Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Glia ; 71(9): 2180-2195, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37203250

RESUMEN

central nervous system (CNS) inflammation triggers activation of the integrated stress response (ISR). We previously reported that prolonging the ISR protects remyelinating oligodendrocytes and promotes remyelination in the presence of inflammation. However, the exact mechanisms through which this occurs remain unknown. Here, we investigated whether the ISR modulator Sephin1 in combination with the oligodendrocyte differentiation enhancing reagent bazedoxifene (BZA) is able to accelerate remyelination under inflammation, and the underlying mechanisms mediating this pathway. We find that the combined treatment of Sephin1 and BZA is sufficient to accelerate early-stage remyelination in mice with ectopic IFN-γ expression in the CNS. IFN-γ, which is a critical inflammatory cytokine in multiple sclerosis (MS), inhibits oligodendrocyte precursor cell (OPC) differentiation in culture and triggers a mild ISR. Mechanistically, we further show that BZA promotes OPC differentiation in the presence of IFN-γ, while Sephin1 enhances the IFN-γ-induced ISR by reducing protein synthesis and increasing RNA stress granule formation in differentiating oligodendrocytes. Finally, pharmacological suppression of the ISR blocks stress granule formation in vitro and partially lessens the beneficial effect of Sephin1 on disease progression in a mouse model of MS, experimental autoimmune encephalitis (EAE). Overall, our findings uncover distinct mechanisms of action of BZA and Sephin1 on oligodendrocyte lineage cells under inflammatory stress, suggesting that a combination therapy may effectively promote restoring neuronal function in MS patients.


Asunto(s)
Esclerosis Múltiple , Remielinización , Ratones , Animales , Remielinización/fisiología , Oligodendroglía/fisiología , Diferenciación Celular , Inflamación , Ratones Endogámicos C57BL
2.
Bioorg Med Chem Lett ; 30(5): 126959, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31952965

RESUMEN

The aryl hydrocarbon receptor (AhR) is a ligand activated transcription factor involved in multiple biological processes including immune cell differentiation, intestinal function and inflammation. Based on the scaffold of naturally occurring AhR ligand 6-formylindolo (3,2-b) carbazole (FICZ, 2), a series of analogues has been designed, synthesized and evaluated by cell-based assays. The structure-activity relationships study has successfully led to the discovery of compound 11e with extremely potent activity.


Asunto(s)
Carbazoles/farmacología , Indoles/farmacología , Receptores de Hidrocarburo de Aril/agonistas , Carbazoles/síntesis química , Citocromo P-450 CYP1A1/metabolismo , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Indoles/síntesis química , Estructura Molecular , Relación Estructura-Actividad , Regulación hacia Arriba/efectos de los fármacos
3.
Bioorg Med Chem Lett ; 28(14): 2493-2497, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29871848

RESUMEN

Histone deacetylases (HDACs) decrease the acetylation level of histones and other non-histone proteins. Over expression of HDACs have been observed in cancers and other diseases. Targeted protein degradation by "hijacking" the natural ubiquitin-proteasome-system (UPS) recently emerged as a novel technology to "knock-out" endogenous disease-causing proteins. We applied this strategy to the development of the first small molecule degraders for zinc-dependent HDACs by conjugating non-selective HDAC inhibitors with E3 ubiquitin ligase ligands. Through cell-based assays, we discovered novel bifunctional molecules (dHDAC6) that could selectively degrade HDAC6. Further mechanistic studies indicated that HDAC6 was selectively removed by the UPS.


Asunto(s)
Histona Desacetilasa 6/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Talidomida/análogos & derivados , Relación Dosis-Respuesta a Droga , Histona Desacetilasa 6/metabolismo , Humanos , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Talidomida/síntesis química , Talidomida/química , Talidomida/farmacología
4.
J Cell Biol ; 222(12)2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37917024

RESUMEN

Live super-resolution microscopy has allowed for new insights into recently identified mitochondria-lysosome contact sites, which mediate crosstalk between mitochondria and lysosomes, including co-regulation of Rab7 GTP hydrolysis and Drp1 GTP hydrolysis. Here, we highlight recent findings and future perspectives on this dynamic pathway and its roles in health and disease.


Asunto(s)
Lisosomas , Microscopía , Mitocondrias , Guanosina Trifosfato , Membranas Mitocondriales , Proteínas de Unión a GTP rab7 , Dinaminas
5.
bioRxiv ; 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36747743

RESUMEN

CNS inflammation triggers activation of the integrated stress response (ISR). We previously reported that prolonging the ISR protects remyelinating oligodendrocytes and promotes remyelination in the presence of inflammation (Chen et al., eLife , 2021). However, the exact mechanisms through which this occurs remain unknown. Here, we investigated whether the ISR modulator Sephin1 in combination with the oligodendrocyte differentiation enhancing reagent bazedoxifene (BZA) is able to accelerate remyelination under inflammation, and the underlying mechanisms mediating this pathway. We find that the combined treatment of Sephin1 and BZA is sufficient to accelerate early-stage remyelination in mice with ectopic IFN-γ expression in the CNS. IFN-γ, which is a critical inflammatory cytokine in multiple sclerosis (MS), inhibits oligodendrocyte precursor cell (OPC) differentiation in culture and triggers a mild ISR. Mechanistically, we further show that BZA promotes OPC differentiation in the presence of IFN-γ, while Sephin1 enhances the IFN-γ-induced ISR by reducing protein synthesis and increasing RNA stress granule formation in differentiating oligodendrocytes. Finally, the ISR suppressor 2BAct is able to partially lessen the beneficial effect of Sephin1 on disease progression, in an MS mouse model of experimental autoimmune encephalitis (EAE). Overall, our findings uncover distinct mechanisms of action of BZA and Sephin1 on oligodendrocyte lineage cells under inflammatory stress, suggesting that a combination therapy may effectively promote restoring neuronal function in MS patients.

6.
STAR Protoc ; 3(2): 101262, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35330964

RESUMEN

Mitochondria-lysosome contact sites are critical for maintaining cellular homeostasis by regulating mitochondrial and lysosomal network dynamics and mediating metabolite exchange. Here, we present a protocol to quantitatively analyze the formation and tethering duration of mitochondria-lysosome contact sites by using time-lapse live confocal microscopy of LAMP1 and TOMM20. Although this protocol focuses on mammalian HeLa cells, it can be applied to other cell types for further studies on mitochondria-lysosome contact regulation and function, and elucidation of their role in human disorders. For complete details on the use and execution of this protocol, please refer to Wong et al. (2018) and Wong et al. (2019b).


Asunto(s)
Lisosomas , Membranas Mitocondriales , Animales , Células HeLa , Humanos , Lisosomas/metabolismo , Mamíferos , Microscopía Confocal/métodos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo
7.
ACS Chem Biol ; 15(6): 1487-1496, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32255606

RESUMEN

Proteolysis targeting chimeras (PROTACs) have emerged as useful chemical probes and potential therapeutics by taking advantage of the ubiquitin-proteasome system to degrade intracellular disease-associated proteins. PROTACs are heterobifunctional molecules composed of a target protein ligand, E3 ubiquitin ligase ligand, and a linker between them. The generation of efficient PROTACs requires screening of many parameters, especially the lengths and types of the linkers. We report our proof-of-concept study using a two-stage strategy to facilitate the development of PROTACs against the estrogen receptor (ER). In stage one, a library of close to 100 PROTACs was synthesized by simply mixing a library of ERα ligands containing a hydrazide functional group at different positions with a preassembled library of E3 ligase ligands bearing different types and lengths of linkers with a terminal aldehyde group in a 1:1 ratio. Cell-based screening occurred without further purification, because the formation of the acylhydrazone linkage is highly efficient and produces water as the only byproduct. Compound A3 was the most potent ER degrader in two ER+ cell lines (DC50= ∼ 10 nM, Dmax= ≥ 95%). Stage two involved transformation to a more stable amide linker to generate a more drug-like molecule. The new compound, AM-A3, showed comparable biological activity (DC50 = 1.1 nM, Dmax = 98%) and induced potent antiproliferation (IC50= 13.2 nM, Imax= 69%) in MCF-7. This proof-of -concept study demonstrates that the two-stage strategy can significantly facilitate the development of PROTACs against ER without the tedious process of making large numbers of PROTACs one by one. It has the potential to be expanded to many other targets.


Asunto(s)
Quimera/metabolismo , Receptores de Estrógenos/metabolismo , Humanos , Ligandos , Células MCF-7 , Prueba de Estudio Conceptual , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitina/metabolismo
8.
ACS Med Chem Lett ; 11(4): 575-581, 2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32292566

RESUMEN

Histone deacetylase 6 (HDAC6) is involved in multiple cellular processes such as aggresome formation, protein stability, and cell motility. Numerous HDAC6-selective inhibitors have been developed as cellular chemical tools to elucidate the function of HDAC6. Since HDAC6 has multiple domains that cannot be studied by HDAC6-selective inhibitors, CRISPR-CAS9 and siRNA/shRNA have been employed to elucidate the nonenzymatic functions of HDAC6. However, these genetic methods have many limitations. Proteolysis targeting chimera (PROTAC) is an emerging technology for the development of small molecules that can quickly remove the entire protein in cells. We previously developed multifunctional HDAC6 degraders that can recruit cereblon (CRBN) E3 ubiquitin ligase. These HDAC6 degraders can degrade not only HDAC6 but also neo-substrates of CRBN. They are excellent candidates for the development of anticancer therapeutics, but the multifunctional nature of the CRBN-based HDAC6 degraders has limited their utility as specific chemical probes for the study of HDAC6-related cellular pathways. Herein we report the development of the first cell-permeable HDAC6-selective degraders employing Von Hippel-Lindau (VHL) E3 ubiquitin ligase, which does not have any known neo-substrates. The DC50's of the most potent compound 3j are 7.1 nM and 4.3 nM in human MM1S and mouse 4935 cell lines, respectively. The D max's of 3j in these two cell lines are 90% and 57%, respectively.

9.
J Med Chem ; 62(15): 7042-7057, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31271281

RESUMEN

Histone deacetylase 6 (HDAC6) primarily catalyzes the removal of acetyl group from the side chain of acetylated lysine residues in cytoplasmic proteins such as α-tubulin and HSP90. HDAC6 is involved in multiple disease-relevant pathways. Based on the proteolysis targeting chimera strategy, we previously developed the first HDAC6 degrader by tethering a pan-HDAC inhibitor with cereblon (CRBN) E3 ubiquitin ligase ligand. We herein report our new generation of multifunctional HDAC6 degraders by tethering selective HDAC6 inhibitor Nexturastat A with CRBN ligand that can synergize with HDAC6 degradation for the antiproliferation of multiple myeloma (MM). This new class of degraders exhibited improved potency and selectivity for the degradation of HDAC6. After the optimization of the linker length and linking positions, we discovered potent HDAC6 degraders with nanomolar DC50 and promising antiproliferation activity in multiple myeloma (MM) cells.


Asunto(s)
Antineoplásicos/farmacología , Desarrollo de Medicamentos/métodos , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Mieloma Múltiple/enzimología , Antineoplásicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Relación Dosis-Respuesta a Droga , Células HeLa , Células Hep G2 , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Células MCF-7 , Mieloma Múltiple/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA