Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 43(11): 2946-2955, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35388129

RESUMEN

Lung adenocarcinoma (LUAD) characterized by high metastasis and mortality is the leading subtype of non-small cell lung cancer. Evidence shows that some microRNAs (miRNAs) may act as oncogenes or tumor suppressor genes, leading to malignant tumor occurrence and progression. To better understand the molecular mechanism associated with miRNA methylation in LUAD progression and clinical outcomes, we investigated the correlation between miR-148a-3p methylation and the clinical features of LUAD. In the LUAD cell lines and tumor tissues from patients, miR-148a-3p was found to be significantly downregulated, while the methylation of miR-148a-3p promoter was notably increased. Importantly, miR-148a-3p hypermethylation was closely associated with lymph node metastasis. We demonstrated that mitogen-activated protein (MAP) kinase kinase kinase 9 (MAP3K9) was the target of miR-148a-3p and that MAP3K9 levels were significantly increased in both LUAD cell lines and clinical tumor tissues. In A549 and NCI-H1299 cells, overexpression of miR-148a-3p or silencing MAP3K9 significantly inhibited cell growth, migration, invasion and cytoskeleton reorganization accompanied by suppressing the epithelial-mesenchymal transition. In a nude mouse xenograft assay we found that tumor growth was effectively inhibited by miR-148a-3p overexpression. Taken together, the promoter methylation-associated decrease in miR-148a-3p could lead to lung cancer metastasis by targeting MAP3K9. This study suggests that miR-148a-3p and MAP3K9 may act as novel therapeutic targets for the treatment of LUAD and have potential clinical applications.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Quinasas Quinasa Quinasa PAM , MicroARNs , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Metilación , MicroARNs/genética , MicroARNs/metabolismo
2.
Acta Pharmacol Sin ; 42(9): 1486-1497, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33893396

RESUMEN

Non-small cell lung cancer (NSCLC) is characterized by a high incidence of metastasis and poor survival. As epithelial-mesenchymal transition (EMT) is well recognized as a major factor initiating tumor metastasis, developing EMT inhibitor could be a feasible treatment for metastatic NSCLC. Recent studies show that triptolide isolated from Tripterygium wilfordii Hook F attenuated the migration and invasion of breast cancer, colon carcinoma, and ovarian cancer cells, and EMT played important roles in this process. In the present study we investigated the effect of triptolide on the migration and invasion of NSCLC cell lines. We showed that triptolide (0.5, 1.0, 2.0 nM) concentration-dependently inhibited the migration and invasion of NCI-H1299 cells. Triptolide treatment concentration-dependently suppressed EMT in NCI-H1299 cells, evidenced by significantly elevated E-cadherin expression and reduced expression of ZEB1, vimentin, and slug. Furthermore, triptolide treatment suppressed ß-catenin expression in NCI-H1299 and NCI-H460 cells, overexpression of ß-catenin antagonized triptolide-caused inhibition on EMT, whereas knockout of ß-catenin enhanced the inhibitory effect of triptolide on EMT. Administration of triptolide (0.75, 1.5 mg/kg per day, ip, every 2 days) for 18 days in NCI-H1299 xenograft mice dose-dependently suppressed the tumor growth, restrained EMT, and decreased lung metastasis, as evidence by significantly decreased expression of mesenchymal markers, increased expression of epithelial markers as well as reduced number of pulmonary lung metastatic foci. These results demonstrate that triptolide suppresses NSCLC metastasis by targeting EMT via reducing ß-catenin expression. Our study implies that triptolide may be developed as a potential agent for the therapy of NSCLC metastasis.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Diterpenos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fenantrenos/farmacología , beta Catenina/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Compuestos Epoxi/farmacología , Xenoinjertos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Ratones Endogámicos BALB C , Ratones Desnudos , beta Catenina/genética
3.
J Nanobiotechnology ; 18(1): 146, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33076924

RESUMEN

BACKGROUNDS: Surgical resection and adjunct chemotherapy or radio-therapy has been applied for the therapy of superficial malignant tumor in clinics. Whereas, there are still some problems limit its clinical use, such as severe pains and side effect. Thus, it is urgent need to develop effective, minimally invasive and low toxicity therapy stagey for superficial malignant tumor. Topical drug administration such as microneedle patches shows the advantages of reduced systemic toxicity and nimble application and, as a result, a great potential to treat superficial tumors. METHODS: In this study, microneedle (MN) patches were fabricated to deliver photosensitizer IR820 and chemotherapy agent cisplatin (CDDP) for synergistic chemo-photodynamic therapy against breast cancer. RESULTS: The MN could be completely inserted into the skin and the compounds carrying tips could be embedded within the target issue for locoregional cancer treatment. The photodynamic therapeutic effects can be precisely controlled and switched on and off on demand simply by adjusting laser. The used base material vinylpyrrolidone-vinyl acetate copolymer (PVPVA) is soluble in both ethanol and water, facilitating the load of both water-soluble and water-insoluble drugs. CONCLUSIONS: Thus, the developed MN patch offers an effective, user-friendly, controllable and low-toxicity option for patients requiring long-term and repeated cancer treatments.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Cisplatino/farmacología , Sistemas de Liberación de Medicamentos/métodos , Verde de Indocianina/farmacología , Fotoquimioterapia/métodos , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Liberación de Fármacos , Quimioterapia , Femenino , Humanos , Verde de Indocianina/análogos & derivados , Ratones Endogámicos BALB C , Fármacos Fotosensibilizantes/administración & dosificación , Povidona/análogos & derivados
4.
J Nanobiotechnology ; 18(1): 57, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245495

RESUMEN

BACKGROUNDS: Intolerable toxicity and unsatisfactory therapeutic effects are still big problems retarding the use of chemotherapy against cancer. Nano-drug delivery system promised a lot in increasing the patients' compliance and therapeutic efficacy. As a unique nano-carrier, supermolecular aggregation nanovehicle has attracted increasing interests due to the following advantages: announcing drug loading efficacy, pronouncing in vivo performance and simplified production process. METHODS: In this study, the supermolecular aggregation nanovehicle of bortezomib (BTZ) was prepared to treat breast cancer. RESULTS: Although many supermolecular nanovehicles are inclined to disintegrate due to the weak intermolecular interactions among the components, the BTZ supermolecules are satisfying stable. To shed light on the reasons behind this, the forces driving the formation of the nanovehicles were detailed investigated. In other words, the interactions among BTZ and other two components were studied to characterize the nanovehicles and ensure its stability. CONCLUSIONS: Due to the promising tumor targeting ability of the BTZ nanovehicles, the supermolecule displayed promising tumor curing effects and negligible systemic toxicity.


Asunto(s)
Antineoplásicos/farmacología , Bortezomib/química , Bortezomib/farmacología , Sistemas de Liberación de Medicamentos/métodos , Animales , Línea Celular Tumoral , Femenino , Humanos , Ensayo de Materiales , Ratones , Ratones Endogámicos BALB C , Nanopartículas , Propiedades de Superficie
5.
J Nanobiotechnology ; 18(1): 110, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32762751

RESUMEN

BACKGROUNDS: Due to the unexpected side effects of the iodinated contrast agents, novel contrast agents for X-ray computed tomography (CT) imaging are urgently needed. Nanoparticles made by heavy metal elements are often employed, such as gold and bismuth. These nanoparticles have the advantages of long in vivo circulation time and tumor targeted ability. However, due to the long residence time in vivo, these nanoparticles may bring unexpected toxicity and, the preparation methods of these nanoparticles are complicated and time-consuming. METHODS: In this investigation, a small molecular bismuth chelate using diethylenetriaminepentaacetic acid (DPTA) as the chelating agent was proposed to be an ideal CT contrast agent. RESULTS: The preparation method is easy and cost-effective. Moreover, the bismuth agent show better CT imaging for kidney than iohexol in the aspect of improved CT values. Up to 500 µM, the bismuth agent show negligible toxicity to L02 cells and negligible hemolysis. And, the bismuth agent did not induce detectable morphology changes to the main organs of the mice after intravenously repeated administration at a high dose of 250 mg/kg. The pharmacokinetics of the bismuth agent follows the first-order elimination kinetics and, it has a short half-life time of 0.602 h. The rapid clearance from the body promised its excellent biocompatibility. CONCLUSIONS: This bismuth agent may serve as a potential candidate for developing novel contrast agent for CT imaging in clinical applications.


Asunto(s)
Bismuto , Medios de Contraste , Tomografía Computarizada por Rayos X/métodos , Animales , Bismuto/química , Bismuto/farmacocinética , Bismuto/toxicidad , Medios de Contraste/química , Medios de Contraste/farmacocinética , Medios de Contraste/toxicidad , Yohexol/química , Yohexol/farmacocinética , Riñón/diagnóstico por imagen , Riñón/metabolismo , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Ratones , Ácido Pentético/química , Ácido Pentético/farmacocinética , Distribución Tisular , Imagen de Cuerpo Entero
6.
Dis Aquat Organ ; 142: 13-21, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33150871

RESUMEN

Nocardia seriolae is the causative agent of nocardiosis in both marine and freshwater fish. Here, we report on multiple outbreaks of nocardiosis associated with elevated mortality (23-35%) in farmed largemouth bass in Sichuan, China, from 2017 to 2018. A total of 9 strains isolated from diseased largemouth bass were identified as N. seriolae by phenotypic characterization, 16S rRNA and hsp65 gene sequence analysis. The clinical signs of infected largemouth bass included hemorrhage, skin ulcers and prominent tubercles varying in size in the gill, liver, spleen and kidney. Experimental infection indicated that these isolates were the pathogens responsible for the mortalities. In vitro antibacterial activities of 12 antibiotics against N. seriolae isolates were determined as minimum inhibitory concentrations. Histopathological observation of diseased fish infected with N. seriolae showed necrotizing granulomatous hepatitis, nephritis, splenitis, epithelial hypertrophy and hyperplasia with degenerative changes of the epithelium in the gill. Large quantities of bacterial aggregates were found in the necrotic area of the granuloma by Lillie-Twort Gram stain and immunocytochemistry. Our findings indicated that N. seriolae is a serious threat to the largemouth bass Micropterus salmoides industry in Southwest China.


Asunto(s)
Lubina , Enfermedades de los Peces , Nocardia , Animales , China/epidemiología , Enfermedades de los Peces/epidemiología , Nocardia/genética , Filogenia , ARN Ribosómico 16S/genética
7.
Angiogenesis ; 22(3): 457-470, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31147887

RESUMEN

OBJECTIVE: This study aims to explore the feasibility of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) in assessing vessel function and tumour aggressiveness during anti-angiogenesis treatment. MATERIALS AND METHODS: A colon cancer xenograft model was established in BALB/C nude mice with the HCT116 cell line. Sixteen mice were randomly divided into Group A and Group B, which were treated with saline or bevacizumab by intraperitoneal injection on the 1st, 4th, 7th, 10th and 13th days and underwent DCE-MRI and BOLD-MRI examinations before and on the 3rd, 6th, 9th, 12th and 15th days after treatment. Group C was treated with oxaliplatin monotherapy, and Group D was treated with bevacizumab and oxaliplatin as a point of comparison for therapeutic effects. The pathological examinations included HE, HIF-1α, fibronectin and TUNEL staining, as well as α-SMA and CD31 double staining. One-way analysis of variance and correlation analysis were the main methods used for statistical analysis. RESULTS: Group D manifested the highest tumour inhibition rate and smallest tumour volume on day 15, followed by Group C, Group B and Group A. Ktrans (F = 81.386, P < 0.001), Kep (F = 45.901, P < 0.001), Ve (F = 384.290, P < 0.001) and R2* values (F = 89.323, P < 0.001) showed meaningful trends with time in Group B but not Group A. The Ktrans values and tumour vessel maturity index (VMI) were higher than baseline values 3-12 days after bevacizumab treatment. The CD31 positive staining rate and VMI had the strongest correlations with Ktrans values, followed by AUC180, Ve and Kep values. The R2* value positively correlated with the positive staining rates of HIF-1α and fibronectin. CONCLUSION: Intermittent application of low-dose anti-angiogenic inhibitor treatment may help improve the effect of chemotherapy by reducing hypoxia-related treatment resistance and improving drug delivery. DCE-MRI is useful for evaluating vessel maturity and vascular normalization, while BOLD-MRI may help to predict tumour hypoxia and metastatic potential after anti-vascular treatment.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Imagen por Resonancia Magnética , Neovascularización Patológica/tratamiento farmacológico , Microambiente Tumoral , Inhibidores de la Angiogénesis/farmacología , Animales , Femenino , Células HCT116 , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Carga Tumoral/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
8.
Med Sci Monit ; 25: 3485-3494, 2019 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-31077263

RESUMEN

BACKGROUND Numerous studies have explored diagnosis of pulmonary nodules using perfusion computed tomography (CT); however, findings were not always consistent between studies. Th e present study aimed to summarize evidence on the diagnostic value of perfusion CT for distinguishing between lung cancer and benign lesions. MATERIAL AND METHODS We performed a systematic literature search on lung cancer and benign pulmonary lesions performed with perfusion CT. The searches were undertaken in English or Chinese language in Medline, PubMed, Embase, Cochrane Library, Web of Science, and China National Knowledge Infrastructure database from Jan 2010 to Nov 2018. Standardized mean differences (SMDs) and 95% confidence intervals (CIs) of blood volume (BV), blood flow (BF), mean transit time (MTT), and permeability surface (PS) were calculated using Review Manager 5.3. Publication bias, sensitivity, specificity, and the area under the curve (AUC) were calculated using Stata12.0. RESULTS Fourteen studies comprising 1032 malignant and 447 benign pulmonary lesions were analyzed. Lung cancer had higher BV, BF, MTT, and PS values than benign lesions. SMDs and 95% CIs of BV, BF, MTT, and PS were 2.29 (1.43, 3.16), 0.50 (0.14, 0.86), 0.55 (0.39, 0.72), and 1.21 (0.87, 1.56), respectively. AUC values of BV and PS were 0.92 (0.90, 0.94) and 0.83 (0.80, 0.86), respectively. CONCLUSIONS CT perfusion imaging is a valuable technique for the diagnosis of pulmonary nodules. Lung cancer had higher perfusion and permeability than benign lesions. The evidence suggests blood volume is the best surrogate marker for characterizing the blood supply, while permeability surface has a high specificity in quantifying the vascular permeability.


Asunto(s)
Neoplasias Pulmonares/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Adulto , Anciano , Anciano de 80 o más Años , Área Bajo la Curva , China , Femenino , Humanos , Pulmón/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Perfusión , Imagen de Perfusión/métodos , Sesgo de Publicación , Sensibilidad y Especificidad
10.
Pharmacol Res ; 123: 130-142, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28712972

RESUMEN

Epithelial-mesenchymal transition (EMT) plays an important role in prostate cancer (PCa) metastasis; thus, developing EMT inhibitors may be a feasible treatment for metastatic PCa. Here, we discovered that arenobufagin and four other bufadienolides suppressed PC3 cell EMT. These compounds modulated EMT marker expression with elevating E-cadherin and reducing ZEB1, vimentin and slug expression, and attenuated the migration and invasion of PC3 cells. Among these five compounds, arenobufagin exhibited the most potent activity. We found that the mRNA and protein expression of ß-catenin and ß-catenin/TCF4 target genes, which are related to tumor invasion and metastasis, were down-regulated after arenobufagin treatment. Overexpression of ß-catenin in PC3 cells antagonized the EMT inhibition effect of arenobufagin, while silencing ß-catenin with siRNA enhanced the inhibitory effect of arenobufagin on EMT. In addition, arenobufagin restrained xenograft tumor EMT, as demonstrated by decreased mesenchymal marker expression and increased epithelial marker expression, and reduced the tumor metastatic foci in lung. This study demonstrates a novel anticancer activity of arenobufagin, which inhibits PC3 cell EMT by down-regulating ß-catenin, thereby reducing PCa metastasis. In addition, it also provides new evidence for the development of arenobufagin as a treatment for metastatic prostate cancer.


Asunto(s)
Antineoplásicos/farmacología , Bufanólidos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias de la Próstata/metabolismo , beta Catenina/metabolismo , Animales , Antineoplásicos/uso terapéutico , Bufanólidos/uso terapéutico , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , beta Catenina/genética
11.
Sci Rep ; 14(1): 7654, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561419

RESUMEN

Epidermal growth factor receptor (EGFR) exon 19 deletion is a major driver for the drug resistance of non-small cell lung cancer (NSCLC). Identification small inhibitor capable of selectively inhibiting EGFR-19del NSCLC is a desirable strategy to overcome drug resistance in NSCLC. This study aims to screen an inhibitor for EGFR exon 19 deletion cells and explore its underlying mechanism. High through-put screen was conducted to identify an inhibitor for EGFR-19del NSCLC cells. And tenovin-3 was identified as a selective inhibitor of PC9 cells, an EGFR-19del NSCLC cells. Tenovin-3 showed particular inhibition effect on PC9 cells proliferation through inducing apoptosis and ferroptosis. Mechanistically, tenovin-3 might induce the apoptosis and ferroptosis of PC9 cells through mitochondrial pathway, as indicated by the change of VDAC1 and cytochrome c (cyt c). And bioinformatics analyses showed that the expression levels of SLC7A11 and CPX4 were correlated with NSCLC patient's survival. Our findings provide evidences for tenovin-3 to be developed into a novel candidate agent for NSCLC with EGFR exon 19 deletion. Our study also suggests that inducing ferroptosis may be a therapeutic strategy for NSCLC with EGFR exon 19 deletion.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Ferroptosis , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Receptores ErbB/metabolismo , Apoptosis , Línea Celular Tumoral , Resistencia a Antineoplásicos , Inhibidores de Proteínas Quinasas/farmacología , Mutación
12.
J Exp Clin Cancer Res ; 43(1): 83, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493151

RESUMEN

BACKGROUND: Tumor angiogenesis inhibitors have been applied for non-small cell lung cancer (NSCLC) therapy. However, the drug resistance hinders their further development. Intercellular crosstalk between lung cancer cells and vascular cells was crucial for anti-angiogenenic resistance (AAD). However, the understanding of this crosstalk is still rudimentary. Our previous study showed that Glioma-associated oncogene 1 (Gli1) is a driver of NSCLC metastasis, but its role in lung cancer cell-vascular cell crosstalk remains unclear. METHODS: Conditioned medium (CM) from Gli1-overexpressing or Gli1-knockdown NSCLC cells was used to educate endothelia cells and pericytes, and the effects of these media on angiogenesis and the maturation of new blood vessels were evaluated via wound healing assays, Transwell migration and invasion assays, tube formation assays and 3D coculture assays. The xenograft model was conducted to establish the effect of Gli1 on tumor angiogenesis and growth. Angiogenic antibody microarray analysis, ELISA, luciferase reporte, chromatin immunoprecipitation (ChIP), bFGF protein stability and ubiquitination assay were performed to explore how Gli1 regulate bFGF expression. RESULTS: Gli1 overexpression in NSCLC cells enhanced the endothelial cell and pericyte motility required for angiogenesis required for angiogenesis. However, Gli1 knockout in NSCLC cells had opposite effect on this process. bFGF was critical for the enhancement effect on tumor angiogenesis. bFGF treatment reversed the Gli1 knockdown-mediated inhibition of angiogenesis. Mechanistically, Gli1 increased the bFGF protein level by promoting bFGF transcriptional activity and protein stability. Importantly, suppressing Gli1 with GANT-61 obviously inhibited angiogenesis. CONCLUSION: The Gli1-bFGF axis is crucial for the crosstalk between lung cancer cells and vascular cells. Targeting Gli1 is a potential therapeutic approach for NSCLC angiogenesis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Pericitos/metabolismo , Pericitos/patología , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Angiogénesis , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Movimiento Celular , Línea Celular Tumoral , Proliferación Celular
13.
Fitoterapia ; 165: 105407, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36581180

RESUMEN

Six new limonoids, named hainanxylogranolides A-F (1-6), together with nineteen known ones (7-25) were isolated from the seeds of a Hainan mangrove Xylocarpus granatum. The structures of the new compounds were established by extensive NMR spectroscopic data combined with the DFT and TDDFT calculated electronic circular dichroism spectra. Hainanxylogranolide A (1) is the aromatic B-ring limonoid containing a central pyridine ring and a C-17 substituted γ(21)-hydroxybutenolide moiety. Hainanxylogranolide B (2) belongs to the small group of mexicanolides containing a C3-O-C8 bridge, whereas hainanxylogranolides C and D (3 and 4) are mexicanolides comprising a C1-O-C8 bridge. Compounds 9 and 25 posed obvious inhibition effect on the tube formation of HUVECs. There are only about 25% tube-like structures were observed at the concentration of 40.0 µM of compound 25. The antiviral activities of the isolates against herpes simplex virus-1 (HSV-1) and severe fever with thrombocytopenia syndrome virus (SFTSV) were tested in vitro. Compound 23 exhibited moderate anti-SFTSV activity with the IC50 value of 29.58 ± 0.73 µM. This is the first report of anti-angiogenic effect and anti-SFTSV activity of limonoids from the genus Xylocarpus.


Asunto(s)
Limoninas , Meliaceae , Estructura Molecular , Cristalografía por Rayos X , Antivirales/farmacología , Semillas/química , Meliaceae/química
15.
Biomater Adv ; 147: 213323, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36764198

RESUMEN

The cancer chemodynamic therapy based on the Fenton reaction has been attracting more and more attention. However, the performance of the Fenton reaction is restricted by the unsuitable physiological pH value and inadequate H2O2 content in the tumor microenvironment (TME). In this study, we proposed a novel method of inducing lipid peroxide (LPO) of the cancer cell membrane, whose performance is not limited by the pH value and H2O2 in the TME. The activatable LPO-inducing liposomes were constructed by encapsulating Fe3+-containing compound ferric ammonium citrate (FC) in the unsaturated soybean phospholipids (SPC). It was found that the FC could be reduced by the overexpressed glutathione (GSH) in the TME and produce iron redox couple. The Fe3+/Fe2+ mediated the peroxidation of the unsaturated SPC and induced the LPO in the cancer cells. Finally, LPO accumulation led to cancer cell death and tumor growth inhibition. Furthermore, the activatable liposomes did not damage healthy tissues because of the low GSH content in normal tissues and the GSH-triggered activation of the nanocarrier. Together, our findings revealed that FC-SPC-lipo displayed excellent anti-tumor performance and its therapeutic effects are less influenced by the TME, compared with the traditional ferroptosis.


Asunto(s)
Peróxidos Lipídicos , Neoplasias , Humanos , Peróxidos Lipídicos/farmacología , Peróxidos Lipídicos/uso terapéutico , Liposomas/uso terapéutico , Peróxido de Hidrógeno/metabolismo , Neoplasias/tratamiento farmacológico , Membrana Celular/metabolismo , Microambiente Tumoral
16.
Heliyon ; 9(5): e16158, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37215793

RESUMEN

Non-coding RNAs are crucial for cancer progression, among which miR-34c-3p has been demonstrated to be a tumor suppressor in non-small cell lung cancer (NSCLC). In this study, we attempt to identify flavonoids that can up-regulate miR-34c-3p expression, evaluate the anticancer activity of the flavonoids and explore its underlying mechanism in NSCLC cells. Six flavonoids were screened by RT-qPCR and we found that jaceosidin significantly increased miR-34c-3p expression in A549 cells. We found that jaceosidin inhibited the proliferation, migration and invasion of A549 and H1975 cells in a dose-relevant manner, indicated by cell counting kit (CCK-8) assay, wound healing assay, transwell assay and EdU assay, we observed that jaceosidin inhibited the proliferation, migration and invasion of A549 and H1975 cells in a dose-relevant manner. Further research suggested that miR-34c-3p bound to the transcriptome of integrin α2ß1 and then inhibited its expression, leading to the inhibitory effect on the migration and invasion of NSCLC. Our study sheds some light on anti-tumor of jaceosidin and provides a potential lead compound for NSCLC therapy.

17.
Chem Biol Interact ; 362: 109998, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35649461

RESUMEN

The emerging cholinergic anti-inflammatory pathway plays a key role in regulating inflammation. Steroids are known to possess remarkable anti-inflammatory activity. However, the links between steroids and the cholinergic anti-inflammatory pathway remain unidentified. In this study, eight steroids (1-8) featuring five different structural types were characterized from an endophytic fungus Aspergillus tennesseensis 1022LEF, and were subsequently evaluated for their potential role in regulating the cholinergic anti-inflammatory pathway. As a result, compound 8, with the best potency, showed remarkable anti-inflammatory activity at the nanomolar to low micromolar level. Further pharmacological study indicated that 8 notably increased α7nAchR expression and inhibited the activation of its down-stream signaling pathways. Collectively, the present study not only highlighted the potential correlation between steroids and the cholinergic anti-inflammatory pathway, but also identified 8 as a dual-functional modulator via directly inhibition to acetylcholinesterase as well as up-regulation of α7nAchR expression.


Asunto(s)
Lipopolisacáridos , Receptor Nicotínico de Acetilcolina alfa 7 , Acetilcolinesterasa/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Aspergillus , Endófitos/metabolismo , Lipopolisacáridos/toxicidad , Neuroinmunomodulación , Esteroides/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
18.
Chem Biol Interact ; 361: 109966, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35513012

RESUMEN

Tumor angiogenesis inhibitors such as Bevacizumab, Ramucirumab and Endostar have been applied to the therapy of non-small cell lung carcinoma (NSCLC) patients, especially for lung adenocarcinoma (LUAD). However, several safe concerns such as neutropenia, febrile neutropenia and hypertension pulmonary hemorrhage limit their further development. And they often showed poor efficacy and serious side effect for lung squamous cell carcinoma (LUSC) patient. Thus, identification of effective and safe tumor angiogenesis inhibitor for NSCLC therapy is warranted. Apigenin is a bioflavonoid with potential anti-tumor effect and perfect safety, but its effect on tumor angiogenesis and underlying mechanism are still unclear. Herein, we found that apigenin not merely suppressed endothelial cells related motilities but also reduced pericyte coverage. Further research showed that apigenin had strong suppressive activity against HIF-1α expression and its downstream VEGF-A/VEGFR2 and PDGF-BB/PDGFßR signaling pathway. Apigenin also reduced microvessel density and pericyte coverage on the xengraft model of NCI-H1299 cells, leading to suppression of tumor growth. Moreover, apigenein showed perfect anti-angiogenic effect in xengraft model of LUSC cell NCI-H1703 cells, indicating it may be developed into a potential angiogenesis inhibitor for LUSC patient. Collectively, our study provides new insights into the anti-tumor mechanism of apigenin and suggests that apigenin is a safe and effective angiogenesis inhibitor for NSCLC therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Apigenina/farmacología , Apigenina/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Células Endoteliales/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Pulmonares/patología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
Acta Pharm Sin B ; 12(10): 3877-3890, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36213531

RESUMEN

Metastasis is crucial for the mortality of non-small cell lung carcinoma (NSCLC) patients. The epithelial-mesenchymal transition (EMT) plays a critical role in regulating tumor metastasis. Glioma-associated oncogene 1 (Gli1) is aberrantly active in a series of tumor tissues. However, the molecular regulatory relationships between Gli1 and NSCLC metastasis have not yet been identified. Herein, we reported Gli1 promoted NSCLC metastasis. High Gli1 expression was associated with poor survival of NSCLC patients. Ectopic expression of Gli1 in low metastatic A549 and NCI-H460 cells enhanced their migration, invasion abilities and facilitated EMT process, whereas knock-down of Gli1 in high metastatic NCI-H1299 and NCI-H1703 cells showed an opposite effect. Notably, Gli1 overexpression accelerated the lung and liver metastasis of NSCLC in the intravenously injected metastasis model. Further research showed that Gli1 positively regulated Snail expression by binding to its promoter and enhancing its protein stability, thereby facilitating the migration, invasion and EMT of NSCLC. In addition, administration of GANT-61, a Gli1 inhibitor, obviously suppressed the metastasis of NSCLC. Collectively, our study reveals that Gli1 is a critical regulator for NSCLC metastasis and suggests that targeting Gli1 is a prospective therapy strategy for metastatic NSCLC.

20.
Int J Nanomedicine ; 16: 6003-6016, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34511902

RESUMEN

INTRODUCTION: Traditional antitumor chemotherapy faces great challenges, such as multi-drug resistance (MDR) and poor penetration into tumor tissues. The newly emerging nitric oxide (NO)-based gas therapy has been recognized to reduce MDR and has improved permeation into tumor tissue. METHODS: In this study, NO-generating prodrug sodium nitroprusside (SNP) was doped to hollow mesoporous Prussian blue (PB) nanoparticles to fabricate NO-generating nanoparticles (NO-PB), which was further loaded with doxorubicin (DOX). RESULTS: DOX loaded NO-PB (DOX-NO-PB) was released quicker at pH 6 compared with neutral pH, suggesting NO-PB may facilitate the release of loaded drug in acidic tumor tissue. The capacity of NO production by NO-PB was measured, and the results showed the presence of NO in the culture medium from 4T1 cells incubated with NO-PB and inside the cells. NP-PB could be detected by photoacoustic imaging (PAI) in tumor tissue in 4T1 tumor bearing mice, suggesting this nanoparticle may serve as contrast agent for the noninvasive diagnosis of tumor tissues. NO-PB suppressed the growth of tissues in 4T1 tumor bearing mice. DOX-NO-PB showed more potent anti-tumor effects in 4T1 cells and tumor bearing mice compared with free DOX and NO-PB alone, indicating that the combination of DOX and NO-PB exhibited synergistic effects on tumor suppression. CONCLUSION: This study provides a novel nanocarrier for gas therapy with additional PAI imaging capacity. This nanocarrier can be utilized for combination therapy of NO and chemotherapeutics which may serve as theranostic agents.


Asunto(s)
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Animales , Doxorrubicina/farmacología , Ferrocianuros , Ratones , Óxido Nítrico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA