas Sintéticas/inmunología , Gripe Humana/prevención & control , Gripe Humana/inmunología , Anticuerpos Neutralizantes/inmunologíaRESUMEN
SARS-CoV-2 variants with severe immune evasion are a major challenge for COVID-19 prevention, especially the circulating Omicron XBB/BQ.1.1/BF.7 strains. Thus, the next-generation of broad-spectrum vaccines are urgently needed. Previously, we developed a COVID-19 protein subunit vaccine, ZF2001, based on the RBD-homodimer as the immunogen. To adapt SARS-CoV-2 variants, we developed chimeric RBD-heterodimers to induce broad immune responses. In this study, we further explored the concept of tandem RBD homotrimer and heterotrimer. Prototype SARS-CoV-2 RBD-homotrimer, prototype-Delta-BA.1 (PDO) RBD-heterotrimer and Delta-BA.2-BA.5 (DBA2BA5) RBD-heterotrimer were designed. Biochemical and cryo-EM structural characterization demonstrated total epitope exposure of the RBD-trimers. In mouse experiments, PDO and DBA2BA5 elicited broad SARS-CoV-2 neutralization. Potent protection against SARS-CoV-2 variants was observed in challenge assays and was correlated with neutralizing antibody titer. This study validated the design strategy of tandem RBD-heterotrimers as multivalent immunogens and presented a promising vaccine candidate, DBA2BA5, eliciting broad-spectrum immune responses, including against the circulating XBB/BF.7/BQ.1.1.
Asunto(s)
COVID-19 , Vacunas , Animales , Ratones , SARS-CoV-2/genética , COVID-19/prevención & control , Anticuerpos Neutralizantes , Anticuerpos AntiviralesRESUMEN
SARS-CoV-2 is still spreading globally. Studies have reported the stability of SARS-CoV-2 in aerosols and on surfaces under different conditions. However, studies on the stability of SARS-CoV-2 and viral nucleic acids on common food and packaging material surfaces are insufficient. The study evaluated the stability of SARS-CoV-2 using TCID50 assays and the persistence of SARS-CoV-2 nucleic acids using droplet digital polymerase chain reaction on various food and packaging material surfaces. Viral nucleic acids were stable on food and material surfaces under different conditions. The viability of SARS-CoV-2 varied among different surfaces. SARS-CoV-2 was inactivated on most food and packaging material surfaces within 1 day at room temperature but was more stable at lower temperatures. Viruses survived for at least 1 week on pork and plastic at 4°C, while no viable viruses were detected on hairtail, orange, or carton after 3 days. There were viable viruses and a slight titer decrease after 8 weeks on pork and plastic, but titers decreased rapidly on hairtail and carton at -20°C. These results highlight the need for targeted preventive and disinfection measures based on different types of foods, packaging materials, and environmental conditions, particularly in the cold-chain food trade, to combat the ongoing pandemic.
Asunto(s)
COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2/genética , Bioensayo , PlásticosRESUMEN
With deep sequencing of virus genomes within the hosts, intrahost single nucleotide variations (iSNVs) have been used for analyses of virus genome variation and evolution, which is indicated to correlate with viral pathogenesis and disease severity. Little is known about the features of iSNVs among DNA viruses. We performed the epidemiological and laboratory investigation of one outbreak of adenovirus. The whole genomes of viruses in both original oral swabs and cell-cultured virus isolates were deeply sequenced. We identified 737 iSNVs in the viral genomes sequenced from original samples and 46 viral iSNVs in cell-cultured isolates, with 33 iSNVs shared by original samples and cultured isolates. Meanwhile, we found these 33 iSNVs were shared by different patients, among which, three hot spot areas 6367-6401, 9213-9247, and 10 584-10 606 within the functional genes of the adenovirus genome were found. Notably, the substitution rates of iSNVs were closely correlated with the clinical and immune indicators of the patients. Especially a positive correlation to neutrophils was found, indicating a predictable biomarker of iSNV dynamics. Our findings demonstrated the neutrophil-correlated dynamic evolution features of the iSNVs within adenoviruses, which indicates a virus-host interaction during human infection of a DNA virus.
Asunto(s)
Adenoviridae , Neutrófilos , Adenoviridae/genética , Genoma Viral , Humanos , FilogeniaRESUMEN
We isolated 17 viral strains capable of causing cytopathic effects in mammalian cells and death in neonatal mice from sand flies in China. Phylogenetic analysis showed that these strains belonged to the genus Phlebovirus. These findings highlight the need to control this potentially emerging virus to help safeguard public health.
Asunto(s)
Phlebovirus , Psychodidae , Animales , China/epidemiología , Ratones , Phlebovirus/genética , FilogeniaRESUMEN
Coronavirus disease 2019 (COVID-19) has become a public health emergency. The reverse transcriptase real-time quantitative PCR (qRT-PCR) test is currently considered as the gold standard in the laboratory for the etiological detection of COVID-19. However, qRT-PCR results could be false-negative due to the inadequate sensitivity of qRT-PCR. In this study, we have developed and evaluated a novel one-step single-tube nested quantitative real-time PCR (OSN-qRT-PCR) assay for the highly sensitive detection of SARS-CoV-2 targeting the ORF1ab and N genes. The sensitivity of the OSN-qRT-PCR assay was 1 copy/reaction and 10-fold higher than that of the commercial qRT-PCR kit (10 copies/reaction). The clinical performance of the OSN-qRT-PCR assay was evaluated using 181 clinical samples. Among them, 14 qRT-PCR-negative samples (7 had no repetitive results and 7 had no cycle threshold (CT) values) were detected by OSN-qRT-PCR. Moreover, the 7 qRT-PCR-positives in the qRT-PCR gray zone (CT values of ORF1ab ranged from 37.48 to 39.07, and CT values of N ranged from 37.34 to 38.75) were out of the gray zone and thus were deemed to be positive by OSN-qRT-PCR, indicating that the positivity of these samples is confirmative. Compared to the qRT-PCR kit, the OSN-qRT-PCR assay revealed higher sensitivity and specificity, showing better suitability to clinical applications for the detection of SARS-CoV-2 in patients with low viral load.
Asunto(s)
Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Adulto , Anciano , Anciano de 80 o más Años , Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus/virología , Proteínas de la Nucleocápside de Coronavirus , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas de la Nucleocápside/genética , Pandemias , Fosfoproteínas , Neumonía Viral/virología , Poliproteínas , ARN Viral/genética , ARN Viral/metabolismo , SARS-CoV-2 , Sensibilidad y Especificidad , Proteínas Virales/genéticaRESUMEN
Totiviridae, a viral family of double-stranded RNA (dsRNA) viruses, contain a single dsRNA genome 4.6-7.0 kb in length. Totiviridae were initially only known to infect fungi and other eukaryotes as well as plants, but an increase in totiviruses has been detected in insects, mosquitoes, and bats. Here, we describe the isolation and characterization of a strain belonging to the family Totiviridae isolated from Culex tritaeniorhynchus in Kenli, China, in 2016. We isolated a totivirus from field-collected mosquitoes in China by cell culture in Aedes albopictus C6/36 cells, identified the virus by morphological observation and complete genome sequencing, and characterized it by phylogenetic analysis. Transmission electron microscopy identified icosahedral, non-enveloped virus particles with a mean diameter of 35-40 nm. The genome was 7612 bp in length, including two open reading frames (ORFs). ORF1 (5058 nt) encodes the capsid protein, while ORF2 (2216 nt) encodes the viral RNA-dependent RNA polymerase (RdRp). Nucleotide and amino acid homology analysis of isolate showed higher levels of sequence identity with isolate CTV_NJ2 (China, 2010) with 94.87% nucleic acid identity and 97.32% amino acid identity. The isolate was designated C. tritaeniorhynchus totivirus KL (CTV-KL). This is the first identification of a totivirus in a C. tritaeniorhynchus in northern China. Analysis of the virus's morphology, characteristic and genome organization will further enrich our understanding of the molecular and biological characteristics of dsRNA Totiviridae viruses.
Asunto(s)
Culex/virología , Totivirus/genética , Aedes/citología , Aedes/virología , Animales , Proteínas de la Cápside/genética , Línea Celular , China , Genoma Viral/genética , Microscopía Electrónica de Transmisión , Sistemas de Lectura Abierta/genética , Filogenia , ARN Polimerasa Dependiente del ARN , Totivirus/clasificación , Totivirus/aislamiento & purificación , Totivirus/ultraestructuraRESUMEN
Since the 1980s, a comprehensive field and laboratory investigation has been conducted throughout China, and a total of 29 virus species belonging to 7 families and 13 genera were identified through virological, morphological, and immunological methods, as well as whole-genome sequencing and molecular genetic analyses. Most of the virus isolates belong to 9 genera in the families Flaviviridae, Bunyaviridae, Togaviridae, and Reoviridae. Among them, 4 genera (Orthobunyavirus, Bunyavirus, Phlebovirus, and Nairovirus) belong to the family Bunyaviridae and 3 genera (Seadonavirus, Orbivirus, and Cypovirus) belong to the family Reoviridae. Analyses of the relationships between viruses and human/animal diseases indicated that Japanese encephalitis virus, dengue virus, severe fever with thrombocytopenia syndrome virus, tick-borne encephalitis virus, Crimean-Congo hemorrhagic fever virus, West Nile virus, and Tahyna virus can cause human and animal infections and disease epidemics in China. This review systematically introduces the current status of the diversity and geographical distribution of arboviruses and vectors in China. In addition, our results provide strong technical support for the prevention and control of arboviral diseases, the treatment of epidemics, and the early warning and prediction of diseases, and so they are significant for the control and prevention of arboviral diseases in Asia and around the world.
Asunto(s)
Infecciones por Arbovirus/epidemiología , Infecciones por Arbovirus/virología , Arbovirus , Animales , Infecciones por Arbovirus/diagnóstico , Infecciones por Arbovirus/transmisión , Arbovirus/clasificación , Arbovirus/genética , Arbovirus/aislamiento & purificación , China/epidemiología , Vectores de Enfermedades , Geografía Médica , Humanos , Incidencia , FilogeniaRESUMEN
BACKGROUND: Kadipiro virus (KDV) belongs to the Reoviridae family, which consists of segmented, non-enveloped, double-stranded RNA viruses. It has previously been isolated from Culex, Anopheles, Armigeres and Aedes mosquitoes in Indonesia and China. Here, we describe the isolation and characterization of SDKL1625 from Anopheles sinensis mosquitoes in Shandong province, China. METHODS: In this study, we isolated Kadipiro virus in Aedes albopictus C6/36 cell culture and the complete genome sequencing was made by next generation sequencing. RESULTS: We isolated and characterized a Kadipiro virus from Anopheles sinensis mosquitoes in 2016 in Shandong province, China. Nucleotide and amino acid homology analysis of SDKL1625 showed higher levels of sequence identity with QTM27331 (Odonata, China, 2016) than with JKT-7075 (Culex fuscocephalus, Indonesia, 1981). The SDKL1625 has 86-97% amino acid identity with the JKT-7075, 88-99% amino acid identity with the QTM27331. Among the 12 fragments, VP1, VP2, VP4, VP6, VP7, VP9 and VP12 showed high amino acid identity (> 90%) and VP5 showed the lowest identity (86% and 88%). CONCLUSIONS: This is the first identification of KDV from mosquito in China. Virus morphology and genome organization were also determined, which will further enrich our understanding of the molecular biological characteristics of KDV and seadornaviruses.
Asunto(s)
Anopheles/virología , Coltivirus/clasificación , Coltivirus/genética , Animales , Línea Celular , China , Coltivirus/aislamiento & purificación , Coltivirus/ultraestructura , Genoma Viral , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Insectos Vectores/virología , Filogenia , ARN ViralRESUMEN
This review assesses the current state of understanding of the calculation of the rate of flow of gases, vapours and liquids confined in channels, in porous media and in permeable materials with an emphasis on the flow of water and its vapour. One motivation is to investigate the relation between the permeation rate of moisture and that of a noncondensable test gas such as helium, another is to assist in unifying theory and experiment across disparate fields. Available theories of single component ideal gas flows in channels of defined geometry (cylindrical, rectangular and elliptical) are described and their predictions compared with measurement over a wide range of conditions defined by the Knudsen number. Theory for two phase flows is assembled in order to understand the behaviour of four standard water leak configurations: vapour, slug, Washburn and liquid flow, distinguished by the number and location of phase boundaries (menisci). Air may or may not be present as a background gas. Slip length is an important parameter that greatly affects leak rates. Measurements of water vapour flows confirm that water vapour shows ideal gas behaviour. Results on carbon nanotubes show that smooth walls may lead to anomalously high slip lengths arising from the properties of 'confined' water. In porous media, behaviour can be matched to the four standard leaks. Traditional membrane permeation models consider that the permeant dissolves, diffuses and evaporates at the outlet side, ideas we align with those from channel flow. Recent results on graphite oxide membranes show examples where helium which does not permeate while at the same time moisture is almost unimpeded, again a result of confined water. We conclude that while there is no a priori relation between a noncondensable gas flow and a moisture flow, measurements using helium will give results within two orders of magnitude of the moisture flow rate, except in the case where there is anomalous slip or confined water, when moisture specific measurements are essential.
RESUMEN
Water is ubiquitous; the science of its transport in micro- and nanochannels has applications in electronics, medicine, filtration, packaging, and earth and planetary science. Validated theory for water vapor and two-phase water flows is a "missing link"; completing it enables us to define and quantify flow in a set of four standard leak configurations with dimensions from the nanoscale to the microscale. Here we report the first measurements of water vapor flow rates through four silica microchannels as a function of humidity, including under conditions when air is present as a background gas. An important finding is that the tangential momentum accommodation coefficient (TMAC) is strongly modified by surface layers of adsorbed water molecules, in agreement with previous work on the TMAC for nitrogen molecules impacting a silica surface in the presence of moisture. We measure enhanced flow rates for two-phase flows in silica microchannels driven by capillary filling. For the measurement of flows in nanochannels we use heavy water mass spectrometry. We construct the theory for the flow rates of the dominant modes of water transport through each of the four standard configurations and benchmark it against our new measurements in silica and against previously reported measurements for nanochannels in carbon nanotubes, carbon nanopipes, and porous alumina. The findings show that all behavior can be described by the four standard leak configurations and that measurements of leak behavior made using other molecules, such as helium, are not reliable. Single-phase water vapor flow is overestimated by a helium measurement, while two-phase flows are greatly underestimated for channels larger than 100 nm or for all channels when boundary slip applies, to an extent that depends on the slip length for the liquid-phase flows.
RESUMEN
Purpose: Using swept-source optical coherence tomography (SS-OCT) to explore the effect of high myopia on superficial retina vascular density (SVD) of the peripheral region and the area of radial peripapillary capillaries (RPCs). Methods: In this cross-sectional study, a total of 91 volunteers (34 male subjects and 57 female subjects) were recruited and 34 individuals in the high myopic group (group A) and 57 individuals in the low myopic group (group B). Using the wide-field OCT-angiography (OCTA; 24 × 20 mm, 120 degrees angular field) compared the peripheral SVD and the area of RPC between the two groups and investigated its correlation with ocular axial length and diopter. Results: Peripheral SVD of group B around the supratemporal (SVD1), supranasal (SVD2), infratemporal (SVD3), and infranasal (SVD4) directions were significantly higher than those of group A (all P < 0.05). The RPC area of group B around the supranasal (RPC2) and infranasal (RPC4) were significantly larger than that of group A (all P < 0.01). Ocular axial length and diopter were significantly correlated with SVD2 and SVD4 (all P < 0.05), and they also have a significant correlation with the supratemporal (RPC1), RPC2, and RPC4 (all P < 0.05). Conclusions: Peripheral SVD was decreased and the RPC area was mainly reduced on the nasal side in the high myopic group. Peripheral SVD and area of RPC are significantly correlated with ocular axial length and diopter. Translational Relevance: The wide-field OCTA can be used for new detection of myopia's impact on the retinal peripheral SVD and area of peripapillary RPC, offering new insights into the progression of myopia.
Asunto(s)
Capilares , Vasos Retinianos , Tomografía de Coherencia Óptica , Humanos , Masculino , Femenino , Estudios Transversales , Tomografía de Coherencia Óptica/métodos , Adulto , Vasos Retinianos/diagnóstico por imagen , Vasos Retinianos/patología , Capilares/diagnóstico por imagen , Capilares/patología , Angiografía con Fluoresceína/métodos , Adulto Joven , Miopía/diagnóstico por imagen , Miopía/patología , Miopía/fisiopatología , Disco Óptico/irrigación sanguínea , Disco Óptico/diagnóstico por imagen , Disco Óptico/patología , Densidad Microvascular , Persona de Mediana Edad , Longitud Axial del Ojo/diagnóstico por imagen , Longitud Axial del Ojo/patologíaRESUMEN
Almost all the neutralizing antibodies targeting the receptor-binding domain (RBD) of spike (S) protein show weakened or lost efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged or emerging variants, such as Omicron and its sub-variants. This suggests that highly conserved epitopes are crucial for the development of neutralizing antibodies. Here, we present one nanobody, N235, displaying broad neutralization against the SARS-CoV-2 prototype and multiple variants, including the newly emerged Omicron and its sub-variants. Cryo-electron microscopy demonstrates N235 binds a novel, conserved, cryptic epitope in the N-terminal domain (NTD) of the S protein, which interferes with the RBD in the neighboring S protein. The neutralization mechanism interpreted via flow cytometry and Western blot shows that N235 appears to induce the S1 subunit shedding from the trimeric S complex. Furthermore, a nano-IgM construct (MN235), engineered by fusing N235 with the human IgM Fc region, displays prevention via inducing S1 shedding and cross-linking virus particles. Compared to N235, MN235 exhibits varied enhancement in neutralization against pseudotyped and authentic viruses in vitro. The intranasal administration of MN235 in low doses can effectively prevent the infection of Omicron sub-variant BA.1 and XBB in vivo, suggesting that it can be developed as a promising prophylactic antibody to cope with the ongoing and future infection.
Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Epítopos , Inmunoglobulina M , SARS-CoV-2 , Anticuerpos de Dominio Único , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , Humanos , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/farmacología , Epítopos/inmunología , Epítopos/genética , Epítopos/química , Animales , COVID-19/inmunología , COVID-19/virología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Inmunoglobulina M/inmunología , Inmunoglobulina M/genética , Ratones , Dominios Proteicos , Microscopía por CrioelectrónRESUMEN
The game between therapeutic monoclonal antibodies (mAbs) and continuously emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has favored the virus, as most therapeutic mAbs have been evaded. Addressing this challenge, we systematically explored a reproducible bispecific antibody (bsAb)-dependent synergistic effect in this study. It could effectively restore the neutralizing activity of the bsAb when any of its single mAbs is escaped by variants. This synergy is primarily attributed to the binding angle of receptor-binding domain (RBD)-5, facilitating inter-spike cross-linking and promoting cryptic epitope exposure that classical antibody cocktails cannot achieve. Furthermore, RBD-5 with RBD-2, RBD-6, and RBD-7, alongside RBD-8, also exhibit significantly enhanced effects. This study not only shifts the paradigm in understanding antibody interactions but paves the way for developing more effective therapeutic antibodies against rapidly mutating SARS-CoV-2, with Dia-19 already showing promise against emerging variants like BA.2.86, EG.5.1, and JN.1.
Asunto(s)
Anticuerpos Biespecíficos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/inmunología , Humanos , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , COVID-19/terapia , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Epítopos/inmunología , Unión Proteica , AnimalesRESUMEN
Coronaviruses (CoVs) have brought serious threats to humans, particularly severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), which continually evolves into multiple variants. These variants, especially Omicron, reportedly escape therapeutic antibodies and vaccines, indicating an urgent need for new antivirals with pan-SARS-CoV-2 inhibitory activity. We previously reported that a peptide fusion inhibitor, P3, targeting heptad repeated-1 (HR1) of SARS-CoV-2 spike (S) protein, could inhibit viral infections. Here, we further designed multiple derivatives of the P3 based on structural analysis and found that one derivative, the P315V3, showed the most efficient antiviral activity against SARS-CoV-2 variants and several other sarbecoviruses, as well as other human-CoVs (HCoVs). P315V3 also exhibited effective prophylactic efficacy against the SARS-CoV-2 Delta and Omicron variants in mice via intranasal administration. These results suggest that P315V3, which is in Phase II clinical trial, is promising for further development as a nasal pan-SARS-CoV-2 or pan-CoVs inhibitor to prevent or treat CoV diseases.
Asunto(s)
COVID-19 , Humanos , Animales , Ratones , COVID-19/prevención & control , SARS-CoV-2 , Administración Intranasal , Secuencia de Aminoácidos , Péptidos/farmacologíaRESUMEN
With the widespread vaccinations against coronavirus disease 2019 (COVID-19), we are witnessing gradually waning neutralizing antibodies and increasing cases of breakthrough infections, necessitating the development of drugs aside from vaccines, particularly ones that can be administered outside of hospitals. Here, we present two cross-reactive nanobodies (R14 and S43) and their multivalent derivatives, including decameric ones (fused to the immunoglobulin M [IgM] Fc) that maintain potent neutralizing activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) after aerosolization and display not only pan-SARS-CoV-2 but also varied pan-sarbecovirus activities. Through respiratory administration to mice, monovalent and decameric R14 significantly reduce the lung viral RNAs at low dose and display potent pre- and post-exposure protection. Furthermore, structural studies reveal the neutralizing mechanisms of R14 and S43 and the multiple inhibition effects that the multivalent derivatives exert. Our work demonstrates promising convenient drug candidates via respiratory administration against SARS-CoV-2 infection, which can contribute to containing the COVID-19 pandemic.
Asunto(s)
COVID-19 , Anticuerpos de Dominio Único , Animales , Ratones , Humanos , SARS-CoV-2 , Pandemias , Anticuerpos Neutralizantes , Fragmentos Fc de InmunoglobulinasRESUMEN
The COVID-19 response strategies in Chinese mainland were recently adjusted due to the reduced pathogenicity and enhanced infectivity of Omicron subvariants. In Chengdu, China, an infection wave was predominantly induced by the BA.5 subvariant. It is crucial to determine whether the hybrid anti-SARS-CoV-2 immunity following BA.5 infection, coupled with a variety of immune background, is sufficient to shape the immune responses against newly emerged Omicron subvariants, especially for XBB lineages. To investigate this, we collected serum and nasal swab samples from 108 participants who had been infected in this BA.5 infection wave, and evaluated the neutralization against pseudoviruses. Our results showed that convalescent sera from individuals, regardless of vaccination history, had remarkably compromised neutralization capacities against the newly emerged XBB and XBB.1.5 subvariants. Although post-vaccination with BA.5 breakthrough infection slightly elevated plasma neutralizing antibodies against a part of pseudoviruses, the neutralization activities were remarkably impaired by XBB lineages. Furthermore, we analyzed the impacts of the number of vaccinations, age, and sex on the humoral and cellular immune response after BA.5 infection. Our findings suggest that the neutralization against XBB lineages that elicited by current hybrid immunity after BA.5 infection, are remained at low levels, indicating an urgent need for the development of next-generation of COVID-19 vaccines that designed based on the XBB sub-lineages and other future variants.