Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Chemometr Intell Lab Syst ; 224: 104535, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35308181

RESUMEN

COVID-19 disease causes serious respiratory illnesses. Therefore, accurate identification of the viral infection cycle plays a key role in designing appropriate vaccines. The risk of this disease depends on proteins that interact with human receptors. In this paper, we formulate a novel model for COVID-19 named "amino acid encoding based prediction" (AAPred). This model is accurate, classifies the various coronavirus types, and distinguishes SARS-CoV-2 from other coronaviruses. With the AAPred model, we reduce the number of features to enhance its performance by selecting the most important ones employing statistical criteria. The protein sequence of SARS-CoV-2 for understanding the viral infection cycle is analyzed. Six machine learning classifiers related to decision trees, k-nearest neighbors, random forest, support vector machine, bagging ensemble, and gradient boosting are used to evaluate the model in terms of accuracy, precision, sensitivity, and specificity. We implement the obtained results computationally and apply them to real data from the National Genomics Data Center. The experimental results report that the AAPred model reduces the features to seven of them. The average accuracy of the 10-fold cross-validation is 98.69%, precision is 98.72%, sensitivity is 96.81%, and specificity is 97.72%. The features are selected utilizing information gain and classified with random forest. The proposed model predicts the type of Coronavirus and reduces the number of extracted features. We identify that SARS-CoV-2 has similar physicochemical characteristics in some regions of SARS-CoV. Also, we report that SARS-CoV-2 has similar infection cycles and sequences in some regions of SARS CoV indicating the affectedness of vaccines on SARS-CoV-2. A comparison with deep learning shows similar results with our method.

2.
Sensors (Basel) ; 22(10)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35632152

RESUMEN

In this paper, we propose a new privatization mechanism based on a naive theory of a perturbation on a probability using wavelets, such as a noise perturbs the signal of a digital image sensor. Wavelets are employed to extract information from a wide range of types of data, including audio signals and images often related to sensors, as unstructured data. Specifically, the cumulative wavelet integral function is defined to build the perturbation on a probability with the help of this function. We show that an arbitrary distribution function additively perturbed is still a distribution function, which can be seen as a privatized distribution, with the privatization mechanism being a wavelet function. Thus, we offer a mathematical method for choosing a suitable probability distribution for data by starting from some guessed initial distribution. Examples of the proposed method are discussed. Computational experiments were carried out using a database-sensor and two related algorithms. Several knowledge areas can benefit from the new approach proposed in this investigation. The areas of artificial intelligence, machine learning, and deep learning constantly need techniques for data fitting, whose areas are closely related to sensors. Therefore, we believe that the proposed privatization mechanism is an important contribution to increasing the spectrum of existing techniques.


Asunto(s)
Inteligencia Artificial , Privatización , Algoritmos , Aprendizaje Automático , Probabilidad
3.
Sensors (Basel) ; 21(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34450794

RESUMEN

Healthcare service centers must be sited in strategic locations that meet the immediate needs of patients. The current situation due to the COVID-19 pandemic makes this problem particularly relevant. Assume that each center corresponds to an assigned place for vaccination and that each center uses one or more vaccine brands/laboratories. Then, each patient could choose a center instead of another, because she/he may prefer the vaccine from a more reliable laboratory. This defines an order of preference that might depend on each patient who may not want to be vaccinated in a center where there are only her/his non-preferred vaccine brands. In countries where the vaccination process is considered successful, the order assigned by each patient to the vaccination centers is defined by incentives that local governments give to their population. These same incentives for foreign citizens are seen as a strategic decision to generate income from tourism. The simple plant/center location problem (SPLP) is a combinatorial approach that has been extensively studied. However, a less-known natural extension of it with order (SPLPO) has not been explored in the same depth. In this case, the size of the instances that can be solved is limited. The SPLPO considers an order of preference that patients have over a set of facilities to meet their demands. This order adds a new set of constraints in its formulation that increases the complexity of the problem to obtain an optimal solution. In this paper, we propose a new two-stage stochastic formulation for the SPLPO (2S-SPLPO) that mimics the mentioned pandemic situation, where the order of preference is treated as a random vector. We carry out computational experiments on simulated 2S-SPLPO instances to evaluate the performance of the new proposal. We apply an algorithm based on Lagrangian relaxation that has been shown to be efficient for large instances of the SPLPO. A potential application of this new algorithm to COVID-19 vaccination is discussed and explored based on sensor-related data. Two further algorithms are proposed to store the patient's records in a data warehouse and generate 2S-SPLPO instances using sensors.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Algoritmos , Femenino , Humanos , Masculino , Pandemias , SARS-CoV-2 , Vacunación
4.
Sensors (Basel) ; 21(23)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34884024

RESUMEN

Surveys on explainable artificial intelligence (XAI) are related to biology, clinical trials, fintech management, medicine, neurorobotics, and psychology, among others. Prognostics and health management (PHM) is the discipline that links the studies of failure mechanisms to system lifecycle management. There is a need, which is still absent, to produce an analytical compilation of PHM-XAI works. In this paper, we use preferred reporting items for systematic reviews and meta-analyses (PRISMA) to present a state of the art on XAI applied to PHM of industrial assets. This work provides an overview of the trend of XAI in PHM and answers the question of accuracy versus explainability, considering the extent of human involvement, explanation assessment, and uncertainty quantification in this topic. Research articles associated with the subject, since 2015 to 2021, were selected from five databases following the PRISMA methodology, several of them related to sensors. The data were extracted from selected articles and examined obtaining diverse findings that were synthesized as follows. First, while the discipline is still young, the analysis indicates a growing acceptance of XAI in PHM. Second, XAI offers dual advantages, where it is assimilated as a tool to execute PHM tasks and explain diagnostic and anomaly detection activities, implying a real need for XAI in PHM. Third, the review shows that PHM-XAI papers provide interesting results, suggesting that the PHM performance is unaffected by the XAI. Fourth, human role, evaluation metrics, and uncertainty management are areas requiring further attention by the PHM community. Adequate assessment metrics to cater to PHM needs are requested. Finally, most case studies featured in the considered articles are based on real industrial data, and some of them are related to sensors, showing that the available PHM-XAI blends solve real-world challenges, increasing the confidence in the artificial intelligence models' adoption in the industry.


Asunto(s)
Inteligencia Artificial , Humanos , Pronóstico
5.
Sensors (Basel) ; 21(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34372434

RESUMEN

Governments have been challenged to provide timely medical care to face the COVID-19 pandemic. Under this pandemic, the demand for pharmaceutical products has changed significantly. Some of these products are in high demand, while, for others, their demand falls sharply. These changes in the random demand patterns are connected with changes in the skewness (asymmetry) and kurtosis of their data distribution. Such changes are critical to determining optimal lots and inventory costs. The lot-size model helps to make decisions based on probabilistic demand when calculating the optimal costs of supply using two-stage stochastic programming. The objective of this study is to evaluate how the skewness and kurtosis of the distribution of demand data, collected through sensors, affect the modeling of inventories of hospital pharmacy products helpful to treat COVID-19. The use of stochastic programming allows us to obtain results under demand uncertainty that are closer to reality. We carry out a simulation study to evaluate the performance of our methodology under different demand scenarios with diverse degrees of skewness and kurtosis. A case study in the field of hospital pharmacy with sensor-related COVID-19 data is also provided. An algorithm that permits us to use sensors when submitting requests for supplying pharmaceutical products in the hospital treatment of COVID-19 is designed. We show that the coefficients of skewness and kurtosis impact the total costs of inventory that involve order, purchase, holding, and shortage. We conclude that the asymmetry and kurtosis of the demand statistical distribution do not seem to affect the first-stage lot-size decisions. However, demand patterns with high positive skewness are related to significant increases in expected inventories on hand and shortage, increasing the costs of second-stage decisions. Thus, demand distributions that are highly asymmetrical to the right and leptokurtic favor high total costs in probabilistic lot-size systems.


Asunto(s)
COVID-19 , Servicio de Farmacia en Hospital , Humanos , Pandemias , SARS-CoV-2 , Incertidumbre
6.
Sensors (Basel) ; 21(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34640834

RESUMEN

Environmental agencies are interested in relating mortality to pollutants and possible environmental contributors such as temperature. The Gaussianity assumption is often violated when modeling this relationship due to asymmetry and then other regression models should be considered. The class of Birnbaum-Saunders models, especially their regression formulations, has received considerable attention in the statistical literature. These models have been applied successfully in different areas with an emphasis on engineering, environment, and medicine. A common simplification of these models is that statistical dependence is often not considered. In this paper, we propose and derive a time-dependent model based on a reparameterized Birnbaum-Saunders (RBS) asymmetric distribution that allows us to analyze data in terms of a time-varying conditional mean. In particular, it is a dynamic class of autoregressive moving average (ARMA) models with regressors and a conditional RBS distribution (RBSARMAX). By means of a Monte Carlo simulation study, the statistical performance of the new methodology is assessed, showing good results. The asymmetric RBSARMAX structure is applied to the modeling of mortality as a function of pollution and temperature over time with sensor-related data. This modeling provides strong evidence that the new ARMA formulation is a good alternative for dealing with temporal data, particularly related to mortality with regressors of environmental temperature and pollution.


Asunto(s)
Contaminación Ambiental , Simulación por Computador , Método de Montecarlo , Temperatura
7.
Sensors (Basel) ; 21(18)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34577525

RESUMEN

In a real-world situation produced under COVID-19 scenarios, predicting cryptocurrency returns accurately can be challenging. Such a prediction may be helpful to the daily economic and financial market. Unlike forecasting the cryptocurrency returns, we propose a new approach to predict whether the return classification would be in the first, second, third quartile, or any quantile of the gold price the next day. In this paper, we employ the support vector machine (SVM) algorithm for exploring the predictability of financial returns for the six major digital currencies selected from the list of top ten cryptocurrencies based on data collected through sensors. These currencies are Binance Coin, Bitcoin, Cardano, Dogecoin, Ethereum, and Ripple. Our study considers the pre-COVID-19 and ongoing COVID-19 periods. An algorithm that allows updated data analysis, based on the use of a sensor in the database, is also proposed. The results show strong evidence that the SVM is a robust technique for devising profitable trading strategies and can provide accurate results before and during the current pandemic. Our findings may be helpful for different stakeholders in understanding the cryptocurrency dynamics and in making better investment decisions, especially under adverse conditions and during times of uncertain environments such as in the COVID-19 pandemic.


Asunto(s)
COVID-19 , Máquina de Vectores de Soporte , Comercio , Oro , Humanos , Pandemias , SARS-CoV-2
8.
Sensors (Basel) ; 21(12)2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34198627

RESUMEN

In this paper, we group South American countries based on the number of infected cases and deaths due to COVID-19. The countries considered are: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, Paraguay, Uruguay, and Venezuela. The data used are collected from a database of Johns Hopkins University, an institution that is dedicated to sensing and monitoring the evolution of the COVID-19 pandemic. A statistical analysis, based on principal components with modern and recent techniques, is conducted. Initially, utilizing the correlation matrix, standard components and varimax rotations are calculated. Then, by using disjoint components and functional components, the countries are grouped. An algorithm that allows us to keep the principal component analysis updated with a sensor in the data warehouse is designed. As reported in the conclusions, this grouping changes depending on the number of components considered, the type of principal component (standard, disjoint or functional) and the variable to be considered (infected cases or deaths). The results obtained are compared to the k-means technique. The COVID-19 cases and their deaths vary in the different countries due to diverse reasons, as reported in the conclusions.


Asunto(s)
COVID-19 , Pandemias , Argentina , Brasil , Chile , Colombia , Ecuador , Humanos , Perú , Análisis de Componente Principal , SARS-CoV-2 , Uruguay , Venezuela
9.
Entropy (Basel) ; 23(1)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445659

RESUMEN

In this research, statistical models are formulated to study the effect of the health crisis arising from COVID-19 in global markets. Breakpoints in the price series of stock indexes are considered. Such indexes are used as an approximation of the stock markets in different countries, taking into account that they are indicative of these markets because of their composition. The main results obtained in this investigation highlight that countries with better institutional and economic conditions are less affected by the pandemic. In addition, the effect of the health index in the models is associated with their non-significant parameters. This is due to that the health index used in the modeling would not determine the different capacities of the countries analyzed to respond efficiently to the pandemic effect. Therefore, the contagion is the preponderant factor when analyzing the structural breakdown that occurred in the world economy.

10.
Entropy (Basel) ; 23(4)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33923879

RESUMEN

Data mining is employed to extract useful information and to detect patterns from often large data sets, closely related to knowledge discovery in databases and data science. In this investigation, we formulate models based on machine learning algorithms to extract relevant information predicting student retention at various levels, using higher education data and specifying the relevant variables involved in the modeling. Then, we utilize this information to help the process of knowledge discovery. We predict student retention at each of three levels during their first, second, and third years of study, obtaining models with an accuracy that exceeds 80% in all scenarios. These models allow us to adequately predict the level when dropout occurs. Among the machine learning algorithms used in this work are: decision trees, k-nearest neighbors, logistic regression, naive Bayes, random forest, and support vector machines, of which the random forest technique performs the best. We detect that secondary educational score and the community poverty index are important predictive variables, which have not been previously reported in educational studies of this type. The dropout assessment at various levels reported here is valid for higher education institutions around the world with similar conditions to the Chilean case, where dropout rates affect the efficiency of such institutions. Having the ability to predict dropout based on student's data enables these institutions to take preventative measures, avoiding the dropouts. In the case study, balancing the majority and minority classes improves the performance of the algorithms.

11.
Entropy (Basel) ; 23(4)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924067

RESUMEN

Optimization seeks to find inputs for an objective function that result in a maximum or minimum. Optimization methods are divided into exact and approximate (algorithms). Several optimization algorithms imitate natural phenomena, laws of physics, and behavior of living organisms. Optimization based on algorithms is the challenge that underlies machine learning, from logistic regression to training neural networks for artificial intelligence. In this paper, a new algorithm called two-stage optimization (TSO) is proposed. The TSO algorithm updates population members in two steps at each iteration. For this purpose, a group of good population members is selected and then two members of this group are randomly used to update the position of each of them. This update is based on the first selected good member at the first stage, and on the second selected good member at the second stage. We describe the stages of the TSO algorithm and model them mathematically. Performance of the TSO algorithm is evaluated for twenty-three standard objective functions. In order to compare the optimization results of the TSO algorithm, eight other competing algorithms are considered, including genetic, gravitational search, grey wolf, marine predators, particle swarm, teaching-learning-based, tunicate swarm, and whale approaches. The numerical results show that the new algorithm is superior and more competitive in solving optimization problems when compared with other algorithms.

12.
Rev Environ Contam Toxicol ; 250: 45-67, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32318823

RESUMEN

Atmospheric pollution derives mainly from anthropogenic activities that use combustion and may lead to adverse effects in exposed populations. It is generally accepted that air contamination causes cardiovascular and pulmonary morbidity in addition to increased mortality after exposure, but other epidemiological associations have also been described, including cancer as well as reproductive and immunological toxicity. Thus the concentration of chemicals in the air must be controlled. We propose that monitoring of air quality may be achieved by employing data analytics to generate information within the context of data-driven decision making to prevent and/or adequately alert the population about possible critical episodes of air contamination. In this paper, we propose a methodology for monitoring particulate matter pollution in Santiago of Chile which is based on bivariate control charts with heavy-tailed asymmetric distributions. This methodology is useful for monitoring environmental risk when the particulate matter concentrations follow bivariate Birnbaum-Saunders or Birnbaum-Saunders-t-Student distributions. A case study with real particulate matter pollution from Santiago is provided, which shows that the methodology is suitable to alert early episodes of extreme air pollution. The results are in agreement with the critical episodes reported with the current model used by the Chilean health authority.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire/efectos adversos , Monitoreo del Ambiente/métodos , Material Particulado , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Chile , Toma de Decisiones , Humanos , Material Particulado/toxicidad
13.
Stat Med ; 37(29): 4421-4440, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30109718

RESUMEN

Cure rate models have been widely studied to analyze time-to-event data with a cured fraction of patients. Our proposal consists of incorporating frailty into a cure rate model, as an alternative to the existing models to describe this type of data, based on the Birnbaum-Saunders distribution. Such a distribution has theoretical arguments to model medical data and has shown empirically to be a good option for their analysis. An advantage of the proposed model is the possibility to jointly consider the heterogeneity among patients by their frailties and the presence of a cured fraction of them. In addition, the number of competing causes is described by the negative binomial distribution, which absorbs several particular cases. We consider likelihood-based methods to estimate the model parameters and to derive influence diagnostics for this model. We assess local influence on the parameter estimates under different perturbation schemes. Deriving diagnostic tools is needed in all statistical modeling, which is another novel aspect of our proposal. Numerical evaluation of the considered model is performed by Monte Carlo simulations and by an illustration with melanoma data, both of which show its good performance and its potential applications. Particularly, the illustration confirms the importance of statistical diagnostics in the modeling.


Asunto(s)
Fragilidad/terapia , Melanoma/terapia , Modelos Estadísticos , Distribución Binomial , Fragilidad/diagnóstico , Fragilidad/epidemiología , Humanos , Estimación de Kaplan-Meier , Funciones de Verosimilitud , Melanoma/diagnóstico , Melanoma/mortalidad , Método de Montecarlo , Inducción de Remisión , Análisis de Supervivencia , Resultado del Tratamiento
14.
Biom J ; 59(2): 291-314, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28054373

RESUMEN

In survival models, some covariates affecting the lifetime could not be observed or measured. These covariates may correspond to environmental or genetic factors and be considered as a random effect related to a frailty of the individuals explaining their survival times. We propose a methodology based on a Birnbaum-Saunders frailty regression model, which can be applied to censored or uncensored data. Maximum-likelihood methods are used to estimate the model parameters and to derive local influence techniques. Diagnostic tools are important in regression to detect anomalies, as departures from error assumptions and presence of outliers and influential cases. Normal curvatures for local influence under different perturbations are computed and two types of residuals are introduced. Two examples with uncensored and censored real-world data illustrate the proposed methodology. Comparison with classical frailty models is carried out in these examples, which shows the superiority of the proposed model.


Asunto(s)
Biometría/métodos , Técnicas y Procedimientos Diagnósticos , Modelos Estadísticos , Humanos , Funciones de Verosimilitud , Análisis de Supervivencia
15.
Biol Cybern ; 109(4-5): 421-33, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25998210

RESUMEN

Neurons transmit information as action potentials or spikes. Due to the inherent randomness of the inter-spike intervals (ISIs), probabilistic models are often used for their description. Cumulative damage (CD) distributions are a family of probabilistic models that has been widely considered for describing time-related cumulative processes. This family allows us to consider certain deterministic principles for modeling ISIs from a probabilistic viewpoint and to link its parameters to values with biological interpretation. The CD family includes the Birnbaum-Saunders and inverse Gaussian distributions, which possess distinctive properties and theoretical arguments useful for ISI description. We expand the use of CD distributions to the modeling of neural spiking behavior, mainly by testing the suitability of the Birnbaum-Saunders distribution, which has not been studied in the setting of neural activity. We validate this expansion with original experimental and simulated electrophysiological data.


Asunto(s)
Potenciales de Acción/fisiología , Modelos Neurológicos , Neuronas/fisiología , Animales , Simulación por Computador , Femenino , Humanos , Masculino , Distribución Normal
16.
Stat Appl Genet Mol Biol ; 12(6): 653-66, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24133097

RESUMEN

In this paper, we introduce a new family of power transformations, which has the generalized logarithm as one of its members, in the same manner as the usual logarithm belongs to the family of Box-Cox power transformations. Although the new family has been developed for analyzing gene expression data, it allows a wider scope of mean-variance related data to be reached. We study the analytical properties of the new family of transformations, as well as the mean-variance relationships that are stabilized by using its members. We propose a methodology based on this new family, which includes a simple strategy for selecting the family member adequate for a data set. We evaluate the finite sample behavior of different classical and robust estimators based on this strategy by Monte Carlo simulations. We analyze real genomic data by using the proposed transformation to empirically show how the new methodology allows the variance of these data to be stabilized.


Asunto(s)
Interpretación Estadística de Datos , Perfilación de la Expresión Génica , Algoritmos , Simulación por Computador , Humanos , Modelos Lineales , Modelos Genéticos , Método de Montecarlo , Análisis de Secuencia por Matrices de Oligonucleótidos , Programas Informáticos
17.
Comput Methods Programs Biomed ; 255: 108321, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39053350

RESUMEN

This study conducts a comprehensive analysis on the usage of the blockchain technology in clinical trials, based on a curated corpus of 107 scientific articles from the year 2016 through the first quarter of 2024. Utilizing a methodological framework that integrates bibliometric analysis, network analysis, thematic mapping, and latent Dirichlet allocation, the study explores the terrain and prospective developments within this usage based on data analytics. Through a meticulous examination of the analyzed articles, the present study identifies seven key thematic areas, highlighting the diverse applications and interdisciplinary nature of blockchain in clinical trials. Our findings reveal blockchain capability to enhance data management, participant consent processes, as well as overall trial transparency, efficiency, and security. Additionally, the investigation discloses the emerging synergy between blockchain and advanced technologies, such as artificial intelligence and federated learning, proposing innovative directions for improving clinical research methodologies. Our study underscores the collaborative efforts in dealing with the complexities of integrating blockchain into the areas of clinical trials and healthcare, delineating the transformative potential of blockchain technology in revolutionizing these areas by addressing challenges and promoting practices of efficient, secure, and transparent research. The delineated themes and networks of collaboration provide a blueprint for future inquiry, showing the importance of empirical research to narrow the gap between theoretical promise and practical implementation.


Asunto(s)
Bibliometría , Cadena de Bloques , Ensayos Clínicos como Asunto , Humanos , Inteligencia Artificial , Ciencia de los Datos
18.
J Appl Stat ; 51(7): 1318-1343, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835830

RESUMEN

Autoregressive models in time series are useful in various areas. In this article, we propose a skew-t autoregressive model. We estimate its parameters using the expectation-maximization (EM) method and develop the influence methodology based on local perturbations for its validation. We obtain the normal curvatures for four perturbation strategies to identify influential observations, and then to assess their performance through Monte Carlo simulations. An example of financial data analysis is presented to study daily log-returns for Brent crude futures and investigate possible impact by the COVID-19 pandemic.

19.
Heliyon ; 10(1): e22454, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163138

RESUMEN

In this study, an internet of things (IoT)-enabled fuzzy intelligent system is introduced for the remote monitoring, diagnosis, and prescription of treatment for patients with COVID-19. The main objective of the present study is to develop an integrated tool that combines IoT and fuzzy logic to provide timely healthcare and diagnosis within a smart framework. This system tracks patients' health by utilizing an Arduino microcontroller, a small and affordable computer that reads data from various sensors, to gather data. Once collected, the data are processed, analyzed, and transmitted to a web page for remote access via an IoT-compatible Wi-Fi module. In cases of emergencies, such as abnormal blood pressure, cardiac issues, glucose levels, or temperature, immediate action can be taken to monitor the health of critical COVID-19 patients in isolation. The system employs fuzzy logic to recommend medical treatments for patients. Sudden changes in these medical conditions are remotely reported through a web page to healthcare providers, relatives, or friends. This intelligent system assists healthcare professionals in making informed decisions based on the patient's condition.

20.
Rev Environ Contam Toxicol ; 223: 1-31, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23149810

RESUMEN

The use of statistical distributions to predict air quality is valuable for determining the impact of air chemical contaminants on human health. Concentrations of air pollutants are treated as random variables that can be modeled by a statistical distribution that is positively skewed and starts from zero. The type of distribution selected for analyzing air pollution data and its associated parameters depend on factors such as emission source and local meteorology and topography. International environmental guideline use appropriate distributions to compute exceedance probabilities and percentiles for setting administrative targets and issuing environmental alerts. The distribution bears a relationship to the normal distribution, and there are theoretical - and physical-based mechanistic arguments that support its use when analyzing air-pollutant data. Others distribution have also been used to model air population data, such as the beta, exponential, gamma, Johnson, log-logistic, Pearson, and Weibull distribution. One model also developed from physical-mechanistic considerations that has received considerable interest in recent year is the Birnbaum-Saunders distribution. This distribution has theoretical arguments and properties similar to those of the log-normal distribution, which renders it useful for modeling air contamination data. In this review, we have addressed the range of common atmospheric contaminants and the health effects they cause. We have also reviewed the statistical distributions that have been use to model air quality, after which we have detailed the problem of air contamination in Santiago, Chile. We have illustrated a methodology that is based on the Birnbaum-Saunders distributions to analyze air contamination data from Santiago, Chile. Finally, in the conclusions, we have provided a list of synoptic statements designed to help readers understand the significance of air pollution in Chile, and in Santiago, in particular, but that can be useful to other cites and countries.


Asunto(s)
Contaminantes Atmosféricos/química , Tamaño de la Partícula , Contaminantes Atmosféricos/toxicidad , Chile , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA