Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 534(7605): 91-4, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27251281

RESUMEN

Worldwide heavy oil and bitumen deposits amount to 9 trillion barrels of oil distributed in over 280 basins around the world, with Canada home to oil sands deposits of 1.7 trillion barrels. The global development of this resource and the increase in oil production from oil sands has caused environmental concerns over the presence of toxic compounds in nearby ecosystems and acid deposition. The contribution of oil sands exploration to secondary organic aerosol formation, an important component of atmospheric particulate matter that affects air quality and climate, remains poorly understood. Here we use data from airborne measurements over the Canadian oil sands, laboratory experiments and a box-model study to provide a quantitative assessment of the magnitude of secondary organic aerosol production from oil sands emissions. We find that the evaporation and atmospheric oxidation of low-volatility organic vapours from the mined oil sands material is directly responsible for the majority of the observed secondary organic aerosol mass. The resultant production rates of 45-84 tonnes per day make the oil sands one of the largest sources of anthropogenic secondary organic aerosols in North America. Heavy oil and bitumen account for over ten per cent of global oil production today, and this figure continues to grow. Our findings suggest that the production of the more viscous crude oils could be a large source of secondary organic aerosols in many production and refining regions worldwide, and that such production should be considered when assessing the environmental impacts of current and planned bitumen and heavy oil extraction projects globally.


Asunto(s)
Aerosoles/análisis , Aerosoles/química , Atmósfera/química , Yacimiento de Petróleo y Gas , Industria del Petróleo y Gas , Alberta , Clima , Actividades Humanas , Hidrocarburos/análisis , Hidrocarburos/química , Material Particulado/análisis , Material Particulado/química , Petróleo , Volatilización
2.
Environ Sci Technol ; 55(19): 12841-12851, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34525806

RESUMEN

Reactive organic compounds play a central role in the formation of ozone and secondary organic aerosols. The ability to accurately predict their fate, in part, relies upon quantitative knowledge of the chemical and physical parameters associated with the total organic carbon (TOC), which includes both precursors and oxidation products that evolve in the atmosphere over short to long time scales. However, such knowledge, obtained via limited carbon closure experiments, has not been attained for complex anthropogenic emissions. Here we present the first comprehensive characterization of TOC in the atmospheric oxidation of organic vapors from light and heavy oil mixtures associated with oil sand operations. Despite the complexity of the investigated oil mixtures, we are able to achieve carbon closure (83-116%) within the uncertainties (±20%), with the degree of the closure being dependent upon the vapor composition and NOx levels. In contrast to biogenic precursors (e.g., α-pinene), the photochemical time scale required for a largely complete oxidation and evolution of chemical parameters is very long for the petrochemical vapors (i.e., ∼7-10 days vs ∼1 day), likely due to the lower initial precursor reactivity. This suggests that petrochemical emissions and their impacts are likely to extend further spatially than biogenic emissions, and retain more of their complex composition and reactivity for many days. The results of this work provide key parameters to regional models for further improving the representation of the chemical evolution of petrochemical emissions.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Atmósfera , Carbono
3.
Environ Sci Technol ; 55(19): 12831-12840, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34524801

RESUMEN

Tailings ponds in the oil sands (OS) region in Alberta, Canada, have been associated with fugitive emissions of volatile organic compounds (VOCs) and other pollutants to the atmosphere. However, the contribution of tailings ponds to the total fugitive emissions of VOCs from OS operations remains uncertain. To address this knowledge gap, a field study was conducted in the summer of 2017 at Suncor's Pond 2/3 to estimate emissions of a suite of pollutants including 68 VOCs using a combination of micrometeorological methods and measurements from a flux tower. The results indicate that in 2017, Pond 2/3 was an emission source of 3322 ± 727 tons of VOCs including alkanes, aromatics, and oxygenated and sulfur-containing organics. While the total VOC emissions were approximately a factor of 2 higher than those reported by Suncor, the individual VOC species emissions varied by up to a factor of 12. A chemical mass balance (CMB) receptor model was used to estimate the contribution of the tailings pond to VOC pollution events in a nearby First Nations and Metis community in Fort McKay. CMB results indicate that Suncor Pond 2/3 contributed up to 57% to the total mass of VOCs measured at Fort McKay, reinforcing the importance of accurate VOC emission estimation methods for tailings ponds.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Alberta , Monitoreo del Ambiente , Yacimiento de Petróleo y Gas , Estanques , Compuestos Orgánicos Volátiles/análisis
4.
Proc Natl Acad Sci U S A ; 114(19): E3756-E3765, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28439021

RESUMEN

Large-scale oil production from oil sands deposits in Alberta, Canada has raised concerns about environmental impacts, such as the magnitude of air pollution emissions. This paper reports compound emission rates (E) for 69-89 nonbiogenic volatile organic compounds (VOCs) for each of four surface mining facilities, determined with a top-down approach using aircraft measurements in the summer of 2013. The aggregate emission rate (aE) of the nonbiogenic VOCs ranged from 50 ± 14 to 70 ± 22 t/d depending on the facility. In comparison, equivalent VOC emission rates reported to the Canadian National Pollutant Release Inventory (NPRI) using accepted estimation methods were lower than the aE values by factors of 2.0 ± 0.6, 3.1 ± 1.1, 4.5 ± 1.5, and 4.1 ± 1.6 for the four facilities, indicating underestimation in the reported VOC emissions. For 11 of the combined 93 VOC species reported by all four facilities, the reported emission rate and E were similar; but for the other 82 species, the reported emission rate was lower than E The median ratio of E to that reported for all species by a facility ranged from 4.5 to 375 depending on the facility. Moreover, between 9 and 53 VOCs, for which there are existing reporting requirements to the NPRI, were not included in the facility emission reports. The comparisons between the emission reports and measurement-based emission rates indicate that improvements to VOC emission estimation methods would enhance the accuracy and completeness of emission estimates and their applicability to environmental impact assessments of oil sands developments.


Asunto(s)
Minería , Petróleo , Compuestos Orgánicos Volátiles/análisis , Alberta
5.
Environ Sci Technol ; 51(24): 14462-14471, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29210280

RESUMEN

Isocyanic acid (HNCO) is a known toxic species and yet the relative importance of primary and secondary sources to regional HNCO and population exposure remains unclear. Off-road diesel fuel combustion has previously been suggested to be an important regional source of HNCO, which implies that major industrial facilities such as the oil sands (OS), which consume large quantities of diesel fuel, can be sources of HNCO. The OS emissions of nontraditional toxic species such as HNCO have not been assessed. Here, airborne measurements of HNCO were used to estimate primary and secondary HNCO for the oil sands. Approximately 6.2 ± 1.1 kg hr-1 was emitted from off-road diesel activities within oil sands facilities, and an additional 116-186 kg hr-1 formed from the photochemical oxidation of diesel exhaust. Together, the primary and secondary HNCO from OS operations represent a significant anthropogenic HNCO source in Canada. The secondary HNCO downwind of the OS was enhanced by up to a factor of 20 relative to its primary emission, an enhancement factor significantly greater than previously estimated from laboratory studies. Incorporating HNCO emissions and formation into a regional model demonstrated that the HNCO levels in Fort McMurray (∼10-70 km downwind of the OS) are controlled by OS emissions; > 50% of the monthly mean HNCO arose from the OS. While the mean HNCO levels in Fort McMurray are predicted to be below the 1000 pptv level associated with potential negative health impacts, (∼25 pptv in August-September), an order of magnitude increase in concentration is predicted (250-600 pptv) when the town is directly impacted by OS plumes. The results here highlight the importance of obtaining at-source HNCO emission factors and advancing the understanding of secondary HNCO formation mechanisms, to assess and improve HNCO population exposure predictions.


Asunto(s)
Cianatos , Yacimiento de Petróleo y Gas , Procesos Fotoquímicos , Contaminantes Atmosféricos , Canadá , Emisiones de Vehículos
6.
Science ; 383(6681): 426-432, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38271520

RESUMEN

Anthropogenic organic carbon emissions reporting has been largely limited to subsets of chemically speciated volatile organic compounds. However, new aircraft-based measurements revealed total gas-phase organic carbon emissions that exceed oil sands industry-reported values by 1900% to over 6300%, the bulk of which was due to unaccounted-for intermediate-volatility and semivolatile organic compounds. Measured facility-wide emissions represented approximately 1% of extracted petroleum, resulting in total organic carbon emissions equivalent to that from all other sources across Canada combined. These real-world observations demonstrate total organic carbon measurements as a means of detecting unknown or underreported carbon emissions regardless of chemical features. Because reporting gaps may include hazardous, reactive, or secondary air pollutants, fully constraining the impact of anthropogenic emissions necessitates routine, comprehensive total organic carbon monitoring as an inherent check on mass closure.

7.
Sci Total Environ ; 880: 163232, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37023817

RESUMEN

Forest fire research over the last several decades has improved the understanding of fire emissions and impacts. Nevertheless, the evolution of forest fire plumes remains poorly quantified and understood. Here, a Lagrangian chemical transport model, the Forward Atmospheric Stochastic Transport model coupled with the Master Chemical Mechanism (FAST-MCM), has been developed to simulate the transport and chemical transformations of plumes from a boreal forest fire over several hours since their emission. The model results for NOx (NO and NO2), O3, HONO, HNO3, pNO3 and 70 VOC species are compared with airborne in-situ measurements within plume centers and their surrounding portions during the transport. Comparisons between simulation results and measurements show that the FAST-MCM model can properly reproduce the physical and chemical evolution of forest fire plumes. The results indicate that the model can be an important tool used to aid the understanding of the downwind impacts of forest fire plumes.

8.
Environ Sci Technol ; 40(19): 5846-52, 2006 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-17051769

RESUMEN

Some nitrogen-containing organic compounds (NOCs) in PM2.5 aerosols in forest, tunnel, urban, rural, and mixed forest/ urban areas in the Lower Fraser Valley (LFV), British Columbia, Canada, were measured to assess their chemical characteristics, temporal and spatial distributions, and origins. The levels of E-caprolactam, isoindole-1,3-dione, benzothiazolone, and N-butyl-benzensulfonamide showed significant differences among the sites, with the highest level at the mixed forest/urban site, indicating that aerosols at this site were impacted by chemical manufacturing activities. N,N-diethyl-m-toluamide (deet) was detected at all locations but was highest in the forest area, demonstrating a widespread usage as an insect repellent in the LFV and at camps at the forest site. Alkyl amides, tracers from wood burning and cooking, ranging from C6 to C20 including two unsaturated amides, hexadecenamide, and 9-octa-decenamide, were detected at all sites. Three patterns of carbon number distributions of alkyl amides varied with location and time, and were mainly impacted by biomass burning or cooking compared to levoglucosan and cholesterol in the LFV. Ratio of oleamide to stearamide (C18:1/C18:0) was discussed as a potential indicator for determining "age" or transport range of biomass combustion plumes.


Asunto(s)
Contaminantes Atmosféricos/análisis , Amidas/análisis , Material Particulado/análisis , Benzotiazoles/análisis , Colombia Británica , Colesterol/análisis , Culinaria , Monitoreo del Ambiente , Glucosa/análogos & derivados , Glucosa/análisis , Ftalimidas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA