Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Immunol ; 224: 108661, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33412295

RESUMEN

Identification of T cell epitopes that are recognized by Tregs may elucidate the relative contributions of thymic Tregs and induced Tregs to control of autoimmune diseases and allergy. One such T regulatory cell epitope or 'Tregitope', derived from blood Factor V, is described here. Tregs responding to Tregitope FV621 are potent suppressors of CD4+ T effector responses to Tetanus Toxoid in an in vitro bystander suppression assay, strongly inhibit proliferation of effector CD8+ T cells, down-modulate CD86 and HLA DR on antigen-presenting cells, and enhance expression of granzyme B in Tregs. Tregitope FV621 also suppresses anti-OVA immune responses in vivo. The immunomodulatory effect of Tregitope FV621 is enhanced when conjugated to albumin, suggesting that the short half-life of Tregitope peptides can be prolonged. The in silico tools used to prospectively identify the FV Tregitope described here, when combined with in vitro /in vivo validating assays, may facilitate future Tregitope discoveries.


Asunto(s)
Linfocitos T CD4-Positivos/fisiología , Linfocitos T CD8-positivos/fisiología , Epítopos de Linfocito T/metabolismo , Factor V/metabolismo , Linfocitos T Reguladores/metabolismo , Secuencia de Aminoácidos , Animales , Biomarcadores/metabolismo , Efecto Espectador , Epítopos de Linfocito T/química , Factor V/química , Humanos , Inmunoglobulina G , Proteínas de la Membrana , Ratones , Ovalbúmina/inmunología , Péptidos/química , Toxoide Tetánico
2.
Front Pharmacol ; 15: 1363139, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39185315

RESUMEN

Advances in synthetic peptide synthesis have enabled rapid and cost-effective peptide drug manufacturing. For this reason, peptide drugs that were first produced using recombinant DNA (rDNA) technology are now being produced using solid- and liquid-phase peptide synthesis. While peptide synthesis has some advantages over rDNA expression methods, new peptide-related impurities that differ from the active pharmaceutical ingredient (API) may be generated during synthesis. These impurity byproducts of the original peptide sequence feature amino acid insertions, deletions, and side-chain modifications that may alter the immunogenicity risk profile of the drug product. Impurities resulting from synthesis have become the special focus of regulatory review and approval for human use, as outlined in the FDA's Center for Drug Evaluation and Research guidance document, "ANDAs for Certain Highly Purified Synthetic Peptide Drug Products That Refer to Listed Drugs of rDNA Origin," published in 2021. This case study illustrates how in silico and in vitro methods can be applied to assess the immunogenicity risk of impurities that may be present in synthetic generic versions of the salmon calcitonin (SCT) drug product. Sponsors of generic drug abbreviated new drug applications (ANDAs) should consider careful control of these impurities (for example, keeping the concentration of the immunogenic impurities below the cut-off recommended by FDA regulators). Twenty example SCT impurities were analyzed using in silico tools and assessed as having slightly more or less immunogenic risk potential relative to the SCT API peptide. Class II human leukocyte antigen (HLA)-binding assays provided independent confirmation that a 9-mer sequence present in the C-terminus of SCT binds promiscuously to multiple HLA DR alleles, while T-cell assays confirmed the expected T-cell responses to SCT and selected impurities. In silico analysis combined with in vitro assays that directly compare the API to each individual impurity peptide may be a useful approach for assessing the potential immunogenic risk posed by peptide impurities that are present in generic drug products.

3.
Front Immunol ; 14: 1215939, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022550

RESUMEN

Biologics developers are moving beyond antibodies for delivery of a wide range of therapeutic interventions. These non-antibody modalities are often based on 'natural' protein scaffolds that are modified to deliver bioactive sequences. Both human-derived and non-human-sourced scaffold proteins have been developed. New types of "non-antibody" scaffolds are still being discovered, as they offer attractive alternatives to monoclonals due to their smaller size, improved stability, and ease of synthesis. They are believed to have low immunogenic potential. However, while several human-sourced protein scaffolds have not been immunogenic in clinical studies, this may not predict their overall performance in other therapeutic applications. A preliminary evaluation of their potential for immunogenicity is warranted. Immunogenicity risk potential has been clearly linked to the presence of T "helper" epitopes in the sequence of biologic therapeutics. In addition, tolerogenic epitopes are present in some human proteins and may decrease their immunogenic potential. While the detailed sequences of many non-antibody scaffold therapeutic candidates remain unpublished, their backbone sequences are available for review and analysis. We assessed 12 example non-antibody scaffold backbone sequences using our epitope-mapping tools (EpiMatrix) for this perspective. Based on EpiMatrix scoring, their HLA DRB1-restricted T cell epitope content appears to be lower than the average protein, and sequences that may act as tolerogenic epitopes are present in selected human-derived scaffolds. Assessing the potential immunogenicity of scaffold proteins regarding self and non-self T cell epitopes may be of use for drug developers and clinicians, as these exciting new non-antibody molecules begin to emerge from the preclinical pipeline into clinical use.


Asunto(s)
Anticuerpos , Epítopos de Linfocito T , Humanos , Mapeo Epitopo
4.
Drug Discov Today ; 28(10): 103714, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37467878

RESUMEN

Peptide drugs play an important part in medicine owing to their many therapeutic applications. Of the 80 peptide drugs approved for use in humans, at least five are now off-patent and are consequently being developed as generic alternatives to the originator products. To accelerate access to generic products, the FDA has proposed new regulatory pathways that do not require direct comparisons of generics to originators in clinical trials. The 'Abbreviated New Drug Application' (ANDA) pathway recommends that sponsors provide information on any new impurities in the generic drug, compared with the originator product, because the impurities can have potential to elicit unwanted immune responses owing to the introduction of T-cell epitopes. This review describes how peptide drug impurities can elicit unexpected immunogenicity and describes a framework for performing immunogenicity risk assessment of all types of bioactive peptide products. Although this report primarily focuses on generic peptides and their impurities, the approach might also be of interest for developers of novel peptide drugs who are preparing their products for an initial regulatory review.


Asunto(s)
Medicamentos Genéricos , Péptidos , Humanos , Contaminación de Medicamentos
5.
Front Immunol ; 14: 1290688, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38124752

RESUMEN

Pathogens escape host defenses by T-cell epitope mutation or deletion (immune escape) and by simulating the appearance of human T cell epitopes (immune camouflage). We identified a highly conserved, human-like T cell epitope in non-structural protein 7 (NSP7) of SARS-CoV-2, RNA-dependent RNA polymerase (RdRp) hetero-tetramer complex. Remarkably, this T cell epitope has significant homology to a T regulatory cell epitope (Tregitope) previously identified in the Fc region of human immunoglobulin G (IgG) (Tregitope 289). We hypothesized that the SARS-CoV-2 NSP7 epitope (NSP7-289) may induce suppressive responses by engaging and activating pre-existing regulatory T cells. We therefore compared NSP7-289 and IgG Tregitopes (289 and 289z, a shorter version of 289 that isolates the shared NSP7 epitope) in vitro. Tregitope peptides 289, 289z and NSP7-289 bound to multiple HLA-DRB1 alleles in vitro and suppressed CD4+ and CD8+ T cell memory responses. Identification and in vitro validation of SARS-CoV-2 NSP7-289 provides further evidence of immune camouflage and suggests that pathogens can use human-like epitopes to evade immune response and potentially enhance host tolerance. Further exploration of the role of cross-conserved Tregs in human immune responses to pathogens such as SARS-CoV-2 is warranted.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Linfocitos T Reguladores , Epítopos de Linfocito T , COVID-19/metabolismo , Linfocitos T CD8-positivos , Inmunoglobulina G
6.
Front Immunol ; 12: 634509, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33953711

RESUMEN

Tregitopes (T regulatory epitopes) are IgG-derived peptides with high affinity to major histocompatibility complex class II (MHCII), that are known to promote tolerance by activating T regulatory cell (Treg) activity. Here we characterized the effect of IgG Tregitopes in a well-established murine model of allergic asthma, demonstrating in vivo antigen-specific tolerance via adoptive transfer of Tregitope-and-allergen-activated Tregs. Asthma is a heterogeneous chronic inflammatory condition affecting the airways and impacting over 300 million individuals worldwide. Treatment is suppressive, and no current therapy addresses immune regulation in severely affected asthmatics. Although high dose intra-venous immunoglobulin (IVIg) is not commonly used in the asthma clinic setting, it has been shown to improve severe asthma in children and in adults. In our laboratory, we previously demonstrated that IVIg abrogates airway hyperresponsiveness (AHR) in a murine model of asthma and induces suppressive antigen-specific T-regulatory cells. We hypothesized that IgG-derived Tregitopes would modulate allergic airway disease by inducing highly suppressive antigen-specific Tregs capable of diminishing T effector cell responses and establishing antigen-specific tolerance. Using ovalbumin (OVA-) and ragweed-driven murine models of allergic airway disease, we characterized the immunoregulatory properties of Tregitopes and performed Treg adoptive transfer to OVA- and ragweed-allergic mice to test for allergen specificity. Treatment with Tregitopes attenuated allergen-induced airway hyperresponsiveness and lung inflammation. We demonstrated that Tregitopes induce highly suppressive allergen-specific Tregs. The tolerogenic action of IgG Tregitopes in our model is very similar to that of IVIg, so we foresee that IgG Tregitopes could potentially replace steroid-based treatment and can offer a synthetic alternative to IVIg in a range of inflammatory and allergic conditions.


Asunto(s)
Antiasmáticos/farmacología , Asma/tratamiento farmacológico , Epítopos de Linfocito T/efectos de los fármacos , Fragmentos Fab de Inmunoglobulinas/farmacología , Fragmentos Fc de Inmunoglobulinas/farmacología , Pulmón/efectos de los fármacos , Activación de Linfocitos/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Traslado Adoptivo , Animales , Animales Modificados Genéticamente , Antígenos de Plantas , Asma/inmunología , Asma/metabolismo , Asma/fisiopatología , Broncoconstricción/efectos de los fármacos , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/fisiopatología , Ratones Endogámicos C57BL , Ovalbúmina , Extractos Vegetales , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/trasplante
7.
Front Immunol ; 12: 636731, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220802

RESUMEN

Infantile-onset Pompe disease (IOPD) is a glycogen storage disease caused by a deficiency of acid alpha-glucosidase (GAA). Treatment with recombinant human GAA (rhGAA, alglucosidase alfa) enzyme replacement therapy (ERT) significantly improves clinical outcomes; however, many IOPD children treated with rhGAA develop anti-drug antibodies (ADA) that render the therapy ineffective. Antibodies to rhGAA are driven by T cell responses to sequences in rhGAA that differ from the individuals' native GAA (nGAA). The goal of this study was to develop a tool for personalized immunogenicity risk assessment (PIMA) that quantifies T cell epitopes that differ between nGAA and rhGAA using information about an individual's native GAA gene and their HLA DR haplotype, and to use this information to predict the risk of developing ADA. Four versions of PIMA have been developed. They use EpiMatrix, a computational tool for T cell epitope identification, combined with an HLA-restricted epitope-specific scoring feature (iTEM), to assess ADA risk. One version of PIMA also integrates JanusMatrix, a Treg epitope prediction tool to identify putative immunomodulatory (regulatory) T cell epitopes in self-proteins. Using the JanusMatrix-adjusted version of PIMA in a logistic regression model with data from 48 cross-reactive immunological material (CRIM)-positive IOPD subjects, those with scores greater than 10 were 4-fold more likely to develop ADA (p<0.03) than those that had scores less than 10. We also confirmed the hypothesis that some GAA epitopes are immunomodulatory. Twenty-one epitopes were tested, of which four were determined to have an immunomodulatory effect on T effector response in vitro. The implementation of PIMA V3J on a secure-access website would allow clinicians to input the individual HLA DR haplotype of their IOPD patient and the GAA pathogenic variants associated with each GAA allele to calculate the patient's relative risk of developing ADA, enhancing clinical decision-making prior to initiating treatment with ERT. A better understanding of immunogenicity risk will allow the implementation of targeted immunomodulatory approaches in ERT-naïve settings, especially in CRIM-positive patients, which may in turn improve the overall clinical outcomes by minimizing the development of ADA. The PIMA approach may also be useful for other types of enzyme or factor replacement therapies.


Asunto(s)
Biología Computacional/métodos , Enfermedad del Almacenamiento de Glucógeno Tipo II/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , alfa-Glucosidasas/metabolismo , Terapia de Reemplazo Enzimático , Mapeo Epitopo , Femenino , Antígenos HLA-DR/genética , Humanos , Tolerancia Inmunológica , Lactante , Masculino , Medicina de Precisión , Pronóstico , Análisis de Regresión , Riesgo , alfa-Glucosidasas/genética , alfa-Glucosidasas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA