Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Physiol ; 597(12): 3107-3131, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31026345

RESUMEN

KEY POINTS: In muscular cells, eukaryotic initiation factor subunit f (eIF3f) activates protein synthesis by allowing physical interaction between mechanistic target of rapamycin complex 1 (MTORC1) and ribosomal protein S6 kinase 1 (S6K1), although its physiological role in animals is unknown. A knockout approach suggests that homozygous mice carrying a null mutation of the eIF3f gene fail to develop and consequently die at early embryonic stage, whereas heterozygous mice associated with a partial depletion of eIF3f gene grow normally and are phenotypically indistinguishable from wild-type mice. Heterozygous mice express reduced eIF3f mRNA and protein levels in skeletal muscles and show diminished muscle mass associated with a decrease in the protein synthesis rate and an inhibition of the MTORC1 pathway. During hindlimb immobilization, heterozygous eIF3f mice display an exacerbated immobilization-induced muscle atrophy associated with reduced protein synthesis. These results highlight the essential role of eIF3f during embryonic development and its involvement in muscular homeostasis via protein synthesis regulation. ABSTRACT: Eukaryotic translation initiation factor 3, subunit F (eIF3f), a component of eIF3 complex, plays an important role in protein synthesis regulation, although its physiological functions are unknown. We generated and analysed mice carrying a null mutation in the eIF3f gene. We showed that homozygous eIF3f knockout fail to develop and that eIF3f-/- embryos die at an early stage of development but after the pre-implantation stage. However, disrupting one eIF3f allele does not affect growth, viability and fertility of heterozygous mice but, instead, reduces eIF3f mRNA and protein levels in all tissues examined. Although heterozygous mice are phenotypically indistinguishable from wild-type mice, they present a diminished body weight and a lean mass reduction associated with normal body size. Interestingly, skeletal muscles are mainly affected and display an altered cell size without modification of fibre number. Skeletal muscles of heterozygous mice show a deficiency in polysome content, a decrease in protein synthesis rate and an inhibition of the mechanistic target of rapamycin (MTOR) pathway. We then studied the effects of hindlimb immobilization that mimic muscle disuse on heterozygous mice aiming to further explore the involvement of eIF3f in protein synthesis. We found that eIF3f partial depletion amplifies muscle atrophy compared to wild-type mice. Mass and cross-sectional area decreases were associated with reduced MTOR pathway activation and protein synthesis rate. Taken together, our data indicate that eIF3f is essential for mice embryonic development and controls adult skeletal muscle mass via protein synthesis regulation in a MTOR-dependent manner.


Asunto(s)
Desarrollo Embrionario , Factor 3 de Iniciación Eucariótica/genética , Músculo Esquelético/patología , Atrofia Muscular/genética , Animales , Factor 3 de Iniciación Eucariótica/metabolismo , Femenino , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo
2.
Cell Mol Life Sci ; 70(19): 3603-16, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23354061

RESUMEN

The regulation of the protein synthesis has a crucial role in governing the eukaryotic cell growth. Subtle changes of proteins involved in the translation process may alter the rate of the protein synthesis and modify the cell fate by shifting the balance from normal status into a tumoral or apoptotic one. The largest eukaryotic initiation factor involved in translation regulation is eIF3. Amongst the 13 factors constituting eIF3, the f subunit finely regulates this balance in a cell-type-specific manner. Loss of this factor causes malignancy in several cells, and atrophy in normal muscle cells. The intracellular interacting partners which influence its physiological significance in both cancer and muscle cells are detailed in this review. By delineating the global interaction network of this factor and by clarifying its intracellular role, it becomes apparent that the f subunit represents a promising candidate molecule to use for biotherapeutic applications.


Asunto(s)
Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Humanos , Células Musculares/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Biosíntesis de Proteínas , Subunidades de Proteína
3.
EMBO J ; 27(8): 1266-76, 2008 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-18354498

RESUMEN

In response to cancer, AIDS, sepsis and other systemic diseases inducing muscle atrophy, the E3 ubiquitin ligase Atrogin1/MAFbx (MAFbx) is dramatically upregulated and this response is necessary for rapid atrophy. However, the precise function of MAFbx in muscle wasting has been questioned. Here, we present evidence that during muscle atrophy MAFbx targets the eukaryotic initiation factor 3 subunit 5 (eIF3-f) for ubiquitination and degradation by the proteasome. Ectopic expression of MAFbx in myotubes induces atrophy and degradation of eIF3-f. Conversely, blockade of MAFbx expression by small hairpin RNA interference prevents eIF3-f degradation in myotubes undergoing atrophy. Furthermore, genetic activation of eIF3-f is sufficient to cause hypertrophy and to block atrophy in myotubes, whereas genetic blockade of eIF3-f expression induces atrophy in myotubes. Finally, eIF3-f induces increasing expression of muscle structural proteins and hypertrophy in both myotubes and mouse skeletal muscle. We conclude that eIF3-f is a key target that accounts for MAFbx function during muscle atrophy and has a major role in skeletal muscle hypertrophy. Thus, eIF3-f seems to be an attractive therapeutic target.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Proteínas Musculares/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Proteínas Ligasas SKP Cullina F-box/fisiología , Animales , Línea Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Hipertrofia/enzimología , Hipertrofia/metabolismo , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/enzimología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/enzimología , Atrofia Muscular/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/fisiología , Mapeo de Interacción de Proteínas , Ubiquitinación
4.
J Biol Chem ; 285(17): 12670-83, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20139084

RESUMEN

Calpain 3 is a calcium-dependent cysteine protease that is primarily expressed in skeletal muscle and is implicated in limb girdle muscular dystrophy type 2A. To date, its best characterized function is located within the sarcomere, but this protease is found in other cellular compartments, which suggests that it exerts multiple roles. Here, we present evidence that calpain 3 is involved in the myogenic differentiation process. In the course of in vitro culture of myoblasts to fully differentiated myotubes, a population of quiescent undifferentiated "reserve cells" are maintained. These reserve cells are closely related to satellite cells responsible for adult muscle regeneration. In the present work, we observe that reserve cells express higher levels of endogenous Capn3 mRNA than proliferating myoblasts. We show that calpain 3 participates in the establishment of the pool of reserve cells by decreasing the transcriptional activity of the key myogenic regulator MyoD via proteolysis independently of the ubiquitin-proteasome degradation pathway. Our results identify calpain 3 as a potential new player in the muscular regeneration process by promoting renewal of the satellite cell compartment.


Asunto(s)
Calpaína/metabolismo , Diferenciación Celular , Regulación hacia Abajo , Desarrollo de Músculos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Proteína MioD/metabolismo , Mioblastos/metabolismo , Calpaína/genética , Línea Celular , Humanos , Proteínas Musculares/genética , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Proteína MioD/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Regeneración/genética , Células Satélite del Músculo Esquelético/metabolismo , Transcripción Genética/genética , Ubiquitina/metabolismo
5.
J Cell Biochem ; 112(12): 3531-42, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21769921

RESUMEN

Myostatin deficiency leads in skeletal muscle overgrowth but the precise molecular mechanisms underlying this hypertrophy are not well understood. In this study, to gain insight into the role of endogenous myostatin in the translational regulation, we used an in vitro model of cultured satellite cells derived from myostatin knock-out mice. Our results show that myostatin knock-out myotubes are larger than control myotubes and that this phenotype is associated with an increased activation of the Akt/mTOR signaling pathway, a known regulator of muscle hypertrophy. These results demonstrate that hypertrophy due to myostatin deficiency is preserved in vitro and suggest that myostatin deletion results in an increased protein synthesis. Accordingly, the rates of global RNA content, polysome formation and protein synthesis are all increased in myostatin-deficient myotubes while they are counteracted by the addition of recombinant myostatin. We furthermore demonstrated that genetic deletion of myostatin stimulates cap-dependent translation by positively regulating assembly of the translation preinitiation complex. Together the data indicate that myostatin controls muscle hypertrophy in part by regulating protein synthesis initiation rates, that is, translational efficiency.


Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , Miostatina/antagonistas & inhibidores , Biosíntesis de Proteínas , Animales , Secuencia de Bases , Western Blotting , Línea Celular , Cartilla de ADN , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Noqueados , Fibras Musculares Esqueléticas/enzimología , Miostatina/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
6.
Mol Cell Biol ; 24(4): 1809-21, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14749395

RESUMEN

The transcription factors MyoD and Myf-5 control myoblast identity and differentiation. MyoD and Myf-5 manifest opposite cell cycle-specific expression patterns. Here, we provide evidence that MyoD plays a pivotal role at the G(2)/M transition by controlling the expression of p21(Waf1/Cip1) (p21), which is believed to regulate cyclin B-Cdc2 kinase activity in G(2). In growing myoblasts, MyoD reaccumulates during G(2) concomitantly with p21 before entry into mitosis; MyoD is phosphorylated on Ser5 and Ser200 by cyclin B-Cdc2, resulting in a decrease of its stability and down-regulation of both MyoD and p21. Inducible expression of a nonphosphorylable MyoD A5/A200 enhances the MyoD interaction with the coactivator P/CAF, thereby stimulating the transcriptional activation of a luciferase reporter gene placed under the control of the p21 promoter. MyoD A5/A200 causes sustained p21 expression, which inhibits cyclin B-Cdc2 kinase activity in G(2) and delays M-phase entry. This G(2) arrest is not observed in p21(-/-) cells. These results show that in cycling cells MyoD functions as a transcriptional activator of p21 and that MyoD phosphorylation is required for G(2)/M transition.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Mitosis , Mutación/genética , Proteína MioD/genética , Proteína MioD/metabolismo , Animales , Línea Celular , Ciclina B/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Ciclinas/metabolismo , Fase G2 , Regulación de la Expresión Génica , Histona Desacetilasa 1 , Histona Desacetilasas , Ratones , Modelos Biológicos , Músculo Esquelético , Proteína MioD/química , Mioblastos/citología , Mioblastos/enzimología , Mioblastos/metabolismo , Fosforilación , Fosfoserina/metabolismo , Unión Proteica , Factores de Tiempo , Activación Transcripcional
7.
Cancer Res ; 64(24): 8954-9, 2004 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-15604258

RESUMEN

Cdc2 kinase is inactivated when DNA damage occurs during the spindle assembly checkpoint. Here, we show that the level of mitotic Bloom syndrome protein phosphorylation reflects the level of cdc2 activity. A complete inactivation of cdc2 by either introduction of DNA double-strand breaks or roscovitine treatment prevents exit from mitosis. Thus, mitotic cdc2 inactivation plays a major role in the establishment of the mitotic DNA damage checkpoint. In response to mitotic cdc2 inactivation, the M/G(1) transition is delayed after releasing the drug block in nonmalignant cells, whereas tumor cells exit mitosis without dividing and rereplicate their DNA, which results in mitotic catastrophe. This opens the way for new chemotherapeutic strategies.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Daño del ADN/fisiología , Mitosis/fisiología , Adenosina Trifosfatasas/metabolismo , Proteína Quinasa CDC2/antagonistas & inhibidores , División Celular/fisiología , Cloroquina/farmacología , ADN/efectos de los fármacos , ADN/metabolismo , ADN Helicasas/metabolismo , Activación Enzimática , Fase G1/fisiología , Células HeLa , Humanos , Ácidos Hidroxámicos/farmacología , Mitosis/efectos de los fármacos , Mitosis/genética , Fosforilación/efectos de los fármacos , Purinas/farmacología , RecQ Helicasas , Roscovitina , Fracciones Subcelulares/metabolismo
8.
Oncogene ; 22(36): 5658-66, 2003 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-12944914

RESUMEN

Rhabdomyosarcoma (RMS) has deregulated proliferation and is blocked in the differentiation program despite Myf-5, MyoD and myogenin expression. Here we show that ectopic expression of MRF4, which is not subject to an autoregulatory pathway but regulated by the other MRFs protein family, induces growth arrest and terminal differentiation in RD cells. Deletion mapping identified a positive-acting C-terminal domain in MRF4 as the mediator of transcriptional activity, revealing a conserved motif with helix III in MyoD previously found to initiate expression of endogenous skeletal muscle genes. By using chimeric MyoD/MRF4 proteins, we observe that the C-terminal motif of MRF4 rescues MyoD activity in RD cells. Moreover, comparative induction of muscle-specific genes following activation of MyoD, through the expression of a constitutively activated MKK6 either in the absence or presence of MRF4, shows that MyoD and MRF4 can differently regulate muscle genes expression. Together, these results demonstrate that the MRF4 C-terminus functions as specification as well as activation domain in tumor cells. They provide a basis to identify gene products necessary for b-HLH-mediated differentiation versus tumor progression.


Asunto(s)
Diferenciación Celular , Músculos/citología , Factores Reguladores Miogénicos/fisiología , Rabdomiosarcoma/patología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Línea Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Inhibidor p57 de las Quinasas Dependientes de la Ciclina , Ciclinas/fisiología , Regulación de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Proteína MioD/fisiología , Factores Reguladores Miogénicos/química , Miogenina/fisiología , Proteínas Nucleares/fisiología
9.
Mol Ther Methods Clin Dev ; 2: 14056, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26052528

RESUMEN

The f subunit of the eukaryotic initiation factor 3 (eIF3f) is downregulated in several cancers and in particular in melanoma and pancreatic cancer cells. Its enforced expression by transient gene transfection negatively regulates cancer cell growth by activating apoptosis. With the aim to increase the intracellular level of eIF3f proteins and activate apoptosis in cancer cell lines, we developed a protein transfer system composed of a cell-penetrating peptide sequence fused to eIF3f protein sequence (MD11-eIF3f). To determine whether exogenously administered eIF3f proteins were able to compensate the loss of endogenous eIF3f and induce cancer cell death, we analyzed the therapeutic action of MD11-eIF3f in several tumor cells. We identified four cell lines respondent to eIF3f-treatment and we evaluated the antitumor properties of the recombinant proteins using dose- and time-dependent studies. Our results demonstrate that this protein delivery approach represents an innovative and powerful strategy for cancer treatment.

10.
FEBS Lett ; 543(1-3): 125-8, 2003 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-12753918

RESUMEN

The cyclin-dependent kinase inhibitor p57(Kip2) is required for normal mouse embryonic development. p57(Kip2) consists of four structurally distinct domains in which the conserved C-terminal nuclear targeting domain contains a putative Cdk phosphorylation site (Thr(342)) that shares a great similitude in the adjacent sequences with p27(Kip1) but not with p21(Cip1). Phosphorylation on Thr(187) has been shown to promote degradation of p27(Kip1). Although there is sequence homology between the C-terminal part of p27(Kip1) and p57(Kip2), we show that the ubiquitination and degradation of p57(Kip2) are independent of Thr(342). In contrast a destabilizing element located in the N-terminal is implicated in p57(Kip2) destabilization.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ubiquitinas/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Secuencia de Consenso , Inhibidor p57 de las Quinasas Dependientes de la Ciclina , Cisteína Endopeptidasas/metabolismo , Ratones , Datos de Secuencia Molecular , Complejos Multienzimáticos/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Fosforilación , Complejo de la Endopetidasa Proteasomal , Estructura Terciaria de Proteína , Treonina/metabolismo
11.
Int J Biochem Cell Biol ; 45(10): 2158-62, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23769948

RESUMEN

The eukaryotic initiation factor 3 subunit f (eIF3f) is one of the 13 subunits of the translation initiation factor complex eIF3 required for several steps in the initiation of mRNA translation. In skeletal muscle, recent studies have demonstrated that eIF3f plays a central role in skeletal muscle size maintenance. Accordingly, eIF3f overexpression results in hypertrophy through modulation of protein synthesis via the mTORC1 pathway. Importantly, eIF3f was described as a target of the E3 ubiquitin ligase MAFbx/atrogin-1 for proteasome-mediated breakdown under atrophic conditions. The biological importance of the MAFbx/atrogin-1-dependent targeting of eFI3f is highlighted by the finding that expression of an eIF3f mutant insensitive to MAFbx/atrogin-1 polyubiquitination is associated with enhanced protection against starvation-induced muscle atrophy. A better understanding of the precise role of this subunit should lead to the development of new therapeutic approaches to prevent or limit muscle wasting that prevails in numerous physiological and pathological states such as immobilization, aging, denervated conditions, neuromuscular diseases, AIDS, cancer, diabetes. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Animales , Proliferación Celular , Factor 3 de Iniciación Eucariótica/genética , Humanos , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/patología , Biosíntesis de Proteínas , Transducción de Señal
12.
FEBS Lett ; 586(4): 362-7, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22249105

RESUMEN

In skeletal muscle atrophy, upregulation and nuclear accumulation of the Ubiquitin E3 ligase MAFbx is essential for accelerated muscle protein loss, but the nuclear/cytoplasmic shuttling of MAFbx is undefined. Here we found that MAFbx contains two functional nuclear localization signals (NLS). Mutation or deletion of only one NLS induced cytoplasmic localization of MAFbx. We identified a non-classical NES located in the leucine charged domain (LCD) of MAFbx, which is leptomycin B insensitive. We demonstrated that mutation (L169Q) in LLXXL motif of LCD suppressed cytoplasmic retention of MAFbx. Nucleocytoplasmic shuttling of MAFbx represents a novel mechanism for targeting its substrates and its cytosolic partners in muscle atrophy.


Asunto(s)
Proteínas Musculares/química , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas Ligasas SKP Cullina F-box/química , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/fisiología , Secuencia de Aminoácidos , Animales , Línea Celular , Secuencia Conservada , Ácidos Grasos Insaturados/farmacología , Humanos , Ratones , Datos de Secuencia Molecular , Proteínas Musculares/genética , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Mutagénesis Sitio-Dirigida , Señales de Localización Nuclear/química , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Estructura Terciaria de Proteína , Proteínas Ligasas SKP Cullina F-box/genética , Eliminación de Secuencia , Homología de Secuencia de Aminoácido
13.
PLoS One ; 5(2): e8994, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20126553

RESUMEN

The mTORC1 pathway is required for both the terminal muscle differentiation and hypertrophy by controlling the mammalian translational machinery via phosphorylation of S6K1 and 4E-BP1. mTOR and S6K1 are connected by interacting with the eIF3 initiation complex. The regulatory subunit eIF3f plays a major role in muscle hypertrophy and is a key target that accounts for MAFbx function during atrophy. Here we present evidence that in MAFbx-induced atrophy the degradation of eIF3f suppresses S6K1 activation by mTOR, whereas an eIF3f mutant insensitive to MAFbx polyubiquitination maintained persistent phosphorylation of S6K1 and rpS6. During terminal muscle differentiation a conserved TOS motif in eIF3f connects mTOR/raptor complex, which phosphorylates S6K1 and regulates downstream effectors of mTOR and Cap-dependent translation initiation. Thus eIF3f plays a major role for proper activity of mTORC1 to regulate skeletal muscle size.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mioblastos Esqueléticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal , Animales , Sitios de Unión/genética , Western Blotting , Diferenciación Celular , Aumento de la Célula , Células Cultivadas , Factor 3 de Iniciación Eucariótica/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Lisina/genética , Lisina/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutación , Mioblastos Esqueléticos/citología , Unión Proteica , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Proteínas , Interferencia de ARN , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Serina-Treonina Quinasas TOR , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección
14.
PLoS One ; 4(3): e4973, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19319192

RESUMEN

Ubiquitin ligase Atrogin1/Muscle Atrophy F-box (MAFbx) up-regulation is required for skeletal muscle atrophy but substrates and function during the atrophic process are poorly known. The transcription factor MyoD controls myogenic stem cell function and differentiation, and seems necessary to maintain the differentiated phenotype of adult fast skeletal muscle fibres. We previously showed that MAFbx mediates MyoD proteolysis in vitro. Here we present evidence that MAFbx targets MyoD for degradation in several models of skeletal muscle atrophy. In cultured myotubes undergoing atrophy, MAFbx expression increases, leading to a cytoplasmic-nuclear shuttling of MAFbx and a selective suppression of MyoD. Conversely, transfection of myotubes with sh-RNA-mediated MAFbx gene silencing (shRNAi) inhibited MyoD proteolysis linked to atrophy. Furthermore, overexpression of a mutant MyoDK133R lacking MAFbx-mediated ubiquitination prevents atrophy of mouse primary myotubes and skeletal muscle fibres in vivo. Regarding the complex role of MyoD in adult skeletal muscle plasticity and homeostasis, its rapid suppression by MAFbx seems to be a major event leading to skeletal muscle wasting. Our results point out MyoD as the second MAFbx skeletal muscle target by which powerful therapies could be developed.


Asunto(s)
Proteínas Musculares/metabolismo , Proteína MioD/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Animales , Células Cultivadas , Técnicas de Inactivación de Genes , Ratones , Fibras Musculares Esqueléticas/citología , Proteínas Musculares/antagonistas & inhibidores , Proteínas Musculares/genética , Atrofia Muscular/prevención & control , Mutación , Proteínas Ligasas SKP Cullina F-box/antagonistas & inhibidores , Proteínas Ligasas SKP Cullina F-box/genética
15.
J Biol Chem ; 284(7): 4413-21, 2009 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-19073596

RESUMEN

We recently presented evidence that the subunit eIF3-f of the eukaryotic initiation translation factor eIF3 that interacts with the E3-ligase Atrogin-1/muscle atrophy F-box (MAFbx) for polyubiquitination and proteasome-mediated degradation is a key target that accounts for MAFbx function during muscle atrophy. To understand this process, deletion analysis was used to identify the region of eIF3-f that is required for its proteolysis. Here, we report that the highly conserved C-terminal domain of eIF3-f is implicated for MAFbx-directed polyubiquitination and proteasomal degradation. Site-directed mutagenesis of eIF3-f revealed that the six lysine residues within this domain are required for full polyubiquitination and degradation by the proteasome. In addition, mutation of these six lysines (mutant K(5-10)R) displayed hypertrophic activity in cellulo and in vivo and was able to protect against starvation-induced muscle atrophy. Taken together, our data demonstrate that the C-terminal modifications, believed to be critical for proper eIF3-f regulation, are essential and contribute to a fine-tuning mechanism that plays an important role for eIF3-f function in skeletal muscle.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Lisina/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Animales , Línea Celular , Factor 3 de Iniciación Eucariótica/genética , Lisina/genética , Ratones , Proteínas Musculares/genética , Músculo Esquelético/patología , Atrofia Muscular/genética , Atrofia Muscular/patología , Mutagénesis Sitio-Dirigida , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Estructura Terciaria de Proteína/genética , Proteínas Ligasas SKP Cullina F-box/genética , Inanición/genética , Inanición/metabolismo , Inanición/patología , Ubiquitinación/genética
16.
Cell Cycle ; 7(12): 1698-701, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18583931

RESUMEN

The control of muscle cell size is a physiological process balanced by a fine tuning between protein synthesis and protein degradation. MAFbx/Atrogin-1 is a muscle specific E3 ubiquitin ligase upregulated during disuse, immobilization and fasting or systemic diseases such as diabetes, cancer, AIDS and renal failure. This response is necessary to induce a rapid and functional atrophy. To date, the targets of MAFbx/Atrogin-1 in skeletal muscle remain to be identified. We have recently presented evidence that eIF3-f, a regulatory subunit of the eukaryotic translation factor eIF3 is a key target that accounts for MAFbx/Atrogin-1 function in muscle atrophy. More importantly, we showed that eIF3-f acts as a "translational enhancer" that increases the efficiency of the structural muscle proteins synthesis leading to both in vitro and in vivo muscle hypertrophy. We propose that eIF3-f subunit, a mTOR/S6K1 scaffolding protein in the IGF-1/Akt/mTOR dependent control of protein translation, is a positive actor essential to the translation of specific mRNAs probably implicated in muscle hypertrophy. The central role of eIF3-f in both the atrophic and hypertrophic pathways will be discussed in the light of its promising potential in muscle wasting therapy.


Asunto(s)
Factor 3 de Iniciación Eucariótica/química , Factor 3 de Iniciación Eucariótica/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Biosíntesis de Proteínas , Animales , Factor 3 de Iniciación Eucariótica/antagonistas & inhibidores , Humanos , Hipertrofia , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Atrofia Muscular/etiología , Atrofia Muscular/genética , Proteínas Quinasas/metabolismo , Subunidades de Proteína/fisiología , Proteínas Quinasas S6 Ribosómicas/metabolismo , Proteínas Ligasas SKP Cullina F-box/química , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR , Síndrome Debilitante/terapia
17.
Exp Cell Res ; 312(20): 3999-4010, 2006 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-17014844

RESUMEN

The transcription factors MyoD and Myf5 present distinct patterns of expression during cell cycle progression and development. In contrast to the mitosis-specific disappearance of Myf5, which requires a D-box-like motif overlapping the basic domain, here we describe a stable and inactive mitotic form of MyoD phosphorylated on its serine 5 and serine 200 residues by cyclin B-cdc2. In mitosis, these modifications are required for releasing MyoD from condensed chromosomes and inhibiting its DNA-binding and transcriptional activation ability. Then, nuclear MyoD regains instability in the beginning of G1 phase due to rapid dephosphorylation events. Moreover, a non-phosphorylable MyoD S5A/S200A is not excluded from condensed chromatin and alters mitotic progression with apparent abnormalities. Thus, the drop of MyoD below a threshold level and its displacement from the mitotic chromatin could present another window in the cell cycle for resetting the myogenic transcriptional program and to maintain the myogenic determination of the proliferating cells.


Asunto(s)
División Celular , Fase G2 , Mitosis , Células Musculares/metabolismo , Proteína MioD/metabolismo , Animales , Proteína Quinasa CDC2/metabolismo , Línea Celular , Cromosomas/genética , Cromosomas/metabolismo , Ciclina B/metabolismo , Ratones , Proteína MioD/fisiología , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Serina/química , Transfección , Ubiquitina/metabolismo
18.
J Biol Chem ; 280(4): 2847-56, 2005 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-15531760

RESUMEN

MyoD controls myoblast identity and differentiation and is required for myogenic stem cell function in adult skeletal muscle. MyoD is degraded by the ubiquitin-proteasome pathway mediated by different E3 ubiquitin ligases not identified as yet. Here we report that MyoD interacts with Atrogin-1/MAFbx (MAFbx), a striated muscle-specific E3 ubiquitin ligase dramatically up-regulated in atrophying muscle. A core LXXLL motif sequence in MyoD is necessary for binding to MAFbx. MAFbx associates with MyoD through an inverted LXXLL motif located in a series of helical leucine-charged residue-rich domains. Mutation in the LXXLL core motif represses ubiquitination and degradation of MyoD induced by MAFbx. Overexpression of MAFbx suppresses MyoD-induced differentiation and inhibits myotube formation. Finally the purified recombinant SCF(MAFbx) complex (SCF, Skp1, Cdc53/Cullin 1, F-box protein) mediated MyoD ubiquitination in vitro in a lysine-dependent pathway. Mutation of the lysine 133 in MyoD prevented its ubiquitination by the recombinant SCF(MAFbx) complex. These observations thus demonstrated that MAFbx functions in ubiquitinating MyoD via a sequence found in transcriptional coactivators. These transcriptional coactivators mediate the binding to liganded nuclear receptors. We also identified a novel protein-protein interaction module not yet identified in F-box proteins. MAFbx may play an important role in the course of muscle differentiation by determining the abundance of MyoD.


Asunto(s)
Proteína MioD/química , Proteínas Ligasas SKP Cullina F-box/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Diferenciación Celular , Línea Celular , ADN/metabolismo , Humanos , Immunoblotting , Inmunoprecipitación , Lisina/química , Ratones , Microscopía Fluorescente , Modelos Genéticos , Datos de Secuencia Molecular , Músculo Esquelético/metabolismo , Proteína MioD/metabolismo , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Ligasas SKP Cullina F-box/metabolismo , Homología de Secuencia de Aminoácido , Factor de Células Madre/metabolismo , Factores de Tiempo , Transcripción Genética , Transfección , Técnicas del Sistema de Dos Híbridos , Ubiquitina/metabolismo
19.
J Biol Chem ; 279(7): 5413-20, 2004 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-14660660

RESUMEN

The ubiquitin-proteasome system is responsible for the regulation and turnover of the nuclear transcription factor MyoD. The degradation of MyoD can occur via an NH2 terminus-dependent pathway or a lysine-dependent pathway, suggesting that MyoD ubiquitination may be driven by different mechanisms. To understand this process, deletion analysis was used to identify the region of MyoD that is required for rapid proteolysis in the lysine-dependent pathway. Here we report that the basic helix-loop-helix domain is required for ubiquitination and lysine-dependent degradation of MyoD in the nucleus. Site-directed mutagenesis in MyoD revealed that lysine 133 is the major internal lysine of ubiquitination. The half-life of the MyoD K133R mutant protein was longer than that of wild type MyoD, substantiating the implication of lysine 133 in the turnover of MyoD in myoblasts. In addition, the MyoD K133R mutant displayed activity 2-3-fold higher than the wild type in transactivation muscle-specific gene and myogenic conversion of 10T1/2 cells. Taken together, our data demonstrate that lysine 133 is targeted for ubiquitination and rapid degradation of MyoD in the lysine-dependent pathway and plays an integral role in compromising MyoD activity in the nucleus.


Asunto(s)
Núcleo Celular/metabolismo , Lisina/química , Proteína MioD/metabolismo , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Línea Celular , Cicloheximida/farmacología , ADN/química , ADN Complementario/metabolismo , Inhibidores Enzimáticos/farmacología , Eliminación de Gen , Vectores Genéticos , Luciferasas/metabolismo , Lisina/fisiología , Ratones , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Plásmidos/metabolismo , Pruebas de Precipitina , Estructura Terciaria de Proteína , Inhibidores de la Síntesis de la Proteína/farmacología , Factores de Tiempo , Activación Transcripcional , Transfección , Ubiquitina/química
20.
Blood ; 103(3): 1059-68, 2004 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-14525786

RESUMEN

Acute myeloid leukemia (AML) is sustained by the extensive proliferation of leukemic stem and progenitor cells, which give rise to the population of leukemic blasts with defective differentiation and low proliferative capacity. We have recently shown that ligation of CD44, a cell surface molecule present on AML cells, with specific monoclonal antibodies (mAbs) inhibits their proliferation. However, its mechanism has not been investigated yet. Here, using the NB4 cell line as a model of proliferating human AML cells, and the A3D8 mAb to ligate CD44, we show for the first time that CD44 ligation stabilizes the cyclin-dependent kinase inhibitor p27(Kip1) (p27) protein, resulting in increased association with cyclin E/Cdk2 complexes and inhibition of their kinase activity. Moreover, using a p27 antisense vector, we provide direct evidence that p27 is the main mediator of cell growth arrest by CD44. CD44 ligation also leads to p27 accumulation in THP-1, KG1a, and HL60 cell lines and in primary leukemic cells, suggesting that this process is general in AML. Taken together, our present results suggest that CD44 is a new and efficient means to increase the expression of p27 in AML cells. Considering that elevated expression of p27 is a factor of good prognosis in AML, these results provide a new basis for developing CD44-targeted therapy in AML.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Receptores de Hialuranos/metabolismo , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Anticuerpos Monoclonales , Quinasas CDC2-CDC28/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , División Celular/efectos de los fármacos , Línea Celular Tumoral , Ciclina E/metabolismo , Quinasa 2 Dependiente de la Ciclina , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Estabilidad de Medicamentos , Humanos , Ácido Hialurónico/farmacología , Técnicas In Vitro , Leucemia Mieloide Aguda/patología , Transfección , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA